Научная статья на тему 'Применение теории нечетких множеств для задачи выбора альтернатив в условиях неопределенности'

Применение теории нечетких множеств для задачи выбора альтернатив в условиях неопределенности Текст научной статьи по специальности «Математика»

CC BY
1407
275
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
теория принятия решений / теория нечетких множеств / статистические игры / неопределенность / экспертные методы / матрица решений / decision making theory / fuzzy sets theory / statistical games / uncertainty / expert methods / decision matrix

Аннотация научной статьи по математике, автор научной работы — Погорелов А. С., Панфилов А. Н.

Описан подход к принятию решений в условиях неопределенности, основанный на методах теории нечетких множеств и предназначенный для применения в задачах принятия решений, которые формально представляются в терминах теории игр, а именно статистических игр. При этом задача должна быть представлена в форме матрицы решений с указанием множеств всех возможных альтернатив и возможных состояний рассматриваемой системы, значений показателя эффективности, а также распределения вероятностей состояний системы. Данный подход является альтернативой известным критериям принятия решений, используемым в задачах статистических игр, таким, как критерий Байеса, критерии максимизации вероятности и минимума дисперсии, модальный критерий и др. Отличительной особенностью рассматриваемого подхода является то, что при формировании матрицы решений эксперт может указывать не точные численные значения показателя эффективности, а словесные описания в виде фраз на естественном языке. Это достигается за счет использования в качестве значений оценочного функционала нечетких множеств со своими функциями принадлежности. Введение методов теории нечетких множеств позволяет упростить процесс экспертной оценки и улучшить качество принимаемых решений.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Погорелов А. С., Панфилов А. Н.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

APPLICATION OF THE FUZZY SETS THEORY TO THE DECISION MAKING PROBLEM UNDER CONDITIONS OF UNCERTAINTY

The paper presents an approach to decision making under conditions of uncertainty, based on the application of fuzzy sets theory methods. This approach is applied for decision making problems, which are formally presented in terms of the game theory (statistical games). The task must be represented in the form of decision matrix, indicating the set of all possible alternatives, the set of possible states of the system, the values of performance indicators, as well as the states probability distribution. This approach is an alternative to the well-known decision criteria used in statistical games problems, such as Bayesian criterion, the probability maximization, dispersion minimum, modal criteria, etc. The distinctive feature of this approach is that the expert doesn’t need the exact numerical values as the efficiency values, but he can specify some verbal descriptions in the form of sentences. This is achieved by using fuzzy sets with their membership functions as the assessment of functionality. Using methods of the fuzzy sets theory allows simplifying the expert evaluation process and increasing the decision making quality.

Текст научной работы на тему «Применение теории нечетких множеств для задачи выбора альтернатив в условиях неопределенности»

УДК 510.3:519.816

ПРИМЕНЕНИЕ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ ДЛЯ ЗАДАЧИ ВЫБОРА АЛЬТЕРНАТИВ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

А. С. Погорелов, инженер-программист (Донской филиал Центра тренажеростроения, Платовский просп., 101, г. Новочеркасск, 346400, Россия, [email protected]);

А.Н. Панфилов, к.т.н., доцент (Южно-Российский государственный технический университет (Новочеркасский политехнический институт), ул. Просвещения, 132, г. Новочеркасск, 346328, Россия, [email protected])

Описан подход к принятию решений в условиях неопределенности, основанный на методах теории нечетких множеств и предназначенный для применения в задачах принятия решений, которые формально представляются в терминах теории игр, а именно статистических игр. При этом задача должна быть представлена в форме матрицы решений с указанием множеств всех возможных альтернатив и возможных состояний рассматриваемой системы, значений показателя эффективности, а также распределения вероятностей состояний системы. Данный подход является альтернативой известным критериям принятия решений, используемым в задачах статистических игр, таким, как критерий Байеса, критерии максимизации вероятности и минимума дисперсии, модальный критерий и др. Отличительной особенностью рассматриваемого подхода является то, что при формировании матрицы решений эксперт может указывать не точные численные значения показателя эффективности, а словесные описания в виде фраз на естественном языке. Это достигается за счет использования в качестве значений оценочного функционала нечетких множеств со своими функциями принадлежности. Введение методов теории нечетких множеств позволяет упростить процесс экспертной оценки и улучшить качество принимаемых решений.

