СНИЖЕНИЕ РИСКОВ И ЛИКВИДАЦИЯ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРИ ЧС
ПОСТАНОВКА И РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ИССЛЕДОВАНИЙ ВОЗНИКНОВЕНИЯ ЧРЕЗВЫЧАЙНОГО ЛОКАЛЬНОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА ВБЛИЗИ АВТОДОРОГ НА ПРИМЕРЕ САНКТ-ПЕТЕРБУРГА
О.В. Ложкина, кандидат химических наук; В.С. Марченко; О.В. Сорокина.
Санкт-Петербургский университет ГПС МЧС России
Приводится методика оценки и прогнозирования возникновения и проявления чрезвычайного локального загрязнения воздуха оксидами азота вблизи автомагистралей на основании результатов натурных обследований структуры и характера движения транспортных потоков в «часы пик» на участках автомобильных дорог Санкт-Петербурга с интенсивным движением. Приводится расчетная оценка загрязнения атмосферного воздуха NOX вблизи автомагистралей и в окрестностях автодорог с неблагоприятными транспортно-метеорологическими характеристиками.
Ключевые слова: выбросы NOX, экологическая безопасность, автотранспорт, чрезвычайное локальное загрязнение
RESULTS OF NUMERICAL INVESTIGATIONS OF EXTREMELY HIGH LOCAL AIR POLLUTION BY NOX NEAR STREETS AND HIGHWAYS IN SAINT-PETERSBURG
O.V. Lozhkina; V.S. Marchenko; O.V. Sorokina.
Saint-Petersburg university of State fire service of EMERCOM of Russia
The paper describes the results of model calculations of concentrations of NОX along the Saint-Petersburg Ring Road and other streets at high traffic volume and adverse meteorological conditions (calm, temperature inversion) executed by means of a street pollution model based on the examination and observation of real vehicle flows. It also evaluates the computed results against the measurements from monitoring stations.
Keywords: NOX emission, environment safety, motor transport, extreme local air pollution
Опасность проживания населения в крупных городах России сегодня в значительной степени определяется эмиссией автомобильным транспортом в окружающую среду вредных (загрязняющих) веществ (ЗВ), в том числе оксидов азота. При неблагоприятных
транспортно-метеорологических условиях вблизи автомобильных дорог и их пересечений формируются экстремально высокие значения приземных концентраций N02, в результате чего могут сложиться локальные чрезвычайные ситуации (ЧС) [1-3].
Окислы азота, благодаря способности проникать через легочный эпителий непосредственно в кровеносное русло, относятся к токсикантам, способным оказывать прямое воздействие на дыхательную и сердечно-сосудистую системы человека, провоцировать бронхо-легочные и аллергические заболевания. Еще одним негативным фактором является воздействие диоксида азота на окружающую среду - формирование кислотных осадков, являющихся причиной гибели лесов, урожаев и прочей растительности. Кроме того, они способствуют разрушению объектов техносферы зданий, памятников культуры, трубопроводов, металлоконструкций и т. д.
Для виртуального мониторинга возникновения и проявления чрезвычайного локального загрязнения атмосферного воздуха окислами азота и прогнозирования вероятных последствий их воздействия на население, проживающее вблизи автомагистралей, используются расчетно-аналитические методы.
Представляется актуальным выполнение исследований, посвященных определению расчетно-аналитическим методом условий формирования экстремально-высоких концентраций N0^ а, следовательно, возникновению и проявлению чрезвычайного локального загрязнения приземной воздушной среды окислами азота вблизи автодорог.
Поскольку содержание вредных ЗВ в отработавших газах автомобилей с различными типами двигателей существенно различается, то необходимо проводить учет проходящих автотранспортных средств (АТС) с подразделением их по группам. Проведенные натурные обследования транспортных потоков на автодорогах Санкт-Петербурга в 2013 г. показали целесообразность разделения их на пять легко идентифицируемых наблюдателями категорий:
- легковые автомобили;
- микроавтобусы и автофургоны массой < 3,5 т;
- грузовые автомобили массой от 3,5 до 12 т;
- грузовые автомобили массой > 12 т (автопоезда и фуры);
- автобусы массой > 3,5 т (городские пассажирские рейсовые и туристические автобусы).
