список литературы
1. [Электронный ресурс]: <http://www.ti.com/>.
2. [Электронный ресурс]: <http://www.ndparking.com/serve.php?lg=ru&dn=mathwork.com&ps=a532d7e0b8f67396e12 ea540ad67e5f8&le=2010120914000139520&aq=Matlab%20Instruments&tk=stzV096RMnwKEwitwprp8t-lAhWEm 98KHThRZ30QAhgAIAAwuKaoDjgwQLaPxoHfy_TkTlC4pqgOUOWblQ9QrpSxEVC5uLURULSGxRFQhZ3nEl Cz-JwhUIHSwCdQzPrtmwM>.
3. Муха Ю. П., Авдеюк О. А., Королева И. Ю. Алгебраическая теория синтеза сложных систем. Волгоград: ВолгГТУ, 2003. 320 с.
4. [Электронный ресурс]: <http://www.mathworks.com/>.
5. Цветков Э. И. Метрология. СПб: „КопиСервис", 2010. 121 с.
6. Цветков Э. И. Основы математической метрологии. Т. 2. СПб: „КопиСервис", 2011. 110 с.
Юрий Петрович Муха
Роман Васильевич Литовкин
Константин Константинович Угаров
Рекомендована Юго-Западным государственным университетом
Сведения об авторах
— д-р техн. наук, профессор; Волгоградский государственный технический университет, кафедра вычислительной техники; заведующий кафедрой; E-mail: [email protected]
— канд. техн. наук, доцент; Волгоградский государственный технический университет, кафедра вычислительной техники; E-mail: [email protected]
— Волгоградский государственный технический университет, кафедра вычислительной техники; ведущий инженер;
E-mail: [email protected]
Поступила в редакцию 24.10.11 г.
УДК 681.586.76
В. И. Иванов, В. С. Титов, Д. А. Голубов
ПРЕОБРАЗОВАТЕЛЬ ПАРАМЕТРОВ МНОГОЭЛЕМЕНТНЫХ ДВУХПОЛЮСНИКОВ С УРАВНОВЕШИВАНИЕМ ТОКОВ
Рассмотрены способ и устройство преобразования параметров многоэлементного двухполюсника при воздействии импульсов напряжения, изменяющегося по закону степенной функции времени, и компенсации составляющих тока многоэлементного двухполюсника. По условиям уравновешивания токов определяют обобщенные параметры объекта измерения, после чего вычисляют электрические параметры его элементов.
Ключевые слова: многоэлементные двухполюсники, обобщенные параметры, уравновешивание токов.
Преобразователи параметров комплексного сопротивления многоэлементного двухполюсника (МДП) предназначены для решения задачи получения информации о каждом из его элементов отдельно. В устройствах, построенных по принципу уравновешивающего преобразования, приводится к нулю разность двух активных величин, одна из них формируется измерительной схемой, в которую включен МДП, а вторая — вспомогательной цепью, которая строится таким образом, чтобы значение каждой составляющей компенсирующей величины регулировалось одним пассивным элементом. Параметры уравновешивающего сигнала, как
правило, преобразуют в унифицированные величины, функционально связанные с искомыми параметрами объекта измерения [1 ].
Для выделения из выходного сигнала преобразователя информации только об одном параметре МДП (независимо от остальных) необходимо, чтобы в момент считывания сигнала в нем присутствовала хотя бы одна составляющая, по которой можно получить информацию о параметре, а сумма остальных составляющих стремилась к нулю.
В настоящей статье рассматриваются устройства измерения параметров многоэлементных двухполюсников, в которых для возбуждения измерительной схемы используются импульсы напряжения, форма которых соответствует степенной функции времени вида
«вх к ) = и^ИАиИ , (1)
где ги — длительность импульса, ит — амплитуда, п — целочисленный показатель степени. Реакция линейной пассивной двухполюсной цепи на импульсы п-й степени по окончании переходного процесса содержит импульсы, имеющие форму степенных функций с показателями от п до нуля. Таким образом, для уравновешивания выходного сигнала можно сформировать компенсирующие импульсы известной формы, довольно просто реализуется избирательность обработки импульсов с одной степенной зависимостью времени, измерительная схема обладает свойством раздельного уравновешивания токов.
На рис. 1 представлена схема измерительного преобразователя с уравновешиванием импульсов тока четырехэлементного двухполюсника компенсирующими импульсами со степенным изменением тока. В данной схеме используются кубичные импульсы с п = 3. Генератор прямоугольных импульсов (ГПИ) вырабатывает импульсы постоянного напряжения длительностью ги и амплитудой и о . Для формирования импульсов вида (1) применяется цепь из трех последовательно включенных интеграторов. Импульсы напряжения на выходах первого, второго и третьего интегратора имеют форму линейно изменяющегося напряжения, квадратичной и кубичной параболы соответственно:
«1 (г) = Щ/^ , м2 (г) = и2 г 2/ из (г) = ^г 3/ ¿и. (2)
Амплитуды этих импульсов равны
и = и0*И/Т ; и2 = иог^Мт, ; из = и^Т^Т , (3)
где Т1, Т2 и Т3 — постоянная времени первого, второго и третьего интегратора.
