■ НАШ САЙТ В ИНТЕРНЕТЕ: WWW.GAZOHIMIYA.RU
НАНОТЕХНОЛОГИИ Я
ПОЛУЧЕНИЕ УГЛЕРОДНОГО НАНОМАТЕРИАЛА И ВОДОРОДА ИЗ ПРИРОДНОГО ГАЗА ПОД ДЕЙСТВИЕМ СВЕРХВЫСОКОЧАСТОТНОГО ИЗЛУЧЕНИЯ
А.Г. ЖЕРЛИЦЫН, В.П. ШИЯН
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ПРИ ТОМСКОМ ПОЛИТЕХНИЧЕСКОМ УНИВЕРСИТЕТЕ Ю.В. МЕДВЕДЕВ, С.И. ГАЛАНОВ, О.И. СИДОРОВА
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Необходимость глубокой переработки углеводородного сырья и требования сегодняшнего дня к утилизации природного и попутного газов, в состав которых входит до 95-97 % метана, определяют повышенный интерес производителей к конверсии природного газа в углерод и водород. Одним из традиционных способов осуществления эндотермической реакции разложения метана на углерод и водород является высокотемпературный пиролиз. Для его реализации требуются высокие (800-1200 °С) температуры, при этом весьма широк спектр получаемых продуктов реакции, а степень конверсии метана достигает 12-20 %. В последние годы отмечен повышенный интерес к проблеме конверсии метана с использованием электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона. При этом в ряде работ зафиксировано повышение степени конверсии метана в присутствии СВЧ-поля [1]. Большое внимание при реализации данного процесса уделяется подбору гетерогенного катализатора, который бы эффективно взаимодействовал с СВЧ-полем. Так, в работе [2] предпринята попытка выяснения механизма влияния СВЧ-газового разряда и, соответственно, СВЧ-излучения на скорость образования ацетилена из метана для трех групп твердых катализаторов: нанесенные металлические катализаторы, массивные металлы, углеродсодержащие объекты. Эксперименты, проведенные на нанесенных на диэлектрик никельсодержащих катализаторах и
металлических (Ni, Cu, Fe) сетках, позволили оценить степень поглощения СВЧ-мощности этими объектами, но не дали ответа о механизме воздействия СВЧ-излучения на пиролиз метана. В работе [3] рассмотрен процесс термического разложения метана на водород и углерод при воздействии плазмы микроволнового импульсно-периодического псевдокоронного разряда
атмосферного давления на предварительно нагретый метан. Отмеченное в данной работе ускорение реакции при воздействии разряда объясняется генерацией плазмой СВЧ-разряда химически активных частиц, способствующих разложению метана. Приведенные примеры демонстрируют повышенный интерес исследователей к использованию электромагнитного
ГАЗОХИМИЯ 39
Я НАНОТЕХНОЛОГИИ
Рис. 1
Схема установки
1 - источник СВЧ-излучения; 2 - камера с катализатором; 3 - разрядная камера; 4 - окно; 5 - агломератор;
6 - фильтры
излучения СВЧ-диапазона для интенсификации химико-технологических процессов.
В настоящей работе рассматривается принципиально новый способ конверсии природного газа в углерод и водород, основанный на совмещенном воздействии на природный газ катализатора и СВЧ-поля [4, 5]. В ходе реализации данного способа получены наноразмерные углеродные материалы (нанотрубки и аморфный углерод). В данной работе приводятся также результаты экспериментальных исследований по конверсии природного газа (СН4 - 95 % об.), полученные на разработанной и созданной авторами установке.
Экспериментальная установка
Экспериментальная установка для конверсии природного газа в углерод и водород реализована в соответствии со схемой (рис.1).