Ключевые слова: теория принятия решений, теория нечетких множеств, статистические игры, неопределенность, экспертные методы, матрица решений.

APPLICATION OF THE FUZZY SETS THEORY TO THE DECISION MAKING PROBLEM UNDER CONDITIONS OF UNCERTAINTY Pogorelov A S., engineer-programmer (Don Branch of the Space Simulator Center, Platovsky Av., 101, Novocherkassk, 346400, Russia, [email protected]);

Panfilov AN., Ph.D., associate professor (South Russian State Technical University (NovocherkasskPolytechnic Institute), Prosveshcheniya St., 132, Novocherkassk, 346328, Russia, [email protected])

Abstract. The paper presents an approach to decision making under conditions of uncertainty, based on the application of fuzzy sets theory methods. This approach is applied for decision making problems, which are formally presented in terms of the game theory (statistical games). The task must be represented in the form of decision matrix, indicating the set of all possible alternatives, the set of possible states of the system, the values of performance indicators, as well as the states probability distribution. This approach is an alternative to the well-known decision criteria used in statistical games problems, such as Bayesian criterion, the probability maximization, dispersion minimum, modal criteria, etc. The distinctive feature of this approach is that the expert doesn't need the exact numerical values as the efficiency values, but he can specify some verbal descriptions in the form of sentences. This is achieved by using fuzzy sets with their membership functions as the assessment of functionality. Using methods of the fuzzy sets theory allows simplifying the expert evaluation process and increasing the decision making quality.

Keywords: decision making theory, fuzzy sets theory, statistical games, uncertainty, expert methods, decision matrix.

Принятие решений - это процесс выбора из множества альтернативных вариантов действий одного или нескольких, оптимальных по какому-либо критерию. Данная проблема присутствует в самых различных областях деятельности. При этом окончательное решение всегда остается за человеком. Однако современное состояние науки и техники позволяет создавать средства поддержки принятия решений, способные значительно облегчить для ЛПР выбор оптимальной альтернативы действий. Существует достаточно обширный математический аппарат теории принятия решений (ТПР), который включает множество методов и технологий поддержки деятельности ЛПР.

Одним из методов является теория игр, относящаяся к разделу ТПР, посвященному принятию решений в условиях неопределенности. Теория

игр описывает ситуации противостояния двух и более сторон; каждая из них имеет свою стратегию и нацелена на получение максимального выигрыша. При этом различают статистические игры, где противником ЛПР выступает природа, действия которой не имеют осознанного характера [1]. В такой ситуации задачу принятия решений можно описать так, как показано в таблице 1.

Таблица 1

Матрица решений

Альтернатива Состояние системы

si s2 sm

di fll fl2 fim

d2 f2i f22 f2m

dn fni fn2 fnm

Модель задачи принятия решений включает следующие элементы:

- множество всех возможных вариантов действий (альтернатив) D={d\, d2, ..., dn};

- множество всех возможных состояний рассматриваемой системы S={sb s2, ..., sm};

- оценочный функционал (показатель эффективности) F={f,}, i=l, ..., n, j=1, ..., m, который определяет степень эффективности принимаемого решения di при условии, что рассматриваемая система окажется в состоянии Sj.

Элементы матрицы решений - значения оценочного функционала fij - задаются при помощи экспертных методов. То есть предполагается, что эксперт на основании своего опыта и знаний предметной области способен количественно оценить степень эффективности принимаемых решений в зависимости от состояний рассматриваемой системы.

