Научная статья на тему 'Прецизионные перестраиваемые каналообразующие фильтры диагностических комплексов'

Прецизионные перестраиваемые каналообразующие фильтры диагностических комплексов Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
184
70
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Крутчинский С. Г., Старченко Е. И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Прецизионные перестраиваемые каналообразующие фильтры диагностических комплексов»

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Крутчинский С.Г., Щербинин И.П. //Прецизионные

измерительные усилители. Известия ТРТУ, 2004. -№ 8

2. Крутчинский С.Г., Щербинин И.П., Старченко Е.И. Структуры современных аналоговых интерфейсов. Международный НТЖ "Электроника и связь", 2004.Т.9- № 21

С.Г. Крутчинский, Е.И. Старченко ПРЕЦИЗИОННЫЕ ПЕРЕСТРАИВАЕМЫЕ КАНАЛООБРАЗУЮЩИЕ ФИЛЬТРЫ ДИАГНОСТИЧЕСКИХ КОМПЛЕКСОВ

Среди перспективных средств оперативной диагностики высоковольтных ЛЭП особое место занимает анализ спектра коронирующего излучения с определением геометрических координат места разряда [1]. В качестве аппаратных средств, частично решающих эту задачу, можно отметить интерферометрические интерфейсы [2], обеспечивающие прецизионное взаимодействие антенн с микрокомпьютером и позволяющие выделить квазипостоянные составляющие, характеризующие относительные координаты места возникновения собственного излучения (рис. 1). В настоящее время не существует адекватной физическим процессам теории явления, поэтому даже для стандартной геометрии ЛЭП необходимо использовать сканирующие методы поиска максимального уровня такого излучения. С этой целью в состав каждого канала включается гребёнка полосовых фильтров ПФ-|,...,ПФП, определяющих диапазон предпочтительного анализа. Анализ приведённой структуры интерфейса показывает, что для обеспечения высокой точности определения координат при мобильном принципе базирования антенн необходимо на каждом шаге их вычисления обеспечивать автоматическую калибровку каналов по сигналу генератора гармонических колебаний (ГГК). Однако при значительном числе каналов предварительного анализа (п) можно, по крайней мере, на этапе создания экспериментальных образцов и обработки принципа диагностики воспользоваться синхронной фильтрацией (СФ), заменив п каналов на один канал управляемый от ГГК.

1. Постановка задачи. На рис. 2 приведена классическая структура перестраиваемого полосового синхронного фильтра, при этом центральная частота настройки совпадает с частотой генератора гармонических колебаний, имеющего фазы ф = 0 и ф = п/2. Такой генератор является неотделимой частью интерфейса (см. рис.1).

В рамках рассматриваемой структуры фильтра обеспечивается низкая параметрическая чувствительность формы амплитудно-частотной характеристики (АЧХ) при любой ширине полосы пропускания. Это утверждение объясняется “перекосом” частотного спектра входного сигнала в область низких частот (вплоть до нулевой), где и осуществляется низкочастотная фильтрация фильтрами нижних частот (ФНЧ) с передаточными функциями р1(р) и р2(р). Частотный спектр отфильтрованного сигнала умножителями 3 и 4 и сумматором I

восстанавливается в исходной области частот. В этом случае центральная частота полосового фильтра определяется частотой генератора Шо = 2пҐо и не зависит от параметров элементов ФНЧ. Частота среза (Шс) (граничная частота полосы пропускания) этих фильтров определяет абсолютную ширину полосы пропускания полосового фильтра.

При идентичных каналах (Рі(р) = р2(р) = Р(р)) передаточная функция СФ определяется следующим соотношением (к.1 = к2):

Рсф = 0АГ(Р - №0) + Р(р + ]ю0)1 (1)

при этом предполагается, что выполняется условие

|^(+ ]Юо) << \Р(- ]Юо)\. (2)

Таким образом, в рамках структуры СФ достаточно легко реализуются перестраиваемые полосовые фильтры, выполняющие функции последовательных анализаторов спектра реального масштаба времени. Однако, как показывают исследования, при этом необходимы высококачественные аналоговые умножители с высокой идентичностью фазовых характеристик отдельных каналов, а также ФНЧ с низким дрейфом нуля.

ПФ1 СКЗ1

• • • А. • • •

ПФп СКЗп

РО2

Рис.1. Структурная схема интерферометрического интерфейса

При высоких требованиях к паразитной амплитудной модуляции и уровне ослабления сигнала в полосе заграждения в диапазоне 2шс—ш погрешность АЧХ СФ можно оценить из следующего соотношения:

&АЧХ 1 кі(фоі +0Оз) ^2(^02 Ф04) ,

(3)

где фо/ - фазовая погрешность каналов /-го умножителя в указанном диапазоне частот; к.1, к.2 - коэффициенты передачи сумматора СФ.

