DOI: 10.14529/chem150404
OXIDATION OF TRI(0-T0LYL)ANTIM0NY BY TERT-BUTYL HYDROPEROXIDE. MOLECULAR STRUCTURES OF B/S[M2-OXO- TRI(O-TOLYL)ANTIMONY]
AND M2-OXO-B/S[(TERT-BUTYLPEROXY)TRI(0-TOLYL)ANTIMONY]
V.V. Sharutin, [email protected]
O.K. Sharutina, [email protected]
E.V. Artem'eva, [email protected]
M.S. Makerova, [email protected]
South Ural State University, Chelyabinsk, Russian Federation
Tri(o-tolyl)antimony oxidation by equimolar amount of tert-butyl hydroperoxide in diethyl ether led to the formation of bis[M2-oxo-tri(o-tolyl)antimony] (1). At the molar ratio of reactants 1:2 or 1:4 ^2-oxo-bis[(tert-butylperoxy)tri(o-tolyl)antimony] (2) has been formed. According to the X-ray analysis data, antimony atoms are in the trigonal bipyramidal coordination in molecules 1 and 2. The bond lengths Sb-O vary within the ranges 1.937(2)-2.078(2) A (1) and 1.975(17)-2.216(15) A (2).
Keywords: tri(ortho-tolyl)antimony, tert-butyl hydroperoxide, oxidation, bis[f2-oxo-tri(o-tolyl)antimony], f2-oxo-bis[(tert-butylperoxy)tri(o-tolyl)antimony], molecular structures, X-ray analysis.
The interactions between triarylantimony and inorganic and organic oxidizing agents were investigated by many authors, for example [1-4]. The studies of reactions of triarylantimony with hydroperoxides are of great importance, as the products are useful precursors of derivatives with general formula Ar3SbX2 (X = acid radical HX) [5-10]. It has been found that hydrogen peroxide oxidizes triarylantimony to produce oxide A^SbO (Ar = Ph, p-Tol) or dihydroxide Ar3Sb(OH)2 (Ar = 2,4,6-Me3C6H2), depending on the volume of organic radical bonded with antimony atom, it is believed [10, 11]. The interaction of triarylantimony with tert-butyl hydroperoxide was studied on the example of triphenylantimo-ny only. The molecular structure of the reaction product was found to depend on the amount of an oxidizing agent. Triphenylantimony oxide was formed at stoichiometric ratio of reactants and may be dime-rized or polymerized [12-14]. Stable antimony peroxides Ph3Sb(OOBu-t)2 and (Ph3SbOOBu-t)20 are formed in the presence of the excess of tert-butyl hydroperoxide [15].
The reactions of tri(o-tolyl)antimony with tert-butyl hydroperoxide at various molar ratios of the reactants have been investigated and crystal and molecular structures of the products have been determined in the present paper.
Experimental
Synthesis of 6/s[M2-oxo-tri(0-tolyl)antimony] (1). Tri(o-tolyl)antimony (200 mg, 0.50 mmol) was dissolved in diethyl ether (20 mL). Then tert-butyl hydroperoxide (66 mg of 70 % aqueous solution, 0.50 mmol) was added. The solution was left to stand for 24 hours at temperature 20 °C. When the solvent evaporated, colourless cristalline substance 1 was obtained; the product yield was 199 mg (95 %), MP: 216 °C.
IR spectrum (v, cm-1): 3048, 2921, 2854, 1584, 1446,1280, 1202, 1160, 1120, 1031,935, 918, 890,764, 750, 740, 655, 636, 491, 471, 435.
Synthesis of ^2-oxo-6/s[(ieri-butylperoxy)tri(o-tolyl)antimony] 2. Tri(o-tolyl)antimony (200 mg, 0.50 mmol) was dissolved in diethyl ether (20 mL). Then tert-butyl hydroperoxide (132 mg of 70 % aqueous solution, 1.00 mmol) was added. The solution was left to stand for 24 hours at temperature 20 °C. Colorless crystals 2 were obtained; yield 230 mg (92 %), MP: 162 °C.
The reaction with the molar ratio 1:4 was carried out at the same conditons. The product yield of substance 2 was 87 %.
