Применение аналогово-цифрового преобразователя при оценке теплового состояния элементов гидропривода
Ш.М. Мерданов, В.В. Конев, С.П. Пирогов, Д.М. Бородин, С.В. Созонов
В настоящее время Россия стремится активно осваивать территорию Арктики, и Арктического шельфа. Широкомасштабные работы по обустройству новых месторождений полезных ископаемых потребуют применения значительного количества строительных и дорожных машин. Основная часть этих машин гидрофицирована. Основным недостатком гидрофицированных машин является ограниченная пригодность гидропривода для работы в суровых климатических условиях (вплоть до полной её потери при экстремально низких температурах) [1 - 3]. Использование СДМ северного исполнения «ХЛ» не решают рассматриваемых задач, т. к. парк такими машинами оснащен не более чем на 20 %. Поэтому возникает необходимость модернизации существующей гидрофицированной техники общестроительного исполнения для работы в суровых климатических условиях [1, 4]. Один из способов, возможного решения данной проблемы - применение систем тепловой подготовки гидропривода [5 - 7]. Но прежде требуется исследовать тепловые процессы, протекающие в этих элементах при работе гидропривода и процесс работы самих систем тепловой подготовки.
При проведении экспериментальных исследований возникла необходимость мониторинга теплового состояния элементов гидропривода СДМ [8 - 10]. Изменение теплового состояния систем гидропривода таких машин, характеризуется быстрым изменением градиента температуры, то есть высокой динамичностью процесса. В то же время по условиям экспериментов, измерения проводятся при относительно низких температурах минус 25^40°С [9, 10].
В связи с этим, для проведения измерений, решалась задача выбора температурных датчиков, а также аппаратуры для проведения измерений.
При решении задачи мы столкнулись с рядом трудностей. Так, например: новое поколение «тестеров»- цифровые мультиметры серии М -830 имеют функцию измерения температуры, но использовать их для измерения температуры каких-либо процессов затруднительно. Входящий в комплект прибора измерительный датчик - термопара работает неточно и нелинейно, к тому же инерционен, поэтому была установлена практическая непригодность данных датчиков для измерения тепловых процессов гидропривода при отрицательных температурах [8].
Обычно для измерения температуры в небольших пределах (до 1500С) используют в качестве датчиков терморезисторы, но хороших результатов это не даёт из-за их нелинейной температурной характеристики. Применение различных линеаризующих цепей приводит к снижению чувствительности, сужению измерительного диапазона.
Промышленность выпускает специализированные датчики [11, 12]: цифровые микросхемы, выполненные в различных корпусах, использующие для вывода данных цифровой интерфейс one-wire, а также аналоговые, имеющие как преимущества, так и недостатки приведены в таблице. Для примера приведем параметры наиболее доступного в нашем регионе цифрового датчика температуры фирмы Dallas Semiconductors - ds18b20.
Достоинство аналоговых датчиков в том, что аппаратура преобразования сигнала в цифровые величины более простая и относительно недорогая, но при практическом применении точность таких датчиков недостаточна. Наиболее распространенными являются датчики LM135, LM235, LM335. LM335 - недорогой прецизионный датчик для измерения температуры. Этот датчик выпускается в корпусе транзистора или корпусе SO8. Он представляет собой стабилитрон с нормированным температурным коэффициентом напряжения - TKU. Изменению температуры датчика на 1К, соответствует изменение напряжения, снимаемого с датчика, на 10мВ, т.е. при температуре 00С (273,15К) напряжение, снимаемое с датчика, будет около 2,73В. Характеристики датчика и его точные электрические параметры
указаны в паспорте на деталь (datasheet), который представлен на официальном сайте производителя датчика.
Таблица
Преимущества и недостатки цифровых и аналоговых интерфейсов
Цифровые Аналоговые
Преимущества Недостатки Преимущества Недостатки
- большая - ограниченная цена - высокая - для цифровой
доступность; деления (0.5 0С); температурная обработки
-надежность; - необходимость чувствительность; необходим
- по сравнению с использования - малая цена аналогово-
аналоговыми, не специального деления; цифровой
сильно контроллера для - большой диапазон преобразователь;
чувствительны к управления шины one- измерения - высокие
длине wire; температур; требования к
соединительного - малая - низкая стоимость соединительным
провода; помехоустойчивость линиям;
- возможность - невозможность
параллельного параллельного
подключения к включения к одной
одной шине до 32-х шине
датчиков
Аналого-цифровые преобразователи (АЦП) предназначены для преобразования аналоговых величин напряжения в дискретные величины. АЦП характеризуются разрядностью, например 10-разрядный АЦП, может выдавать преобразованные значения напряжения с датчика числом от 0 до 1023(210). Диапазон измеряемых напряжений АЦП лежит в пределах от 0 до 5В (от нуля до предела питания микроконтроллера), при больших пределах измеряемых величин могут потребоваться специальные преобразователи напряжения. Таким образом, цена деления 10 разрядного АЦП в диапазоне измерений от 0 до 5 В равно 0,00488 В.