Основной элемент установки - проточный реактор выполнен двухкамерным. Одна из камер (2) представляет собой цилиндр из нержавеющей стали, в котором размещена кварцевая труба диаметром 54 мм, длиной 360 мм, заполненная металлическим катализатором. Вторая камера (3), разрядная, представляет собой отре-
зок коаксиальной линии с укороченным центральным проводником, переходящим в круглый волновод. В первой камере осуществляется нагрев катализатора, а в разрядной камере инициируется и поддерживается необходимый для осуществления конверсии природного газа СВЧ-разряд. В отличие от традиционного высокотемпературного пиролиза в данной установке нагрев катализатора осуществляется с использованием СВЧ-энергии от магнетронного генератора (1) с выходной мощностью 1,5 кВт на частоте 2450 МГц.
С целью развязки генератора с нагрузкой (катализатором) и измерения уровня отраженной мощности использован циркулятор (на рисунке не показан). Для контроля температуры катализатора по высоте реактора выполнены три кварцевых окна (4). Контроль температуры осуществлялся с помощью пирометра типа «Кельвин» с пределами измерения 200-2000 °С. Природный газ подавался в нижнюю часть реактора, а подвод СВЧ-энергии для воздействия на катализатор осуществлен сверху посредством волноводно-коаксиального перехода (ВКП). С помощью точно такого же ВКП осуществлен подвод СВЧ-энергии в разрядную камеру от второго СВЧ-гене-ратора с выходной мощностью 2 кВт (магнетрона), подключенного к разрядной камере через циркулятор. Для сбора продуктов плазмохимической реакции предусмотрены агломератор (5) и система фильтров (6). Из системы фильтров углерод собирается в сборнике углерода. Водород и остаточный газ с помощью вытяжной вентиляции выбрасывался в атмосферу.
Эндотермическая реакция
75 кДж/моль разложения метана на углерод и водород осуществлялась в описываемой установке следующим образом.
На первом этапе металлический катализатор (Fe, Ni, TiNi) нагревается с помощью СВЧ-энергии в токе азота до температуры ~560 °С за счет диссипативных потерь. Это значение лежит в диапазоне температур, характерном для традиционного термического катализа. Затем в реактор подавался холодный (~30 °С) природный газ (метан ~97 %) с
расходом 0,161,0 м 3/ч а с, отключалась подача азота и зажигался СВЧ-разряд в
разрядной камере. При этом происходило снижение температуры катализатора до значений 450-480 °С в зависимости от расхода метана. О начале реакции судили по снижению температуры в реакторе и появлению водорода в выходных газах. Одновременно велось визуальное наблюдение за ходом реакции через кварцевое окно разрядной камеры по наличию углерода. Наработанные продукты реакции транспортировались через систему фильтров в сборники углерода и водорода. Для этого аппарат работал при незначительном разряжении.
Плазмохимическая конверсия метана, реализованная в установке, происходит, по нашему мнению, следующим образом. На разогретом катализаторе происходит предварительное возбуждение молекул метана и реакция образования непредельных углеводородов (этилена и ацетилена), которые газовым потоком транспортируются в разрядную камеру, где и осуществляется, собственно, плазменный катализ. Факелом плазмы продукты реакции выносятся в постреакторное пространство.
Продукты реакции анализировались с использованием рентгеновского дифрактометра XRD-6000, хромат-рографа «Хроматэк-Кристалл 5000», прибора для определения удельной поверхности «Sorbi», растрового электронного микроскопа «Philips SEW 515», водородного газоанализатора «ИВА-18».
Результаты исследований
Для выяснения роли и степени влияния плазмы СВЧ-разряда на эффективность процесса была проведена серия опытов на холодном катализаторе с СВЧ-разрядом и на горячем катализаторе как при наличии, так и в отсутствие СВЧ-разряда. Для исследования был использован природный газ (СН4 95-97 %) Мыльджинского
ГКМ, предоставленный ОАО «Томск-газпром».
Для того чтобы оценить роль катализатора в конверсии природного газа, в отсутствие плазмы СВЧ-разря-да была исследована зависимость степени конверсии, выход углеродно-
В отличие от традиционного высокотемпературного пиролиза в данной установке нагрев катализатора осуществляется с использованием СВЧ-энергии от магнетронного генератора
40 ГАЗОХИМИЯ
■ НАШ САЙТ В ИНТЕРНЕТЕ: WWW.GAZOHIMIYA.RU
НАНОТЕХНОЛОГИИ Я
го материала и водорода от температуры катализатора при постоянном
Зависимость степени конверсии от температуры катализатора
приведены степень конверсии и концентрации водорода и побочных продуктов реакции (С2+ - углеводородов) V °С Расход газа, м3/ч KCH4, % Концентрация Н2, % об. Содержание С2+-углеводородов, % об.