IR spectrum of the substunce 1 was recorded on the Bruker Tensor 27 FT-IR (KBr pellets; 4000-400 cm1).
The X-ray diffraction analyses of crystalline substances 1 and 2 were made on the Bruker D8 QUEST automatic four-circle diffractometer (Mo Ka-emission, A = 0.71073 A, graphite monochroma-tor). The data were collected and analyzed, the unit cell parameters were refined, and the absorption correction was applied using the SMART and SAINT-Plus programs [16]. All calculations for structure determination and refinement were performed using the SHELXL/PC programs [17]. The structures 1 and 2 were determined by the direct method and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms.
The main crystallographic data and refinement results for structures 1 and 2 are listed in Table 1. The selected bond lengths and bond angles are given in Table 2.
Table 1
Crystallographic data and the experimental and structure refinement parameters for compound 1
Parameter Value
1 2
Empirical formula C42H42O2Sb2 C50H60OsSb2
Formula weight 822.26 984.48
^ K 296(2) 296(2)
Crystal system Triclinic Triclinic
Space group P-1 P1
a, A 11.0684(3) 10.3355(4)
b, A 11.1721(3) 11.0049(5)
c, A 17.0248(5) 11.0848(4)
a, deg 80.7820(10) 69.771(2)
P, deg 86.0600(10) 84.636(2)
Y, deg 61.0370(10) 81.907(2)
V, A3 1818.06(9) 1169.88(8)
Z 2 1
p(calcd.), g/cm3 1.502 1.397
|i, mm1 1.520 1.198
F(000) 824.0 502.0
Crystal size, mm 0.17x0.09x0.08 0.55x0.38x0.21
28 Range of data collection, deg 7.38 - 58.28° 3.98 - 47.5°
Range of refraction indices -15 < h < 15, -15 < k < 15, -23 < l < 23 -11 < h < 11, -12 < k < 12, -12 < l < 12
Measured reflections 32558 14775
Independent reflections 9014 6981
Rint 0.0480 0.0245
Refinement variables 421 521
GOOF 1.030 1.159
R factors for F2 > 2ct(F2) R1 = 0.0314, wR2 = 0.0551 Rj = 0.0511, wR2 = 0.1274
R factors for all reflections Rj = 0.0564, wR2 = 0.0611 Rj = 0.0589, wR2 = 0.1361
Residual electron density (min/max), e/A3 0.49/-0.33 1.04/-2.17
Table 2
Selected bond lengthes and bond angles in the structures of compounds 1-2
Bond d, Â Angle ra, deg Bond d, Â Angle ra, deg
1 2
Sb(1)-Sb(1a) 3.1409(4) O(1a)Sb(1)C(1) 165.14(10) Sb(1)-O(1) 1.997(17) O(1)Sb(1)C(11) 93.7(9)
Sb(1)-O(1) 1.9372(18) O(1)Sb(1)C(11) 114.54(10) Sb(1)-C(11) 2.145(14) O(1)Sb(1)O(2) 167.6(6)
Sb(1)-O(1a) 2.0784(18) O(1a)Sb(1)C(11) 89.40(9) Sb(1)-O(2) 2.143(18) O(1)Sb(1)C(21) 86.7(7)
Sb(1)-C(1) 2180(3) O(1)Sb(1)C(21) 130.04(10) Sb(1)-C(21) 2.166(17) O(1)Sb(1)C(1) 95.3(8)
Sb(1)-C(11) 2.135(3) C(11)Sb(1) C(1) 103.30(11) Sb(1)-C(1) 2.18(2) C(11)Sb(1)C(21) 116.3(10)
Table 2 (end)
Bond d, Â Angle ra, deg Bond d, Â Angle ra, deg
1 2
Sb(1)-C(21) 2.150(3) C(11)Sb(1)C(21) 111.93(11) Sb(2)-O(1) 1.951(18) C(11)Sb(1)C(1) 124.4(12)