Приведенная схема категорирования АТС, в отличии от схем, используемых в аналогичных методиках, не разделяет легковые автомобили на «отечественные» и «зарубежные», поскольку реально наблюдаемое их соотношение равно 1:9, а также позволяет упростить учет грузовых автомобилей и автобусов без разделения их на дизельные и бензиновые, что существенно облегчает проведение натурных обследований структуры и характера движения транспортных потоков.
Для испытания были выбраны две ведущие автомагистрали Санкт-Петербурга: Московский проспект, на котором разрешен проезд только для легковых автомобилей, легкого коммерческого транспорта и автобусов, Кольцевая автодорога (КАД), доступная для движения всех типов АТС. Эти магистрали были интересны еще тем, что по ним был накоплен большой расчетно-эмпирический материал за предыдущие годы [4-8].
Исследования интенсивности движения на Московском проспекте показали, что основная роль в создании ЧС принадлежит легковым АТС, средняя доля которых в общем потоке в 2013 г. составила 89,4 %. Вклад легкого коммерческого транспорта (микроавтобусов и автофургонов) в общую интенсивность движения автотранспортных потоков составил в среднем 8 %, а автобусов - 2,6 %.
В результате натурного обследования КАД было установлено, что чрезвычайное локальное приземное загрязнение атмосферы на КАД формируется в основном выбросами легкового автотранспорта, средняя доля которого в общем потоке АТС составляет 71,0 %; грузовых автомобилей, суммарный вклад которых составил 15,6 % (0,8 % грузовым автомобилям массой от 3,5 до 12 т и 14,8 % - автопоездов и фур массой больше 12 т);
легкого коммерческого транспорта (микроавтобусы и автофургоны) - 12,7 %. Доля автобусов в общем потоке АТС составляет меньше 1 %.
Максимальная транспортная нагрузка на Московском проспекте порядка 4 000 автомобилей/час приходится как раз на участки с плотной застройкой от пересечения с Загородным проспектом до пересечения с Ленинским проспектом. При этом основную роль в возникновении чрезвычайного загрязнения воздушного бассейна оксидами азота играют легковые автомобили и легкий коммерческий транспорт.
Натурные обследования КАД свидетельствуют о том, что к 2014 г. интенсивность движения на ключевой автомагистрали возросла в 2-2,5 раза по сравнению с 2010-2011 гг. Наибольшее увеличение зафиксировано на участках от развязки с Пискаревским проспектом до развязки с Пулковским шоссе, что связано с введением КАД в полную эксплуатацию. Максимальная транспортная нагрузка, составившая 11 700 автомобилей/час, была зафиксирована на участке от Октябрьской набережной до проспекта Обуховской обороны, при этом интенсивность движения легкового транспорта составила в среднем около 8 000 автомобилей/час, а интенсивность тяжелого грузового транспорта (фур и автофургонов с прицепами) - около 2 000 автомобилей/час. Именно этот участок проходит в непосредственной близости от жилой застройки, и, следовательно, при неблагоприятных метеорологических условиях (штилевой погоде, температурной инверсии) и высокой фотохимической активности атмосферы здесь могут создаться условия возникновения чрезвычайного локального загрязнения воздуха оксидами азота, выделяющимися с отработавшими газами двигателей автомобилей, и непосредственной угрозы здоровью населения.
Численные эксперименты по оценке загрязнения атмосферного воздуха N0x вблизи автомагистралей и перекрестков Санкт-Петербурга и определения условий и закономерностей формирования опасных для людей приземных концентраций диоксида азота в окрестностях автодорог были выполнены для ранее обследованных магистралей (Московского проспекта и КАД Санкт-Петербурга). Московский проспект отражает ситуацию на большинстве ключевых магистралей в центральных районах города с плотной прилегающей застройкой и высокой транспортной нагрузкой, создаваемой легковыми автомобилями, легким коммерческим транспортом и автобусами (Невский проспект, Лиговский проспект, Литейный проспект и др.). На таких дорогах условиями возникновения чрезвычайного загрязнения воздуха оксидами азота являются:
- высокая интенсивность движения транспорта;
- затрудненный массоперенос и разбавление примесей внутри уличного каньона, формируемого внутри плотно прилегающих друг к другу зданий;
- неблагоприятные метеорологические условия;
- высокий коэффициент трансформации N0X в N02.
На скоростных дорогах факторами создания чрезвычайно высоких концентраций ЗВ являются:
- высокий объем потоков легковых и грузовых автомобилей;
- неблагоприятные метеорологические условия;
- высокий коэффициент трансформации N0X в N02.