1МК

9== О

9 = О

X >

у Е А

X

9 9 = п/2

Рис. 2. Структурная схема полосового синхронного фильтра

Аналогичным по структуре соотношением характеризуется и относительное изменение коэффициента передачи фильтра в полосе пропускания:

$\Р(;'<я)\ = 0,5[к1 (9оз ~9ог) + к2(9о4 -9о2)]. (4)

Из соотношений (3),(4) видно, что в некоторых случаях возможна минимизация одной из составляющих п^греШности за счет выбора коэффициентов передачи к1 и к2. Однако это возможно только для конкретного значения ш0 и неприемлемо в случае построения перестраиваемого фильтра.

Искажения формы АЧХ СФ наблюдаются также и на частоте модуляции ш0 за счёт конечного значения коэффициента передачи умножителя по опорному каналу (км) и дрейфе нуля ФНЧ (идр1, идр2):

ки ■ 4^2

8

АЧХ 2

8

^и2др1 + и2 2

АЧХ 3

А0Ки вх тт

где А0 [В] - амплитудное значение сигнала генератора гармонических колебаний; К [1/В] - коэффициент передачи умножителя; ивх тт -минимальное напряжение сигнала в полосе пропускания фильтра.

Приведённые соотношения показывают, что для построения прецизионных СФ с масштабной перестройкой необходимо в равной степени решить две самостоятельные задачи - создать с учётом технологических ограничений высококачественные аналоговые умножители, обеспечивающие в диапазоне частот до 2ш0 низкую погрешность фазовых сдвигов каналов преобразования входных сигналов в диапазоне рабочих частот, а также на схемотехническом уровне решить задачу построения ФНЧ с минимальным дрейфом нуля.

2. Прецизионные ФНЧ. При построении ФНЧ необходимо учитывать не только возможность минимизации их дрейфа нуля, но и погрешность реализации АЧХ.

В случае реализации относительно большой абсолютной ширины полосы пропускания Лш=шс на точность обработки сигнала оказывает также влияние ограниченный диапазон рабочих частот активных элементов

РФ)

Ыр)

или частота единичного усиления (/1). При традиционных схемотехнических решениях, как правило, выполняется неравенство

2.#, >> (5 + 8)3,,^ (?1 - ^„«/'1/,). (6)

где Отах - максимальная добротность полюса.

Например. при /с = 300 кГц, Отах = 2 и 61 = 1% необходимо применять операционные усилители (ОУ) с /1>500 МГц. которые потребляют значительную мощность.

В [3] показано. что для устранения влияния ЭДС смещения ОУ на дрейф нуля ФНЧ и уменьшения погрешности (6) необходимо использовать лестничные структуры на базе суперемкостей (й-элементов) с дополнительными компенсирующими обратными связями. минимизирующими влияние ^ на АЧХ фильтра в полосе пропускания. Принципиальная схема такого базового элемента приведена на рис. 3. Здесь входная проводимость

¥ех = Р2'1С2ККз!К4

(7)

при выполнении условий 14^1 = Кк2 = Ккз = Кк0 >> К, Кз, 1^4 сохраняет своё функциональное выражение в широком диапазоне частот (соизмеримом с ^ ОУ1 и ОУ2).

Дополнительный масштабный усилитель на ОУ3. обеспечивает выполнение параметрических условий собственной компенсации. Однако частотная зависимость локальных передач. зависящая от /1 ОУ3 обеспечивает предельный диапазон рабочих частот. а параметрические условия собственной компенсации зависят от параметров лестничной структуры ФНЧ.

С1

я

С2

Я3

Я4

Рис. 3. Упрощённая принципиальная схема й-элемента с дополнительными цепями собственной компенсации

На рис. 4 приведена принципиальная схема ФНЧ 5-го порядка с граничной частотой /с = 100 кГц и низкой (менее 0.01 дБ)

неравномерностью АЧХ в полосе пропускания. В случае использования такого ФНЧ за счёт синхронного изменения емкостей С1—С5 возможно управление ^ без ухудшения указанной выше точности реализации.

вх рп ге газ ЕЬх

Рис. 4 Фильтр нижних частот пятого порядка на базе й-элементов Антонио с собственной компенсацией

Логарифмическая АЧХ фильтра радиационностойких программируемых ОУ [4] приведена на рис. 5.