Sb(2)-Sb(2b) 3.1441(3) C(21)Sb(1)Sb(1a) 110.58(8) Sb(2)-C(41) 2.150(17) O(2)Sb(1)C(11) 87.2(9)
Sb(2)-O(2) 2.0585(17) C(21)Sb(1)C(1) 96.05(11) Sb(2)-C(61) 2.114(12) O(2)Sb(1)C(21) 81.9(7)
Sb(2)-O(2b) 1.9473(17) O(2b)Sb(2)C(31) 89.87(9) Sb(2)-C(51) 2.114(12) O(2)Sb(1)C(1) 94.3(8)
Sb(2)-C(31) 2.186(3) O(2)Sb(2)C(31) 163.65(9) Sb(2)-O(4) 2.129(17) C(1)Sb(1)C(21) 118.9(10)
Sb(2)-C(41) 2.131(3) O(2b)Sb(2)C(41) 108.70(10) О(2)-О(3) 1.337(17) Sb(2)O(1)Sb(1) 169.2(6)
Sb(2)-C(51) 2.151(3) O(2)Sb(2)C(41) 92.51(10) O(4)-O(5) 1.356(17) C(22)C(21)Sb(1) 127.0(19)
O(1)-Sb(1a) 2.0784(18) O(2b)Sb(2)C(51) 130.20(9) O(5)-C(35) 1.51(2) C(46)C(41)Sb(2) 114.2(15)
O(2)-Sb(2b) 1.9473(17) O(2)Sb(2)C(51) 87.24(9) O(3)-C(31) 1.451(17) C(42)C(41)Sb(2) 124.6(15)
Symmetry relation: a) 1-x, -y, 2-z; b) 2-x, 1-y, 1-z
The full tables of atomic coordinates, bond lengths, and bond angles for the substance 1 was deposited with the Cambridge Crystallographic Data Centre (№ 1052677; [email protected]; http : //www .ccdc.cam.ac.uk).
Results and Discussion
It has been found that the oxidation of tri(o-tolyl)antimony by tert-butylhydroperoxide at the molar ratio 1:1 in diethyl ether goes with the formation of tri(o-tolyl)antimony oxide with dimeric structure: Ô7's[^2-oxo-tri(o-tolyl)antimony] (1):
2 (o-Tol^Sb + 2 t-BuOOH ^ [(o-Tol)3SbO]2 + 2 t-BuOH
According to X-ray diffraction data the crystal of compound 1 contains two types of crystallograph-ically independent molecules (A, B). The antimony atoms have intermediate coordination between tri-gonal-bipyramidal and square-pyramidal coordination (Fig. 1).
CC24)
Fig. 1. The structure of compound 1A (hydrogen atoms aren't shown)
Two carbon atoms of the aryl substituents and ^-bridging oxygen atom are placed in equatorial plane, the second ^-bridging oxygen atom and carbon atom are in axial positions. The sum of equatorial OSbC and CSbC angles is 356.57(10)° for A and 350.83(10)° for B. The axial OSbC angles are significantly distorted, they are equal to 165.14(10)° and 163.65(9)°. The OSbO and SbOSb angles in the flat cyclic fragment [Sb2O2] equal 77.14(8)°, 102.86(8)° (A) and 76.62(8)°, 103.13(7)° (B). The Sb-Ceq bond
lengths (2.135(3), 2.150(3) A A; 2.131(3), 2151(3) A B) and Sb-Oeq (1.937(2) A A; 1.943(2) A B) are less than Sb-Cax (2.180(3) A A; 2.186(3) A B) and Sb-Oax (2.078(2) A A; 2.058(2) A B). The distances between antimony atoms in the cycle (3.1409(5) (A), 3.1441(3) A (B)) are considerably less than the double Van der Waals radius of antimony atom (4.4 A [18]). The o-Tol3Sb fragments in compound 1 are in staggered conformation with respect to each other. Geometrical parameters of complex 1 are close to geometrical parameters of such compounds as (Ph3SbO)2 [19] and [(2-MeOC6H4)3SbO]2 [20].