Кроме этого, могут быть известны вероятности каждого состояния рассматриваемой системы. Тогда к элементам модели задачи принятия решений добавляется еще один элемент - вектор распределения вероятностей состояний системы P={pb p2, pm}, где элемент pi определяет вероятность нахождения рассматриваемой системы в состоянии Si.

Таким образом, модель задачи принятия решений может быть представлена кортежем

<D, S, F, P>. (1)

Для описанной модели задачи принятия решений известен ряд критериев оптимальности: критерии Байеса, максимизации вероятности, минимума дисперсии, модальный критерий и др. Каждый из них описывает функцию W(F, P), которая достигает экстремума при определенном значении fort, соответствующем оптимальной стратегии dopt. Между собой данные критерии различаются видом функции W(F, P).

Существенный недостаток использования описанных критериев оптимальности в том, что эксперту при формировании матрицы решений приходится указывать точное значение оценочного функционала fij, а это зачастую является нетривиальной задачей, так как область определения показателя эффективности может быть очень большой и выбрать одно конкретное значение непросто даже для достаточно опытного, знающего предметную область специалиста.

Рассмотрим задачу принятия решений (1), но в качестве оценки показателя эффективности эксперт может указывать не точное количественное значение, а качественное, словесное описание показателя эффективности. Данный подход можно наглядно продемонстрировать на примере задачи выбора технологии обработки данных в информационных системах (ИС) [2].

Для некоторой ИС можно выбрать одну из трех технологий обработки данных. В каждый

момент времени ИС характеризуется количеством пользователей, обращающихся к ней, и интенсивностью запросов. В определенный момент возможны следующие состояния ИС: 5 - количество пользователей небольшое и интенсивность запросов низкая; 52 - количество пользователей большое, но интенсивность запросов низкая; 53 -количество пользователей небольшое, но интенсивность запросов высокая; 54 - количество пользователей большое и интенсивность запросов высокая. В описанных условиях возможен выбор из трех технологий обработки данных: d\ - технология 1, d2 - технология 2, d3 - технология 3.

Кроме этого, согласно собранной статистике, известна вероятность каждого из состояний ИС: р\ - вероятность состояния 5Ь р2 - вероятность состояния ,у2, р3 - вероятность состояния ,у3, р4 - вероятность состояния 54.

В качестве показателя эффективности выступает время реакции ИС на запросы пользователя. При этом для оценки показателя эффективности при формировании матрицы решений эксперт может выбрать одно из следующих словесных выражений: «малое время реакции», «время реакции ниже среднего», «время реакции среднее», «время реакции выше среднего» или «время реакции большое». Задача состоит в том, чтобы выбрать технологию обработки данных, при которой время реакции будет минимальным с учетом вероятности состояний ИС.

Предположим, что в результате выбора одной из альтернатив время реакции ИС не будет превышать 10 секунд. Другими словами, область определения показателя эффективности лежит в интервале [0, 10]. Тогда словесные выражения «малое время реакции», «время реакции ниже среднего», «время реакции среднее», «время реакции выше среднего» и «время реакции большое» можно представить нечеткими множествами Ть Т2, Т3, Т4 и Т5 соответственно. Допустим, что функции принадлежности этих нечетких множеств имеют вид, представленный на рисунке 1.

Пусть экспертами в данной предметной области была составлена матрица решений, представленная в таблице 2.