0

-40

-80

Рис. 5. Логарифмическая АЧХ фильтра 5-го порядка

3. Прецизионный аналоговый перемножитель напряжения. Как

было показано выше, для построения прецизионного СФ необходимы также прецизионные аналоговые перемножители напряжения (АПН). Низкая погрешность фазовых сдвигов в каналах обеспечивается не только за счет широкой полосы пропускания АПН, но и за счет высокой линейности перемножения двух сигналов в широком динамическом диапазоне [5]. Для этого необходимо выполнить преобразователи “напряжение-ток” с максимально возможной линейностью и принять меры для уменьшения влияния объемных сопротивлений базы транзисторов множительного ядра. При использовании рекомендаций, приведенных в [6], удалось построить АПН, параметры которого соответствуют прецизионному. Нелинейность перемножения при максимальном входном сигнале ± 1 В не превышает 0,012 %, что позволяет при полосе пропускания 200 МГц получить фазовую погрешность между каналами X и У не менее 0,1о на частотах вплоть до 70 МГц при питании ±5 В (рис.6). При разработке этого АПН использовались компоненты аналогового базового матричного кристалла, выпускаемого НПО "Интеграл" (Минск) [6].

Рис. 6. Упрощенная принципиальная схема прецизионного АПН

Статическая характеристика АПН, иллюстрирующая его линейность в режиме квадратора в диапазоне входного напряжения ±1 В, приведена на рис. 7. Погрешность перемножения 0 оценивалась как

0 = 2~ их ) 100% , (8)

и2

МАКС

где и - результат математического возведения в квадрат напряжения их, иІах - максимальное значение напряжения на краях диапазона.

При использовании разработанного АПН (см. рис. 6) и фильтра пятого порядка (см. рис. 4) с частотой среза 100 кГц реализован синхронный фильтр по структурной схеме рис. 2. Результаты

моделирования показывают, что при полосе пропускания 2Af = 200 кГц подавление вне полосы пропускания достигает -60 дБ при перестройке вплоть до центральной частоты 30 МГц. При этом подавление опорной частоты f0 составляет на низких частотах более 60 дБ, а на частоте 30 МГц

Рис. 7. Погрешность перемножителя в режиме квадратора

Таким образом, рассмотренное схемотехническое решение задачи обеспечивает устойчивое выделение базовой составляющей спектра собственного коронного излучения (экспериментально зарегистрировано излучение в окрестности частоты 3 МГц.) и его детальный анализ. Именно поэтому по базовой составляющей можно, используя вычислительные процедуры, предложенные в [1], с достаточной для принятия решения точностью определить координаты зоны разряда ЛЭП, а путем дополнительного анализа спектра, когда предложенный в работе СФ используется в режиме масштабной и полосовой перестройки,

дополнительно исследовать характер процесса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Красовский А.А. Определение относительных координат

радиоизлучающих объектов в пространстве интерферометрическим методом./Изв. РАН. Т и СУ

2. Крутчинский С.Г. Нестандартные аппаратные средства адаптивных регуляторов и систем пассивной локации. //Изв. РАН. А и Т. 2001. №7.- С. 164-172.

3. Крутчинский С.Г., Щёкин Д.А. Структурный синтез й-элементов с расширенным частотным диапазоном. // Международный научно-технический журнал “Электроника и связь”, Киев.2001. Т.2.№8.-С.83-87.

4. Каталог разработок Российско-Белорусского центра аналоговой

микросхемотехники ./Под. ред. С.Г. Крутчинского. Изд.-во Северо-Кавказского научного центра высшей школы. Пятигорск. 2004.-С.50.

5. Starchenko E.I. Low-Voltage Precision Analogue Multiplier with wide Frequency Range / Starchenko E.I., Dvornikov O.V., Shchyokin D.I. 2nd IEEE International Conference on Circuits and Systems for Communications. Moscow, 2004 (156.pdf)

6. Старченко Е.И. Принципы проектирования низковольтных прецизионных аналоговых перемножителей напряжения / Старченко Е.И. Материалы выездной сессии РАН секции энергетики отделения энергетики, машиностроения и процессов управления. Альтернативные естественно возобновляющиеся источники энергии и энергосберегающие технологии, экологическая безопасность регионов. Ч.2.-Ессентуки.-С.155 - 163

7. Дворников О.В., Чеховской В.А. Аналоговый биполярно-полевой БМК с расширенными функциональными возможностями // Chip News. 1999.№2. -С. 21-23.

i Надоели баннеры? Вы всегда можете отключить рекламу.