When the concentration of tert-butylhydroperoxide has increased (1:2 or 1:4) the single organoan-timony product in the reaction mixture is ^2-oxo-bis[(tert-butylperoxo)tri(o-tolyl)antimony] (2), the product yield is 92 %:
2 (o-Tol^Sb + 4 t-BuOOH ^ [(o-Tol)3SbOOBu-t]2O + 2 t-BuOH + H2O
The coordination polyhedron of antimony atoms in binuclear molecule 2 is an insignificantly distorted trigonal bipyramid (Fig. 2). The bipyramid distortion is characterized by deflection of Sb(1) and Sb(2) atoms from their respective equatorial planes by 0.02 A and 0.08 A to the direction of the bridging oxygen atom O(1), which leads to angle deviation between axial and equatorial bonds from the theoretical value 90°. The axial OSb(1,2)O angles are equal to 167.6(6)° and 159.5(5)°.
The equatorial CSb(1,2)C angles are changed in the range of 116.3(8)°-124.4(12)°. The Sb(1)O(1)Sb(2) angle is 169.2(6)°. The SbOSb fragment has linear structure in the centrosymmetric molecule of ^2-oxo-bis[(tert-butylperoxo)triphenylantimony] [21].
CC44)
CC24)
Fig. 2. The structure of compound 2 (hydrogen atoms aren't shown)
The equatorial bonds Sb(1)-Ceq and Sb(2)-Ceq are changed in the range of 2.14(1)-2.18(2) A and 2.10(1)-2.15(1) A.
The Sb(1,2)-0(1) distances are equal to 1.997(7) and 1.951(18) A, and they are less than terminal distances Sb(1)-0(2) (2.143(18) A) and Sb(2)-0(4) (2.129(17) A) like in the molecule of ^2-oxo-bis [(tert-butylperoxo)triphenylantimony].
Conclusions
Thus, tert-butylhydroperoxide oxidizes tri(o-tolyl)antimony at the molar ratio of the reactants 1: 1 into tri(o-tolyl)antimony oxide, which dimerizes into bis [^2-oxo-tri(o-tolyl)antimony]. With tert-butylhydroperoxide in excess (1:2 and 1:4) the reaction proceeds with the formation of the single orga-noantimony compound: ^,2-oxo-bis[(tert-butylperoxo)tri(o-tolyl) antimony].
References
1. Bhattacharya S.N., Singh M. Oxidative Addition Reactions of Triarylarsines and Triarylstibines with Copper (II) and Mercury(II) Salts. Indian J. Chem., 1979, vol. 18A, no. 6, pp. 515-516.
2. Sharma H.K., Singh S., Dubey S.N., Puri D.M. Metal Derivatives of Organoantimony Compounds; Reactions of Anhydrous Ferric Chloride with Arylantimony Compounds. Indian J. Chem., 1982, vol. 21A, no. 6, pp. 619-621.
3. Alberola A., Gonzaleer A.M., Pulido F.G. The Reaction of p-Quinones with Triphenylstibine. Rev. Roum. Chim. 1984, vol. 29, no. 5, pp. 441-446.
4. Cherkasov V.K., Grunova E.V., Poddel'sky A.I., Fukin G.K., Kurskii Y.A., Abakumova L.G., Abakumov G.A. Oxidative Addition Reaction of o-Quinones to Triphenylantimony. Novel Triphenylan-timony Catecholate Complexes. J. Organomet. Chem. 2005, vol. 690, no. 5, pp. 1273-1281.
5. Goel R.G., Ridlej D.R. Organoantimony Compounds. J. Organomet. Chem. 1979, vol. 182, no. 2, pp. 207-212.
6. Bajpai K., Srivastava R.S. Synthesis and Reactions of o-Triorganoantimony Dioximates. Inorg. Met.-Org. Chem., 1981, vol. 11, no. 1, pp. 7-13.
7. Chang M.-M.Y., Kai S., Musher J.I. Some New Organoantimony (V) Compounds. Isr. J. Chem., 1974, vol. 12, no. 5, pp. 967-970.
8. Domagala M., Huber F., Preut H. Triorganoantimon- und Triorganobismutderivate von Carbonsauren funfgliedriger Heterocyclen Kristall- und Molekulstruktur von (C6H5)3Sb(O2C-2-C4H3S)2 und (CH3)3Sb(O2C-2-C4H3S)2. Z. Anorg. Allg. Chem., 1989, Bd. 574, ss. 130-142.