Компания Microchip выпускает надежные и функциональные 12 разрядные микроконтроллеры, серии PIC16F и PIC16C, включающие в себя качественные АЦП, позволяющие подключать различные датчики для измерения температуры. Для примера приведем простейшую схему измерительного прибора на основе микроконтроллера PIC16F876A. Для этого воспользуемся системой автоматизированного проектирования (САПР)
электронных схем - программой Proteus, позволяющей довольно точно моделировать поведение электронной схемы.
Микроконтроллер PIC16F876A содержит 10 разрядный 5 канальный АЦП, позволяющий производить точные измерения аналоговых величин. Более точные данные по настройке АЦП находятся в технической документации на данный микроконтроллер. Для вывода информации можно использовать LCD дисплей или отправлять данные в компьютер посредством интерфейса RS-232.
В настоящее время, на основании вышеизложенных принципов, на кафедре Транспортных и технологических систем разрабатывается программно-аппаратный измерительный комплекс для температурного мониторинга элементов гидропривода СДМ.
Литература:
1. Каверзин, С.В. Работоспособность гидравлического привода при низких температурах [Текст]: Монография / С.В.Каверзин. - Красноярск: Изд-во Красноярского университета, 1986. - 144 с.
2. Карнаухов, Н.Н. Приспособление строительных машин к условиям Российского Севера и Сибири [Текст]: Монография / Н.Н. Карнаухов. - М.: Недра, 1994. - 352 с.
3. Мерданов Ш.М. и др. Исследование и разработка системы тепловой подготовки гидропривода строительно-дорожных машин [Текст] / Ш.М. Мерданов, Ю.Я. Якубовский, В.В. Конев, М.М. Карнаухов //Строительные и дорожные машины. - 2013 - № 1. С. 27-29.
4. Каверзин С. В. Разогрев рабочей жидкости в гидроприводе самоходных машин [Текст] / Каверзин С.В. // Строительные и дорожные машины. - 1983 -№ 11. - С. 18-21.
5. Мерданов Ш.М., Конев В.В., Бородин Д.М. Экспериментальная установка исследования локального прогрева элементов гидропривода строительно-дорожных машин / Инновации в науке - инновации в
образовании: материалы Международной научно-технической конференции «Интерстроймех - 13», 1-2 октября 2013 г., г. Новочеркаск / Юж.-Рос. Гос. Политехн. Ун-т (НПИ) им. М.И. Платова. - Новочеркасск: ЮРГТУ (НПИ),
2013, С. 245-248.
6. Система предпусковой тепловой подготовки ДВС и гидропривода [Текст] : пат. 2258153 Рос. Федерация : МПК7 F02N 17/06. / Карнаухов Н.Н., Конев В.В., Разуваев А.А., Юринов Ю.В.; заявитель и патентообладатель ТюмГНГУ. - № 2004104477/06; заявл. 16.02.2004; опубл. 10.08.2005, Бюл. № 22.
7. Гидродвигатель [Текст] : пат. 94649 Рос. Федерация : МПК F15В 21/04. / Конев В.В., Куруч С.В.; заявитель и патентообладатель ТюмГНГУ. - № 2008140577/22; заявл. 13.10.2008; опубл. 27.05.2010, Бюл. № 15.
8. Конев В.В., Бородин Д.М. Датчик для измерения температуры / Транспортные и транспортно-технологические системы: материалы Международной научно-технической конференции. - Тюмень: ТюмГНГУ,
2014. - С. 103-105.
9. Merdanov Sh., Konev V., Sozonov S., Experimental research planning heat training hydraulic motors: SCIENTIFIC ENQUIRY IN THE CONTEMPORARY, WORLD: THEORETICAL BASKS AND INNOVATIVE APPROACH, Vol. 5. -Technical Sciences. Research articles, B&M Publishing (San Francisco, California, USA) 2014. - p.113-117.
10. Konev V., Merdanov Sh., Karnaukhov M. & Borodin D. Thermal preparation of the trailbuilder fluid drive / Energy Production and Management in the 21st Century - The Quest for Sustainable Energy, 2014, Vol. 1 - Southampton. WIT Press, 2014. - p. 697-706.
11. Асцатуров Ю.Г., Семенов В.В., Ханжонков Ю.Б. Разработка оптико-электронного устройства для анализа загрязнённости моторного масла двигателя внутреннего сгорания дисперсными частицами [Электронный ресурс] // «Инженерный вестник Дона», 2014, №2. - Режим
доступа: http://www.ivdon.ru/ru/magazine/archive/n2y2014/2376 (доступ свободный) - Загл. с экрана. - Яз. рус.
12. Гаврилов А.И., Тун Мин Мин, Со Ситу Аунг, Аунг Тхет Адаптивная система управления сварочным оборудованием Разработка оптико-электронного устройства для анализа загрязнённости моторного масла двигателя внутреннего сгорания дисперсными частицами [Электронный ресурс] // «Инженерный вестник Дона», 2014, №2. - Режим доступа: http://www.ivdon.ru/ru/magazine/archive/n2y2014/2385 (доступ свободный) - Загл. с экрана. - Яз. рус.