с использованием в качестве катали- 350 0,16 2,56 1,5 5,54
затора железа (Fe). 400 0,16 3,06 2,2 5,60
Из этих результатов следует, что при 450 0,16 4,27 2,6 2,58
данных условиях эксперимента степень конверсии и выход водорода
составляют единицы процентов и уве- 1Табл. 2 1
личиваются с ростом температуры. При этом не был зафиксирован сколь- Результаты влияния СВЧ-разряда на ход плазмохимической реакции
ко-нибудь значительный выход углерода, а содержание С2+-углеводородов с ростом температуры уменьшается, V °С Расход газа, м3/ч KCH4, % Концентрация Н2, % об. Содержание С2+-углеводородов, % об.
что, возможно, связано с образовани- 15 0,16 68,6 13,88 1,87
ем при высоких температурах жидкой фракции углеводородов. Для выяснения влияния СВЧ-разря- 15 0,43 48,4 16,09 3,0
15 1,08 19,7 13,48 2,52
да на ход плазмохимической реакции
были проведены эксперименты на И Табл. 3 1
холодном катализаторе при различных расходах газа. Их результаты представлены в табл. 2. Приведенные результаты показывают, что под воздействием только плаз- Параметры процесса конверсии природного газа
Тср, °С Расход газа, м3/ч KCH4, % Концентрация Н2, % об. Содержание С2+-углеводородов, % об.
мы СВЧ-разряда на порядок увеличива- 350 0,16 58,1 13,1 0,35
ется степень конверсии по сравнению с 450 0,16 71,4 15,95 0,15
термическим катализом, реализованным в предыдущем опыте (см. табл. 1). В 560 0,16 76,0 16,0 1,5
данном случае наряду с водородом, С2+-
углеводородами наблюдалось образо- |Табл. 4 1
вание углеродного материала.
Анализ показал, что углеродный материал состоит из углеродных нанотрубок (УНТ), фуллеренов и аморфного углерода. Степень конверсии уменьшается с увеличением расхода газа, а между концентрацией водорода, содержанием С2+-углево-дородов, с одной стороны, и расходом газа, с другой, такой зависимости не наблюдается.
В табл. 3 приведены параметры процесса конверсии природного газа, концентрации водорода и побочных продуктов реакции при совмещенном воздействии нагретого металлического катализатора и плазмы СВЧ-разря-да. Эксперименты проводились при разных температурах катализатора и постоянном расходе газа.
Эксперименты, проведенные при совмещенном действии катализатора и плазмы СВЧ-разряда, показали, что при этих условиях возрастает степень конверсии газа (до 80 %), выход водорода (до 16 %) и углеродного материала. В его состав входят: углеродные многослойные, однослойные, луковичные нанотрубки с удельной поверхностью от 30 до 100 м2/г; аморфный углерод с удельной поверхностью 200-400 м2/г. Размер
Соотношение аморфного углерода и нанотрубок от используемых катализаторов
Состав катализатора Содержание нанотрубок углерода и размер по ОКР Содержание аморфного углерода,
% нм %
TiNi 46,13 9,12 45,00
AlNi 33,14 10,57 55,00
Ni 56,51 7,12-14,92 21,24
Fe 78,24 3,70-12,40 4,04
Mo 24,91 26,26-37,22 64,89
Ti 23,05 5,8-11,6 -
Типы образующихся нанотрубок и их размеры
Состав катализатора MWCNT, % (размер по ОКР, нм) SWCNT, % (размер по ОКР, нм) Onions, % (размер по ОКР, нм)
Ni 19,4 (14,9) 45,0 (7,8) 35,6 (7,1)
Fe 28,2 (12,4) 38,8 (7,3) 33,0 (3,7)
Mo 47,0 (26,3) 32,9 (37,2) 20,1 (37,2)
В зависимости от используемого катализатора получается наноуглеродный материал различной структуры и размеров
Табл. 1
Табл.5
ГАЗОХИМИЯ 41
Я НАНОТЕХНОЛОГИИ
частиц аморфного углерода составлял от 10 до 50 нм. Поперечный размер нанотрубок в зависимости от условий процесса изменялся в пределах от 5 до 27 нм.