9. Domagala M., Huber F., Preut H. Triorganoantimon- und Triorganobismutderivate von 2-Pyridincarbonsaure und 2-Pyridinlessigsaure. Kristall- und Molekulstrukturen von Ph3Sb(O2C-2-C5HN)2 und Me3Sb(O2CCH2-2-C5H4N)2. Z. Anorg. Allg. Chem., 1990, Bd. 582, ss. 37-50.
10. Ruther R., Huber F., Preut H. Triorganoantimon- und Triorganobismutdisulfonate Kristall- und Molekulstrukturen von (C6H5)3M(O3SC6H5)2 (M=Sb, Bi). Z. Anorg. Allg. Chem. 1986, Bd. 539, ss. 110-126.
11. Westhoff T., Huber F., Preut H. Syntesis of Tris(2,4,6-trimetylphenyl)hydroxoantimony Car-boxylates. Crystall Structure of Tris(2,4,6-trimetylphenyl)hydroxoantimony 1-Adamantylcarboxylate. J. Organomet. Chem., 1988, vol. 348, no. 2, pp. 185-191.
12. Hiatt R., McColeman C., Howe G.R. The Reaction of Hydroperoxides with Triphenylarsine and Triphenylstibine. Canad. J. Chem., 1975, vol. 53, no. 4, pp. 559-563.
13. Cvetkov V.G., Aleksandrov Ju.A., Glushakova V.N., Skorodumova N.A., Kol'jakova G.M. Thermochemistry of Reaction Triphenylphosphorus -arsenic and -antimony with tert-butyl hydroperoxide. [Termohimija reakcii trifenilfosfora, -mysh'jaka i -sur'my s gidrolerekis'ju tretichnogo butila] Zhurn. obshh. Himii [Russian Journal of General Chemistry], 1980, vol. 50, no. 2, pp. 256-258. (in Russ.)
14. Razuvaev G.A., Shushunov V.A., Dodonov V.A., Brilkina T.G. Reactions of Organometallic Compounds with Organic peroxides. In: Organic Peroxides. N.Y.: J. Willey and Sons., 1972, vol. 3, pp.141-270.
15. Pokrovskaja I.E., Dodonov V.A., Starikova Z.A., Kanunnikova E.N., Shhegoleva T.M., Lebedev G.P. The Peroxide Compounds of Triphenylantimony: Their Synthesis and Structure. [Peroksidnye soedinenija trifenilsur'my, ih sintez i stroenie]. Zhurn. obshh. Himii [Russian Journal of General Chemistry], 1981, vol. 51, no. 6, pp. 1247-1253. (in Russ.)
16. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.
17. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.
18. Bacanov S.S. Atomic Radii of the Elements [Atomnye radiusy jelementov]. Zhurn. Neorgan. Himii [Russian Journal of Inorganic Chemistry], 1991, vol. 36, no. 12, pp. 3015-3037. (in Russ.)
19. Bordner J., Doak G.O., Everett T. S. Crystal Structure of 2,2,2,4,4,4-Tetrahydro-2,2,2,4,4,4-hexaphenyl-1,3,2,4-dioxadistibetane (Triphenylstibine Oxide Dimer) and Related Compaunds. J. Am. Chem. Soc., 1986, vol. 108, no. 14, pp. 4206-4213.
20. Matano Y., Nomura H., Hisanaga T., Nakano H., Shiro M., Imahori H. Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides. Organometallics, 2004, vol. 23, no. 23, pp. 5471-5480.
21. Starikova Z.A., Shhegoleva T.M., Trunov V.K., Pokrovskaja I.E. The crystal and molecular structure of oxa-bis (tret.butilperoksitrifenilsurmy) [Kristallicheskaja i molekuljarnaja struktura oksa-bis(tret.butilperoksitrifenilsur'my)]. Kristattografija [Crystallography Reports], 1978, vol. 23, no. 5, pp. 969-973. (in Russ.)