Импульс напряжения и3 (г) создает в многоэлементном двухполюснике объекта измерения, включенном во входную цепь операционного усилителя ОУ1, импульс тока, который содержит свободную и принужденную составляющие. После завершения переходного процесса и до окончания питающего импульса остается только вынужденная составляющая тока двухполюсника, которая состоит из импульсов тока кубичной, квадратичной, линейной и плоской (прямоугольной) формы:
*дп (г) = №г3/ги3 + 3Щг2/ги3 + Щи3г!г1 + 6ВД/ги3. (4)
Амплитуды этих составляющих зависят от обобщенных параметров проводимости У0, У1, У2, У3 объекта измерения:
13 = УА; ¡2 = 3У^ /¿и ; 11 = 6ВД /¿и ; ¡о = 6Уъиъ!^ . (5)
Обобщенные параметры У0, У1, У2, У3 определяются операторным изображением проводимости двухполюсника У(р). Если в общем виде выражение У(р) представить в виде
У(р)= Ьо + ЬР + Ь2Р22 + ... , (6)
ао + «1 р + «2 р +...
то при ненулевых значениях а0 и Ъ0, что имеет место для большой группы реальных двухполюсников, величина У0, У1, У2, и У3 определяется значениями электрических параметров элементов двухполюсника [2]:
Ъ0 . ^ _ Ъ1 - а170 . у = Ъ2 - а270 - а171 .
70 У_
У3 _■
Ъ3 - а370 - а271 - а172 .
а
а
а
а
(7)
На операционных усилителях ОУ1 и ОУ2 построен дискриминатор токов. При равных значениях сопротивлений Я1 = Я2 = = Я0 напряжение на выходе ОУ2 пропорционально разности входных токов: ^ых = (1вх1 -1вх2) ^0.
и2
и1
ы0
Рис. 1
Оба входа дискриминатора имеют низкое сопротивление Явх1 = Явх2 = К0 / КиОУ, где КиОУ — коэффициент усиления ОУ, поэтому входные токи определяются источниками напряжений и проводимостью соответствующих цепей. Для компенсации всех составляющих тока через МДП используются выходные напряжения интеграторов и генератора прямоугольных импульсов. Уравновешивание токов осуществляется регулируемыми резисторами ЯУр3, ^Ур2, ^фь Л/р0. Амплитуды импульсов компенсирующего тока кубической, квадратичной, линейной и прямоугольной формы равны соответственно
^3 _ и3/^3 . 1к2 _ и2/^2 . 1к1 _ и1/Rypl . /к0 _ и0/Ryp0 • (8)
После уравновешивания составляющих тока двухполюсника МДП (5) и составляющих компенсирующего тока (8) по окончании переходного процесса можно, с учетом связей между амплитудами и3, и2, и1 и и0, найти значения обобщенных параметров проводимости объекта измерения:
70 _ 1 ^3 . 71 _ Т3/Ryp2 . 72 _ Т2Т3/Ryp1 . 73 _ Т1Т2Т3/Ryp0 - (9)
Заметим, что значения параметра проводимости Yo всегда положительны, а остальных обобщенных параметров, в зависимости от схемы двухполюсника, — могут быть и положительными, и отрицательными. Более того, у двухполюсников с разнородными реактивными элементами знак этого параметра зависит от соотношения между значениями параметров элементов схемы. Поэтому в схеме предусмотрена возможность выбора направления отдельных составляющих компенсирующего тока для уравновешивания их с током двухполюсника /да (t) либо в первую (инвертирующий вход ОУ1), либо во вторую входную цепь (инвертирующий вход ОУ2). Уравновешивание следует производить в указанной в (9) последовательности, так как величина Yo входит в выражение для Y1, значения Yo и Y1 — в формулу для Y2, Yo, Y1 и Y2 — для Y3. Из формул (9) видно, насколько важно поддерживать точные и стабильные значения параметров интеграторов.
Для того чтобы избирательно регулировать амплитуду каждой составляющей компенсирующего тока, выходное напряжение дискриминатора подается на трехкаскадный дифференциатор, который содержит три последовательно включенных дифференцирующих RC-звена. Для уменьшения длительности переходного процесса в дифференциаторе целесообразно при одинаковых значениях постоянной времени всех трех RC-звеньев установить значения емкостей конденсаторов и сопротивлений резисторов в каждом каскаде различными: C1 = C/m, R4 = mR, C2 = C, R5 = R, C3 = mC, R6 = R/m, где m < 1.
На выходе третьего каскада дифференциатора формируется импульс постоянного напряжения U3RC (t), пропорционального разности амплитуд кубичных составляющих тока двухполюсника и компенсирующего сигнала:
U3RC (t) = 6 (RC)3 R0U3 (Yo -1/Ryp3 )Д3 . (10)
Компенсация кубичной составляющей осуществляется приведением к нулю напряжения U3RC (t) с помощью регулируемого сопротивления Ryp3 .