Таблица 2

Матрица решений для задачи выбора технологии обработки данных

Альтернатива Состояние системы

s 1 S2 S3 S4

di Ti Т2 Т4 Т5

d2 T2 Т5 Тз Т1

d3 Тз Т4 Т5 Т2

Вероятность состояния 0,1 0,2 0,6 0,1

Для выбора оптимального решения каждой альтернативе поставим в соответствие некий обобщенный показатель Fi, характеризующий эффективность принятия решения di. Другими

7 9" 10 Время реакции,с

Рис. 1. Функции принадлежности нечетких множеств Т], Т2, Т3, Т4 и Т5

словами, показатель отражает ожидаемое время реакции системы при условии, что вероятности возможных состояний ИС распределены, как представлено в таблице 2. В соответствии с поста-

г^ *

новкой задачи альтернатива, показатель pi которой окажется минимальным, и будет оптимальной. Очевидно, что показатель Е, должен описываться нечетким множеством, которое получается в результате агрегирования нечетких множеств -значений оценочного функционала для альтернативы й,. Так, например, для альтернативы й1 показатель Е1 будет комбинацией нечетких множеств Т1, Т2, Т4 и Т5. В качестве операции для агрегирования выберем операцию объединения нечетких

множеств. Тогда функция принадлежности агре*

гированного показателя Е1 примет вид, представленный на рисунке 2.

9 10 Время реакции,с Рис. 2. Функция принадлежности

г *

агрегированного показателя г ]

Нечеткое множество на этом рисунке описывает комбинацию значений показателя эффективности для альтернативы й1, но не учитывает, что состояния, которым соответствуют эти значения, могут возникать с различной вероятностью. Другими словами, изменение распределения вероятностей состояний должно приводить к изменению обобщенного показателя.

Учесть вероятность состояния можно следующим образом. Отсечем функции принадлежности горизонтальными линиями в соответствии с текущим распределением вероятностей и получим видоизмененные нечеткие множества, представленные на рисунке 3.

Таким образом, функцию принадлежности нечеткого множества Т1 отсекли по вероятности р1=0,1 (в соответствии с таблицей 2), функцию принадлежности для Т2 - по вероятности ^2=0,2,

^(хк

0.2

0.1

_1-1-с—з-1-а-1-с---

9 10 Время реакции, с Рис. 3. Функции принадлежности нечетких множеств с учетом распределения вероятностей

функцию принадлежности для Т4 - по вероятности ^з=0,6 и функцию принадлежности для Т5 - по вероятности р4=0,1.

Затем произведем операцию агрегирования над видоизмененными нечеткими множествами и получим обобщенный показатель, учитывающий текущее распределение вероятностей состояний. Функция принадлежности агрегированного показателя изображена на рисунке 4.

10

Время реакции, с Рис. 4. Функция принадлежности агрегированного

показателя эффективности с учетом текущего распределения вероятностей

Численное значение обобщенного показателя для альтернативы й1 можно получить, выполнив

процедуру дефаззификации нечеткого множест-

*

ва Е1 .

Аналогично определяются численные значения обобщенного показателя для остальных альтернатив. Та альтернатива, для которой численное значение показателя эффективности окажется минимальным, и будет оптимальным решением поставленной задачи.

Общий алгоритм предлагаемого подхода состоит из следующих шагов.

1. Представить задачу в виде (1). Для этого необходимо

- построить множество всех допустимых решений Б;

- построить множество всех возможных состояний рассматриваемой системы

- выбрать показатель эффективности Е и построить множество его значений, каждое из которых описывается определенным нечетким множеством;

- заполнить матрицу решений, представленную в таблице 1, значениями показателя эффективности;

- определить вектор вероятностей состояний системы Р.

2. Для каждой строки матрицы решений di определить численное значение агрегированного показателя а(Гц), 1 = 1, ..., п. Для этого необходимо выполнить следующие действия:

- для каждого состояния системы 5 отсечь функцию принадлежности показателя эффективности / с учетом соответствующего значения вероятности р; при этом функция принадлежности показателя эффективности /у запишется в виде

, М Х,пРи м Л £ Р},

м '' Р при м Л> Р;

- с помощью операции объединения нечетких множеств определить агрегированный показатель эффективности = и Л';

J=1

- с помощью процедуры дефаззификации нечеткого множества определить численное значение показателя эффективности a(Fi); существует множество методов дефаззификации нечетких множеств, например, метод по среднему центру, метод по сумме центров, метод центра тяжести и др. [3].