Received 5 May 2015
УДК 546.243+546.245+547.53.024+548.312.5 DOI: 10.14529/chem150404
ОКИСЛЕНИЕ ТРИ(0-Т0ЛИЛ)СУРЬМЫ
ТРЕТБУТИЛГИДРОПЕРОКСИДОМ. МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС[|2-ОКСО-ТРИ(О-ТОЛИЛ)СУРЬМЫ]
И |и2-ОКСО-БИС[(7РЕ7БУТИЛПЕРОКСО)ТРИ(О-ТОЛИЛ)СУРЬМЫ]
В.В. Шарутин, О.К. Шарутина, Е.В. Артемьева, М.С. Макерова
Южно-Уральский государственный университет, г. Челябинск
Окисление три(о-толил)сурьмы эквимолярным количеством третбутилгидропе-роксида в эфире приводит к образованию бис[д2-оксо-три(о-толил)сурьмы] (1). При соотношении реагентов 1:2 или 1:4 (мольн.) продуктом реакции является ,м2-оксо-[три(о-толил)(третбутилпероксо)-сурьма] (2). По данным РСА, в молекулах 1 и 2 атомы Sb имеют искаженную тригонально-бипирамидальную координацию. Длина связей Sb-O изменяется в интервалах 1.937(2)-2.078(2) Ä (1) и 1.975(17)-2.216(15) Ä (2).
Ключевые слова: три-о-толилсурьма, третбутилгидропероксид, окисление, бис[^2-оксо-три(о-толил)сурьма], ^2-оксо-бис[(третбутилпероксо)три(о-толил)-сурьма], молекулярные структуры, рентгеноструктурный анализ.
Литература
1. Bhattacharya, S.N. Oxidative Addition Reactions of Triarylarsines and Triarylstibines with Copper (II) and Mercury(II) Salts / S.N. Bhattacharya, M. Singh // Indian J. Chem. - 1979. - V. 18A, N. 6. - P. 515-516.
2. Metal Derivatives of Organoantimony Compounds; Reactions of Anhydrous Ferric Chloride with Arylantimony Compounds / H.K. Sharma, S. Singh, S.N. Dubey, D.M. Puri // Indian J. Chem. - 1982. -V. 21A, N. 6. - P. 619-621.
3. Alberola, A. The Reaction of ^-Quinones with Triphenylstibine / A. Alberola, A.M. Gonzaleer, F.G. Pulido // Rev.Roum. Chim. - 1984. - V. 29, N. 5. - P. 441-446.
4. Oxidative Addition Reaction of o-Quinones to Triphenylantimony. Novel Triphenylantimony Ca-techolate Complexes / V.K. Cherkasov, E.V. Grunova, A.I. Poddel'sky et al. // J. Organomet. Chem. -2005. - V. 690. - N. 5. - P. 1273-1281.
5. Goel, R.G. Organoantimony Compounds / R.G. Goel, D.R. Ridlej // J. Organomet. Chem. -1979. - V. 182. - N. 2. - P. 207-212.
6. Bajpai, K. Synthesis and Reactions of o-Triorganoantimony Dioximates / K. Bajpai, R.S. Srivas-tava // Synth. Inorg. Met.-Org. Chem. - 1981. - V. 11, N. 1. - P. 7-13.
7. Chang, M.-M.Y. Some New Organoantimony (V) Compounds / M.-M.Y. Chang, S. Kai, J.I. Musher // Isr. J. Chem. - 1974. - V. 12, N. 5. - P. 967-970.
8. Domagala, M. Triorganoantimon- und Triorganobismutderivate von Carbonsauren funfgliedriger Heterocyclen Kristall- und Molekulstruktur von (C6H5)3Sb(O2C-2-C4H3S)2 und (CH3)3Sb(O2C-2-C4H3S)2 / M. Domagala, F. Huber, H. Preut // Z. Anorg. Allg. Chem. - 1989. - Bd. 574. - S. 130-142.
9. Domagala, M. Triorganoantimon- und Triorganobismutderivate von 2-Pyridincarbonsaure und 2-Pyridinlessigsaure. Kristall- und Molekulstrukturen von Ph3Sb(O2C-2-C5H4N)2 und Me3Sb(O2CCH2-2-C5HN)2 / M. Domagala, F. Huber, H. Preut // Z. Anorg. Allg. Chem. - 1990. - Bd. 582. - S. 37-50.
10. Ruther, R. Triorganoantimon- und Triorganobismutdisulfonate Kristall- und Molekulstrukturen von (CeH5)3M(O3SCeH5)2 (M=Sb, Bi) / R. Ruther, F. Huber, H. Preut // Z. Anorg. Allg. Chem. - 1986. -Bd. 539. - S. 110-126.