После уравновешивания кубичных составляющих токов на выходе второго RC-звена формируется импульс постоянного напряжения U2RC (t), пропорционального разности амплитуд квадратичных составляющих тока двухполюсника и компенсирующего сигнала:
U2rc (t) = 2(RC)2 Ro (3ВД/13 - U2/Ryp2tl). (11)
Компенсация квадратичной составляющей осуществляется приведением к нулю напряжения U2rc (t) с помощью сопротивления Ryp2 . При этом нуль-индикатор (НИ) определяет
полярность квадратичной составляющей компенсирующего тока и переключает ключ Кл1 в требуемое положение.
Затем с помощью НИ на выходе первого дифференцирующего RC-звена анализируется импульс постоянного напряжения U1RC (t), которое пропорционально разности амплитуд линейных составляющих тока двухполюсника и компенсирующего сигнала:
U1RC (t) = (RC)Ro (6Y2U3/13 - U^RyA). (12)
Компенсация линейной составляющей осуществляется приведением к нулю напряжения путем регулирования сопротивления Ryp1 . Нуль-индикатор определяет знак линейной составляющей компенсирующего тока и управляет переключением второго аналогового ключа Кл2.
И, наконец, для компенсации постоянной составляющей импульса тока измеряемого двухполюсника определяется полярность и приводится к нулю регулировкой сопротивления ЯурО выходное напряжение ОУ2, которое подается на четвертый вход НИ,
иОУ 2 () = Яо (6ВД/ 4 - и0/Яур0), (13)
при этом НИ определяет знак постоянной составляющей компенсирующего тока и управляет переключением третьего аналогового ключа Кл3.
После четырех этапов уравновешивания тока двухполюсника /да () и компенсирующего тока с помощью формул (9) вычисляются обобщенные параметры проводимости двухполюсника Уо, У1, У2, У3. На этом завершается унифицированная часть алгоритма измерителя, единая для любого двухполюсника с пассивными элементами типа Я-С, Я-Ь или Я-Ь-С.
Далее с использованием полученных значений У0, У1, У2, У3 и выражений для обобщенных параметров проводимости конкретного МДП вычисляются электрические параметры элементов этого двухполюсника.
На рис. 2 приведены примеры четырехэлементных двухполюсников: резистивно-емкост-ного (Я-С) типа (рис. 2, а), резистивно-индуктивного (Я-Ь) типа (рис. 2, б) и двухполюсников с разнородными (Я-Ь-С) реактивными элементами (рис. 2, в и г). У Я-С-двухполюсника и Я-С-Ь-двухполюсника три обобщенных параметра проводимости У0, У1 и У2 определяются одинаковыми выражениями: У0 = 1/Я1 ; У1 = С1; У2 = -Я2 С12 . Четвертый параметр Я-С-двухполюсника
равен У3 = Я^С? (С1 + С2 ), а у Я-С-Ь-двухполюсника У3 = С]2 (Я^С1 - Ь1) . Три обобщенных параметра проводимости У0, У1 и У2 Я-Ь-двухполюсника (рис. 2, б) и Я-Ь-С-двухполюсника (г) тоже описываются одинаковыми выражениями Уо = 1/Я1 ; У1 = - Ь^Я ; У2 = Ь (Я1 + Я2 ~)/ЯЯ2 . Четвертый параметр определяется для двухполюсников Я-Ь и Я-Ь-С формулами У3 =-(ь1/Я12Я22)) (Я1 + Я2)2/Я12 + Ь2) и Уз =(£211$)(С1 -Ь (Я1 + Я2)2/Я2Я22) соответственно. Подставив в эти уравнения полученные значения У0, У1, У2, У3, можно вычислить электрические параметры элементов МДП.
а) б) в) г)
Рис. 2
Таким образом, рассмотренные способ и устройство пригодны для определения параметров широкого класса многоэлементных пассивных двухполюсных цепей ЯС-, ЯЬ- и ЯЬС-типа. Представление измеряемых параметров МДП с помощью его обобщенных параметров обеспечивает универсальность алгоритма преобразования.
список литературы
1. Мартяшин А. И., Куликовский К. Л., Куроедов С. К., Орлова Л. В. Основы инвариантного преобразования параметров электрических цепей. М.: Энергоатомиздат, 1990. 214 с.
2. Иванов В. И., Титов В. С., Голубов Д. А. Применение обобщенных параметров измерительной цепи для идентификации многоэлементных двухполюсников // Датчики и системы. 2010. № 8. С. 43—45.
Владимир Ильич Иванов Виталий Семенович Титов Дмитрий Александрович Голубов
Рекомендована Юго-Западным государственным университетом
Сведения об авторах
канд. техн. наук, доцент; Юго-Западный государственный университет, кафедра вычислительной техники, Курск; E-mail: [email protected] д-р техн. наук, профессор; Юго-Западный государственный университет, кафедра вычислительной техники, Курск; заведующий кафедрой аспирант; Юго-Западный государственный университет, кафедра вычислительной техники, Курск
Поступила в редакцию 24.10.11 г.