Мультисервисные бортовые цифровые платформы стандарта БУБ-ЯС8 являются перспективным направлением развития современных спутников связи и вещания и могут существенно расширить число пользователей систем спутниковой связи стандарта БУБ-ЯС8.
Проведенные исследования показывают, что адаптивное управление ресурсом ЧВМ в малоразме-рых мультисервисных спутниковых сетях БУБ-ЯС8 дает существенный (~20^30 %) выигрыш (экономию) энергетических и частотно-временных ресурсов КА, используемых при создании спутниковых сетей связи.
Результаты исследования эффективности адаптивного управления ресурсом ЧВМ в малоразмерых мультисервисных спутниковых сетях БУБ-ЯС8, полученные с использованием экспериментальных программно-аппаратных образцов МЦБП, УЗС и ЗС сети БУБ-ЯС8, дают достаточно точное повторение результатов чисто имитационного моделирования (с погрешностью не более 5 %).
Список литературы
1. Джейсуол Н. Очереди с приоритетами. - М.: Мир, 1973.
2. Генов А., Голованов В. Методика моделирования систем спутниковой связи. // Вопросы радиоэлектроники, 1975.
3. Генов А., Ермилов В. О влиянии характеристик входящего потока старшего приоритета на показатели эффективности функционирования малоканальных СМО с ожиданием. - М.: Наука, 1975.
4. Генов А. Исследование вопросов выбора канальной емкости пучков СПСС двойного назначения. // Науч.-технич. конф.: Оптические, сотовые и спутниковые сети и системы связи. - Псков, 1996.
5. Genov A., Ivanchuk N. The conception of constructing global spread-spectrum CDMA mobile telecommunication «Global-SS» system. Forum of the ITA Proceedings. - Moscow, 1997.
6. Генов А. Бортовые цифровые платформы. // Broadcasting. -2002. - № 3.
7. Генов А., Горшков А., Перескоков В. Мультисервисные БЦП - технологический прорыв в повышении эффективности ССС. // Науч.-технич. конф.: К 75-летию академика В.А. Мельникова. -М., 2003.
8. DVB-RCS - Product Description, ЕМС TECHNOLOGIES. -Канада, 2004.
9. «Sky Edge - Product Description, GILAT. - Израиль, 2004.
ПОСТРОЕНИЕ ИНТЕГРИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ
С ЗАДАННЫМИ СВОЙСТВАМИ
Ю.М. Лисецкий, к.т.н. (Фирма «S&T Софт-Тропик», Украина, г. Киев)
Существует достаточно большое количество определений системы, но обычно основной акцент делается на взаимодействие составляющих ее элементов. Направленность данной работы прагматическая, поэтому в определении системы подчеркнем ее продуктивность, результат функционирования. Таким образом, под системой будем понимать совокупность взаимодействующих элементов, обладающих производными свойствами.
Работа с системами включает в себя два направления: исследование систем и их создание (анализ и синтез). Это разделение весьма условно: изучение системы без практических выводов не имеет смысла, а перестройка системы, предпринятая в обход анализа причин и следствий, заканчивается провалом.
Наиболее иллюстративна в этом смысле ИТ-индустрия, базирующаяся на самых передовых научных и технологических достижениях, где эволюция систем проходит очень динамично.
При описании информационных систем, как и любых других систем, используются три среза: структурный - элементы, связи между ними и их параметры; функциональный - работа системы и ее развитие; кибернетический - регулирование поведения системы.
Несомненно, информационные системы относятся к классу сложных систем, которым, по определению Лефевра, исследователя конфликтующих структур, недостаточно трех ее описаний (структурного, функционального и кибернетического),
чтобы выявить ее сущность, и возникает необходимость в интегрирующей модели, объединяющей все упомянутые срезы.
Информационные системы можно отнести к еще более узкому классу - сложным техническим системам. Это человеко-машинные системы, поведение которых в значительной степени зависит от интеллектуально-волевой деятельности людей.
Сегодня информационные системы действительно являются неотъемлемой частью жизнедеятельности людей. За сравнительно небольшой период они прошли огромный путь развития. Информационные технологии и телекоммуникации стали необходимым условием экономического роста, важнейшим элементом эффективной системы государственного и корпоративного управления.
В настоящее время дальнейшее развитие информационных систем идет по пути развития следующих направлений: консолидация и анализ данных; поддержка новых видов управленческих задач; развитие средств переноса данных и интеграции унаследованных систем; масштабирование решений; улучшение удаленного доступа.
Особенно остро эти проблемы стоят перед территориально распределенными структурами. Особенности развертывания ИТ-средств в территориально распределенных организациях зависят от масштаба их бизнеса и требований к его эффективности. Такие организации можно условно разделить на три категории. К первой относятся те, чья структура
предполагает четко обозначенный центр управления и однотипные удаленные филиалы. Представители второй категории также имеют единый центр, однако их региональные отделения более самостоятельны. И, наконец, третья категория - холдинги, объединяющие компании разных размеров и специализации.