11. Westhoff, T. Syntesis of Tris(2,4,6-trimetylphenyl)hydroxoantimony Carboxylates. Crystall Structure of Tris(2,4,6-trimetylphenyl)hydroxoantimony 1-Adamantylcarboxylate / T. Westhoff, F. Huber, H. Preut // J. Organomet. Chem. - 1988. - V. 348, N. 2. - P. 185-191.
12. Hiatt, R. The Reaction of Hydroperoxides with Triphenylarsine and Triphenylstibine / R. Hiatt, C. McColeman, G.R. Howe // Canad. J. Chem. - 1975. - V. 53, N. 4. - P. 559-563.
13. Термохимия реакции трифенилфосфора, -мышьяка и -сурьмы с гидроперекисью третичного бутила / В.Г. Цветков, Ю.А. Александров, В.Н. Глушакова и др. // Журн. общ. химии. - 1980. - T. 50. - № 2. - С. 256-258.
14. Reactions of Organometallic Compounds with Organic peroxides / G.A. Razuvaev, V.A. Shushunov, V.A. Dodonov, T.G. Brilkina // Organic Peroxides. - N.Y.: J. Willey and Sons. - 1972. - V. 3. - P. 141-270.
15. Пероксидные соединения трифенилсурьмы, их синтез и строение / И.Е. Покровская,
B.А. Додонов, З.А. Старикова и др. // Журн. общ. химии. - 1981. - T. 51, № 6. - С. 1247-1253.
16. Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.
17. Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.
18. Бaцaнов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорган. химии. -1991. - T. 36, № 12. - С. 3015-3037.
19. Bordner, J. Crystal Structure of 2,2,2,4,4,4-Tetrahydro-2,2,2,4,4,4-hexaphenyl-1,3,2,4-dioxadistibetane (Triphenylstibine Oxide Dimer) and Related Compaunds / J. Bordner, G.O. Doak, T.S. Everett // J. Am. Chem. Soc. - 1986. - V. 108, N. 14. - P. 4206-4213.
20. Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides / Y. Matano, H. Nomura, T. Hisanaga et al. // Organometallics. - 2004. - V. 23, N. 23. - P. 5471-5480.
21. Кристаллическая и молекулярная структура окса-бис(трет.бутилперокситрифенилсурьмы) / З.А. Старикова, Т.М. Щеголева, В.К. Трунов и др. // Кристаллография. - 1978. - Т. 23, № 5. -
C. 969-973.
Шарутин Владимир Викторович - доктор химических наук, профессор, старший научный сотрудник УНИД, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]
Шарутина Ольга Константиновна - доктор химических наук, профессор, кафедра аналитической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]
Артемьева Екатерина Владимировна - студент химического факультета, ЮжноУральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: [email protected]
Макерова Марина Сергеевна - студент химического факультета, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: mari-na.mms74@mail .ru
Поступила в редакцию 5 мая 2015 г.
ОБРАЗЕЦ ЦИТИРОВАНИЯ
Oxidation of Tri(o-tolyl)antimony by Tert-butyl Hydroperoxide. Molecular Structures of ,B/.s[^2-oxo-tri(o-tolyl)antimony] and ^2-oxo-fa's[(tert-butylperoxy)tri(o-tolyl)antimony] / V.V. Sharutin, O.K. Sharutina, E.V. Artem'eva, M.S. Makerova // Вестник ЮУрГУ. Серия «Химия». - 2015. - Т. 7, № 4. - С. 23-29. DOI: 10.14529/chem150404
FOR CITATION
Sharutin V.V., Sharutina O.K., Artem'eva E.V., Makerova M.S. Oxidation of Tri(o-tolyl)antimony by Tert-butyl Hydroperoxide. Molecular Structures of Bis[^2-oxo-tri(o-tolyl)antimony] and ^2-oxo-6is[(terf-butylperoxy)tri(o-tolyl)antimony]. Bulletin of the South Ural State University. Ser. Chemistry. 2015, vol. 7, no. 4, pp. 23-29. DOI: 10.14529/chem150404