В зависимости от используемого катализатора получается наноуглеродный материал различной структуры и размеров (табл. 4 и 5).
Как видно из табл. 4, углеродный продукт преимущественно состоит из аморфного углерода, углеродных нанотрубок. Присутствует также небольшое количество графита и ортакарбона. Ортакарбон образуется только на никельсодержащих катализаторах - Ni, AlNi и TiNi. Химический состав катализатора значительно влияет на количество образующихся нанотрубок, их соотношение и размеры (табл. 5).
Варьируя скорости подачи сырья и материал засыпки, можно получать углеродный материал с различным соотношением нанотрубок и амофно-го дисперсного углерода. При этом изменяется удельная поверхность углеродного продукта. На рис. 2 представлены микрофотографии углерода, на которых видно, что полученный продукт можно условно разделить на два вида.
Рис. 2а представляет собой ассо-циаты «ватной» текстуры размерами 10-20 мкм, состоящие из более мелких структур размерами 200-250 нм, минимально обнаруженные частицы, образующие неупорядоченные ассо-циаты, имеют размеры 30-40 нм. Вероятно, это и есть аморфный углерод. Вторая структура образующегося углерода - это нановолокна и нанотрубки, которые могут быть хаотично переплетены между собой (рис. 2б) или перераспределены на поверхности «ватных» ассоциатов. К сожалению, возможности прибора не позволили детально изучить более мелкие формы полученного углерода, который явно присутствует в углеродном продукте.
Совмещение каталитических процессов с плазмохимическими процессами приводит к сложным зависимостям в эндотермической реакции разложения метана. Сокращение времени контакта с катализатором при сохранении постоянной линейной скорости метана уменьшает конверсию метана и концентрацию водорода, концентрация С2+ углеводородов постоянна (рис. 3 и 4). Увеличение линейной скорости метана сильно снижает конверсию метана, выход водорода и увеличивает концентра-
Рис. 2
Микрофотографии образцов углерода
(а) (б)
Рис. 3
Зависимость конверсии метана от времени контакта
Рис. 4
Зависимость концентрации газообразных продуктов от времени контакта
ксн4. %
80 75 70 65 60 55 50
0 0,5 1 1,5 2 2,5 3
Время контакта, с
С, /о
80- у— *
60-
40-
20-
VT —. •
°С 0,5 1 ”1,5 2 2,5 3
Время контакта, с
CH4^-C2H4^-C2H2
42 ГАЗОХИМИЯ
■ НАШ САЙТ В ИНТЕРНЕТЕ: WWW.GAZOHIMIYA.RU
НАНОТЕХНОЛОГИИ
цию С2+ углеводородов в реакционных газах.
Используемые катализаторы относятся к «массивным металлам» и представляют собой гранулы размером 0,1-2 мм. При воздействии на катализатор СВЧ-поля между гранулами за счет наведенных электромагнитных полей возникают частичные электрические разряды (микроразряды), создающие начальную концентрацию свободных электронов. В потоке газа они инициируют СВЧ-газовый разряд и приводят к образованию плазменной струи на выходе из реактора, подпитываемой СВЧ-энергией. Температура в плазменной струе может достигать 5000 К. Кроме этого, благодаря образованию микроразрядов не происходит отложение углерода на поверхности катализатора, что позволяет увеличить срок работы катализатора. Наличие этих «инициаторов» обеспечивает возникновение и поддержание СВЧ-разряда при малых уровнях СВЧ-мощности. В условиях газового разряда с образованием плазменной струи происходят быстрые химические превращения природного газа (метана), в частности в углерод и водород. Конверсия метана зависит от типа катализатора, размера его составляющих частиц, температуры в реакторе и уровня СВЧ-мощности, подаваемой в активную зону реактора. В нашем случае использовался непрерывный режим работы СВЧ-генератора с плавно регулируемой выходной мощностью в пределах 700-1500 Вт. Проведенные измерения отраженной от катализатора и прошедшей на нагрузку СВЧ-мощности при СВЧ-разряде и без него показали, что реакция идет «штатно» (с фиксируемым выходом углерода) при уровне мощности, подаваемой на катализатор, около 1 кВт. Этот уровень мощности, возможно, превышает необходимый для проведения плазмохимической реакции по конверсии углеводородов в углерод и водород.