Стратегия развития территориально-распре-деленных компаний различная и, как правило, зависит от сектора экономики. Приступая к построению ИТ-инфраструктуры для распределенной компании, необходимо предварительно изучить информационную модель ее бизнеса. И на этом этапе формализовать структуру организации, бизнес-процессы и логику их взаимосвязи, определить, какие ИТ-ресурсы задействованы в подразделениях, что происходит на разных уровнях управления, корректно сопоставить территориальную и логическую структуры и т. п.
Существуют как общие, так и специальные требования к ИТ-инфраструктуре компаний. К общим можно отнести необходимость удаленного доступа к приложениям и базам данных, требования к емкости и защищенности каналов связи, к объемам и способам организации хранилищ, к инструментариям администрирования и репликации, к сохранности и безопасности информации и т.д. Специальные требования продиктованы необходимостью объединить в общую инфраструктуру множество площадок обработки, хранения и доступа к данным.
При построении такого рода систем для объединения их в корпоративную информационную систему необходимо решить сложнейшую задачу технологической и информационной интеграции. Последняя должна быть проведена на транспортном, инфраструктурном, общесистемном и прикладном уровнях. В рамках данного процесса необходимо обеспечить интеграцию интерфейсов, данных и приложений.
Настоящая статья затрагивает одну из самых актуальных тем в ИТ-индустрии - построение интегрированных информационных систем с заданными свойствами из представленного на рынке набора промышленных программных и аппаратных средств. Данная задача является трудной как в техническом плане, так и в плане принятия решений.
В некоторых работах автора [1,2] исследованы методы решения таких задач и предложены подходы к построению различных интегрированных информационных систем. Результатами данных исследований и практических реализаций являются формирование и обоснование набора требований и соответствующей им функциональной структуры систем, описание последовательности задач, решаемых в ходе их интеграции, описание методологии принятия решений при выборе компонент системы.
Основная проблема, с которой приходится сталкиваться при построении интегрированных информационных систем, - это невозможность нахождения глобального экстремума и/или оптимального реше-
ния в целом для системы вследствие его «смещено-сти» для каждой из подсистем.
Поиск оптимального с точки зрения заданных критериев решения, определяющего конфигурацию сложной технической системы, необходимо осуществлять на конечном множестве альтернатив
А={Х^ ^=1,т) , формируемых наборами допустимых исходных данных Xj = (х^ ,...,хтп) , описывающих соответствующую систему. В этом случае задачу поиска можно сформулировать следующим образом.
1. Существует некоторое отображение Г:А^К, где К={к|ке[0,1]} - множество возможных оценок.
2. Отображение f е Р , множеству всех допустимых отображений А на К.
3. Для каждого множества А существует оптимальное отображение Г*(Г*еР) , которое в общем случае неизвестно.
Необходимо найти такое отображение f'(Г'е Р) , которое удовлетворяет заданным критериям и К(Г')=тт{|Г^)-Г^)|<е}, где ДХ^ - функция
оценивания, реализующая отображение Г; е - требуемая точность расчетов.
Довольно часто основные сложности при решении данной задачи обусловливаются размерами поискового множества (множества альтернатив А), структурой системы ограничений Х, определяющей допустимые характеристики элементов множества А, и возможностями содержательной оценки значений функции оценивания Г из множества Р.
Аппарат исследования и эффективные методы решения такого рода задач, их интерпретация в терминах информационного поиска предложены в работах профессора В.Н. Решетникова и развиты представителями его научной школы [3-5].
Список литературы
1. Лисецкий Ю.М. Опыт построения корпоративной интегрированной информационной системы. // Программные продукты и системы. - 2007. - № 2. - С. 26-29.
2. Лисецкий Ю.М., Бобров С.И. Корпоративная интегрированная информационная система энергораспределяющего предприятия. // УСиМ. - 2007. - № 4. - С. 22-25.
3. Решетников В.Н., Сотников А.Н. Алгоритмы отсечения в задаче информационного поиска. // Прикладная математика и математическое обеспечение. - М.: МГУ, 1985.
4. Решетников В.Н., Любимов Б.О., Никитский Ю.И. Ситуационный центр принятия решений и анализа информации. // Программные продукты и системы. - 1998. - № 3. -С. 14-18.
5. Решетников В.Н., Сотников А.Н., Лисецкий Ю.М. Корпоративные системы информационной безопасности. // Матер. XIII Междунар. науч. конф.: Информатизация и информационная безопасность правоохранительных органов. / Сб. науч. тр. - М.: Академия управления МВД России, 2004. -С. 440-444.