Неблагоприятные метеорологические условия - это совокупность метеоусловий, вызывающих ухудшенное рассеивание выбросов вредных веществ в атмосферной среде и способствующих их накоплению в приземном слое атмосферы, к ним относятся штилевая, то есть безветренная погода, температурная инверсия [9].
В Санкт-Петербурге, в основном, складываются благоприятные погодные условия для минимизации последствий крайне высоких выбросов ЗВ автотранспорта: большое количество осадков в виде дождя, мокрого снега, сильные, порывистые и даже умеренные ветры западных и северо-восточных направлений. Однако периодические неблагоприятные метеорологические условия - не редкость. Они обусловлены частыми штилями, сильными
и мощными температурными инверсиями, препятствующими рассеиванию ЗВ при господстве антициклонов как в зимнее, так и в летнее время [10].
Для расчета максимальных концентраций примесей в воздухе при неблагоприятных метеорологических условиях, создаваемых холодными выбросами от неорганизованных источников, к которым относятся АТС, используется «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий (ОНД-86)» [11].
Использование такой расчетной схемы позволяет учитывать целый ряд важнейших для ЧС обстоятельств:
- степень «неблагоприятности» местных климатических условий для устойчивого рассеивания примесей в воздухе, в частности инверсионные («застойные») состояния атмосферы;
- влияние рельефа местности, качества подстилающей поверхности, геометрических параметров прилегающей к автодорогам застройки;
- фотохимический метаболизм веществ и, в частности, важнейший для автотранспортных выбросов процесс трансформации N0^
- возможность оперирования с базой данных предельно-допустимых концентраций (местных, разовых) (ПДКМР), то есть возможность иметь экстремальную ситуационную картину загрязнения атмосферы вблизи автомагистрали, действующую на протяжении двадцати минутного интервала в реальном масштабе времени. С учетом определенных таким образом граничных условий рассчитываются значения концентрации по заданным координатам местности в окрестности автомагистрали.
В периоды неблагоприятных метеорологических условий при прочих равных условиях именно источники с низкими выбросами, к которым относится автотранспорт, создают угрозу возникновения и проявления чрезвычайного локального загрязнения приземной воздушной среды, в том числе оксидами азота. Методика ОНД-86 была положена в основу компьютерных программ серии «Эколог» для расчета концентраций вредных веществ в атмосфере вблизи автомобильных магистралей, разработанных ООО «Интеграл» (Санкт-Петербург).
Другой программный продукт этой фирмы «Магистраль-город» позволяет рассчитать выбросы от автотранспортных потоков и реализует «Методику определения выбросов автотранспорта для проведения сводных расчетов загрязнения атмосферы городов» [12], в которой были учтены ранее полученные результаты [13-15]. Определенные расчетным путем величины выбросов автотранспортных потоков на городских автомагистралях в единицах измерения г/с были использованы для оценки максимальных концентраций ЗВ, формирующихся вдоль автомагистралей с помощью программы «Эколог».
Результаты расчетов загрязнения воздуха, создаваемого автотранспортом на городских транзитных магистралях, свободных от проезда грузовых транспортных средств, со средней интенсивностью движения транспорта около 3 000 автомобилей/час, показывают, что при неблагоприятных погодных условиях вероятно превышение ПДК диоксида азота в 2,0-4,0 раза (рис. 1).
Полученные расчетные значения были подтверждены результатами мониторинга на автоматической станции измерения загрязнения воздуха № 10, находящейся на территории расположенного непосредственно на Московском проспекте Всероссийского научно-исследовательского института метрологии.
После введения в полную эксплуатацию КАД интенсивность движения увеличилась до 10 000-12 000 автомобилей/час, а грузовых автомобилей с массой более 3,5 т до 2 500 автомобилей/час, что привело к возможности возникновения чрезвычайного локального загрязнения воздуха оксидами азота непосредственно на автомагистрали с превышением ПДК в десять и более раз и высокого загрязнения воздушного бассейна прилегающих жилых кварталов с превышением ПДК NО2 в 2-10 раз (рис. 2).
Удовлетворительная сходимость результатов расчета с данными экспериментальных измерений содержания оксидов азота в приземном воздушном бассейне свидетельствует о высокой точности методики и адекватности назначенных удельных пробеговых выбросов N0 и N02.
Разработанная методика позволяет оценивать и прогнозировать формирование опасных для людей концентраций N0X вблизи автодорог при неблагоприятных транспортно-метеорологических и градостроительных условиях.