3. Если условие задачи требует максимизировать показатель эффективности F, то в качестве оптимального решения выбрать альтернативу с максимальным численным значением а(^ ); если необходимо минимизировать, то с минимальным.

Представленный подход, который является развитием идей, изложенных в работе [4], предназначен для применения в задачах принятия решений и использует аппарат теории нечетких множеств для построения агрегированного показателя

эффективности альтернатив. Данный подход удобнее других известных методов принятия решений благодаря использованию замены количественных значений показателя эффективности на качественные, словесные описания, которыми удобнее оперировать человеку.

Литература

1. Черноморов Г.А. Теория принятия решений: учеб. пособие. Новочеркасск: Изд-во ЮРГТУ, 2002. 276 с.

2. Панфилов А.Н., Черноморов Г.А., Скоба А.Н. Математическая модель процессов автоматизированной обработки информации при внедрении интегрированных информационных систем на предприятиях // Изв. вузов. Электромеханика. 2001. № 1. С. 77-80.

3. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы; [пер. с польск. И.Д. Рудинского]. М.: Горячая линия-Телеком, 2006. 452 с.

4. Панфилов А.Н., Погорелов А.С. Модель принятия решений на основе нечеткой информации // Моделирование. Теория, методы и средства: матер. XIII Междунар. науч.-практич. конф. (27 февраля 2013 г., Новочеркасск). Новочеркасск: ЮРГТУ(НПИ), 2013. С. 59-62.

References

1. Chernomorov G.A., Teoriya prinyatiya resheny: ucheb. posobie [Decision making theory: study guide], Novocherkassk, SRSTU publ., 2002.

2. Panfilov A.N., Chernomorov G.A., Skoba A.N., Izv. vuzov. Elektromekhanika [News of higher educational institutions. Electromechanics], 2001, no. 1, pp. 77-80.

3. Rutkovskaya D., Pilinsky M., Rutkovsky L., Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy [Neural network, genetic algorithms and fuzzy systems], Moscow, Goryachaya liniya - Telekom, 2006.

4. Panfilov A.N., Pogorelov A.S., Modelirovanie. Teoriya, metody i sredstva: materialy XIII Mezhdunar. nauch.-prakt. konf. [Modeling. Theory, methods and tools: proc. of XIII int. research-to-practice conf.], Novocherkassk, SRSTU, 2013, pp. 59-62.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

УДК 004.72

ТИПОВОЙ СОСТАВ И МОДУЛИ МОЛОДЕЖНОГО ОБРАЗОВАТЕЛЬНОГО КОСМОЦЕНТРА

В.Е. Шукшунов, д.т.н., профессор, генеральный директор (Центр тренажеростроения и подготовки персонала, ул. Первомайская, 92, г. Москва, 115088, Россия, [email protected]); В.Е. Гапонов, зам. директора; В.В. Янюшкин, к.т.н., начальник отдела (Донской филиал Центра тренажеростроения, Платовский просп., 101, г. Новочеркасск, 346400, Россия, [email protected], [email protected])

В статье рассматриваются типовой состав, модули образовательного космоцентра, их назначение и функциональные возможности. Рассмотрены образовательный модуль, обеспечивающий теоретическую и общекосмическую подготовку школьников и студентов, совмещенную с практической подготовкой на виртуальных и натурных космических и авиационных тренажерах, а также на интерактивных аналогах пилотируемых космических аппаратов, и научный модуль, предоставляющий обучаемым виртуальные тренажеры и наборы стендов для ознакомления с различными экспериментами. Описаны состав интерактивных аналогов тренажерного модуля для их интеграции и перспективы развития образовательных космоцентров. В век наукоемких технологий молодежь будет стремиться получить дополнительное образование, а молодежные центры предложат им уникальные программы, которые одновре-

i Надоели баннеры? Вы всегда можете отключить рекламу.