Таким образом, по нашему представлению, в описанном процессе налицо комбинированное воздействие СВЧ-излучения на объект.
Это и нагрев катализатора, и инициирование микроразрядов в катализаторе, возбуждающих атомы и молекулы газа и поддерживающих существование плазменной струи, с помощью которой осуществляется вынос продуктов конверсии из реакторного пространства.
Естественно, что данный вопрос требует дальнейшего, более глубокого изучения.
Заключение
В процессе исследования совмещенного воздействия нагретого металлического катализатора и плазмы СВЧ-разряда показано, что по сравнению с традиционным термическим катализом резко повышается (до 80%) степень конверсии природного газа, увеличивается выход водорода и наноуглеродного материала в виде нанотрубок (однослойных и многослойных, луковичных), не содержащих окклюдированных частиц металла, в отличие от всех других способов получения наноуглерода [6]. Значительная концентрация водорода в выходящих
Варьируя скорости подачи сырья и материал засыпки, можно получать углеродный материал с различным соотношением нанотрубок и амофного дисперсного углерода
газах делает перспективным данный способ конверсии для получения как наноуглеродного материала, так и водорода в промышленных масштабах. В то же время несоответствие концентраций водорода (16 %) и С2+-углероводородов (1,5 %) со степенью конверсии природного газа (76 %) предполагает образование жидких углеводородов (бензол) при данном способе конверсии природного газа и требует дополнительных исследований.
В ходе экспериментов обнаружено, что в отличие от традиционного термического катализа в рассматриваемом процессе конверсии практически не происходит зауглероживания катализатора. Предположительно это можно объяснить существованием (возникновением) между частицами катализатора микроразрядов под действием СВЧ-поля, которые «зачищают» поверхность катализатора, увеличивая тем самым срок его химической активности.
Работа выполнена при финансовой поддержке ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 гг. ЁЗ
СПИСОК ЛИТЕРАТУРЫ
1. Пармон В.Н. Распределение температуры в грануле дисперсного тела при неравновесном выделении тепла внутри гранулы. Стационарный случай // Кинетика и катализ. - 1996. - Т. 37. - № 3. - С. 476.
2. Федосеев В.И., Аристов Ю.И., Танашев Ю.Ю., Пармон В.Н. Пиролиз метана под действием импульсного СВЧ-излучения в присутствии твердых катализаторов // Кинетика и катализ, 1996. - Т. 37. - № 6. - С. 869-872.
3. Бабарицкий А.И., Герасимов Е.Н., Демкин С.А., Животов В.К. и др. Импульсно-периодический СВЧ-разряд как катализатор химической реакции // ЖТФ, 2000. - Т. 70. - Вып. 11. - С. 36-41.
4. Жерлицын А.Г., Шиян В.П., Галанов С.И.и др. Получение высокодисперсного углеродного материала из природного газа под действием СВЧ-излучения // Известия вузов. Физика, 2007. -№ 10/3. - С. 280-284.
5. Патент РФ № 2317943. Способ получения углерода и водорода из углеводородного газа и устройство для его осуществления / Ю.В. Медведев,
А.Г. Жерлицын и др. - Опубл. 27.02.2008 г., Бюл. № 6.
6. Раков Э.Г. Методы непрерывного производства углеродных нановолокон и нанотрубок // Химическая технология, 2003. - № 10. - С. 2-7.
ГАЗОХИМИЯ 43