0301 Азота диоксид (Азот (IV) оксид) 112000 114000
112000 114000
0 0,10 0.50 1 2 3 4
¡732014. Московский проспект: вар.исх.д. 1; вар.расч.1: пл.1(И=2м)
Масштаб 1:43500
Рис. 1. Визуализация повышенного загрязнения приземного воздушного бассейна диоксидом азота вдоль Московского проспекта в виде полей максимальных концентраций при реализации неблагоприятного сценария, в долях ПДК
Рис. 2. Визуализация повышенного загрязнения приземного воздушного бассейна оксидом азота на Кольцевой автодороге Санкт-Петербурга в виде полей максимальных концентраций
Литература
1. Ложкин В.Н., Грешных А.А., Ложкина О.В. Автомобиль и окружающая среда. СПб.: НПК «Атмосфера» при ГГО им. А.И. Воейкова, 2007. 305 с.
2. Ложкина О.В., Ложкин В.Н. Автомобильный транспорт и судьба биосферы -возможно ли избежать противостояния // Общество. Среда. Развитие. 2011. № 2. С. 208-214.
3. Ложкина О.В., Ложкин В.Н. Перспективы сокращения экологического ущерба от автотранспорта в городах Российской Федерации на примере Санкт-Петербурга // Биосфера. 2011. № 2. С. 409-418.
4. Волкодаева М.В., Полуэктова М.М. К вопросу о расчетах загрязнения атмосферного воздуха выбросами автотранспорта // Экология урбанизированных территорий. 2008. № 3. С. 103-109.
5. Полуэктова М.М., Волкодаева М.В., Хватов В.Ф. Анализ влияния выбросов автотранспорта на уровень загрязнения атмосферного воздуха вблизи Московского и Невского проспектов в 1996-2006 гг. // Вопросы охраны атмосферы от загрязнения: информ. бюл. СПб.: НПК «Атмосфера», 2007. № 2 (36). С. 38-52.
6. Полуэктова М.М., Волкодаева М.В. Вклады различных категорий автотранспорта в уровень загрязнения атмосферного воздуха вблизи автомагистралей г. Санкт-Петербурга в 1993 г. и 2003 г. // Улучшение эксплуатационных показателей двигателей, тракторов и автомобилей: сб. науч. трудов Междунар. науч.-техн. конф. СПб.: СПбГАУ, 2006. С.128-135.
7. Результаты апробирования методики экспериментально-расчетного исследования воздействия автотранспорта на примере Кольцевой автомагистрали Санкт-Петербурга /
B.Н. Ложкин [и др.] // Вестник гражданских инженеров. 2011. № 4 (29). С. 117-122.
8. Лукьянов С.В., Ложкин В.Н., Ложкина О.В. Экспериментально-аналитические исследования загрязнения атмосферы вблизи КАД Санкт-Петербурга // Технико-технологические проблемы сервиса. 2012. № 2 (20). С. 7-15.
9. РД 52.04.52-85. Методические указания. Регулирование выбросов при неблагоприятных метеорологических условиях. Л.: Гидрометеоиздат, 1987.
10. Неблагоприятные метеоусловия повлияли на качество воздуха // Администрация Санкт-Петербурга. URL: http://gov.spb.ru/gov/otrasl/ecology/news/29695/ (дата обращения: 10.10.2014).
11. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий: Общесоюзный нормативный документ Госкомгидромета СССР (ОНД-86). Л.: Гидрометеоиздат, 1987. 93 с.
12. Методика определения выбросов автотранспорта для проведения сводных расчетов загрязнения атмосферы городов. СПб.: ОАО «НИИ Атмосфера», 2010.
13. Об оценке удельных выбросов загрязняющих атмосферу веществ автомобильным транспортом / В.Н. Ложкин [и др.] // Атмосфера. 2011. № 2. C. 37-44.
14. Ложкин В.Н., Ложкина О.В., Марченко В.С. Бортовой мониторинг удельных выбросов NOX, выделяющихся с отработавшими газами легкового автотранспорта, на автодорогах Санкт-Петербурга // Вестник гражданских инженеров. 2012. № 5 (34).
C.195-198.
15. Оценка удельных выбросов легковым автотранспортом, оказывающих комплексное воздействие на человека и окружающую среду / В.Н. Ложкин [и др.] // Двигателестроение. 2012. № 4. С. 3-7.