УДК 621.311
ОЦЕНКА СОСТОЯНИЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ НА ОСНОВЕ АНАЛИЗА ДАННЫХ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ
А.И. Хальясмаа, С.А. Дмитриев, С.Е. Кокин, М.В. Осотова
В статье показаны возможности оценки технического состояния силовых маслонаполненных трансформаторов на основе данных технической диагностики методом Байеса. Анализ проводится на основе экспертных оценок с помощью функций принадлежности, на основе которых производится расчет вероятностей проявления (не проявления) различных состояний силовых трансформаторов. В настоящей работе предлагается использование математического аппарата, разработанного на основе синтеза нечётких лингвистических переменных и количественных характеристик диагностируемого оборудования. Достоверность предложенного метода подтверждается соответствующими расчётными результатами, демонстрирующими адекватное поведение модели применительно к силовым трансформаторам.
Ключевые слова: силовой трансформатор, диагностика, нечёткая логика, метод Байеса.
Введение
Диагностика электрооборудования сегодня является одним из основных «аппаратов» для оценки его технического состояния и позволяет прогнозировать его срок эксплуатации (остаточный ресурс), что является априорной задачей для таких стратегически важных объектов, как электрические станции и подстанции.
Вопросы диагностики электрооборудования в России сегодня особенно актуальны, так как большая часть электрооборудования на станциях и подстанциях отработала эксплуатационный ресурс (или установленный нормативными документами) и эксплуатируется на пределе своих возможностей. Такое оборудование требует повышенного внимания и более частых проверок при эксплуатации.
Высоковольтное оборудование на станциях и подстанциях находится под влиянием электрических, электромагнитных и тепловых полей и под воздействием электродинамических усилий, а значит подвержено высокому риску развития дефектов, появлению неисправностей и отказов [1]. А при условии большого износа электрооборудования величина этих рисков возрастает. Среди всего высоковольтного оборудования особое место занимает силовой трансформатор (СТ), так как его отказы приводят к перерыву в электроснабжении большого числа электроприемников и потребителей [2].
Именно поэтому большое число работ и статей посвящено оценке технического состояния именно СТ как одного из наиболее крупных и важных узлов на электрических станциях [3] и подстанциях [1, 2, 4].
В данной статье авторами рассматривается возможность оценки технического состояния СТ на основе данных технической диагностики с помощью метода Байеса.
Общие положения
Среди математических методов для анализа данных технической диагностики достаточно распространен метод Байеса благодаря своей простоте и эффективности. Состояние объекта Д и фак-
тор к.1, который связан с данным состоянием, могут быть выражены через вероятности следующей формулой:
,Р(к/Д-)
Р(Д/к,) = Р(Д )-
Р(к)
(1)
где Р(к-/Д-) - вероятность проявления фактора к1 у объекта в состоянии Д ; Р()- априорная вероятность состояния Д; Р (к{) - априорная вероятность проявления фактора кг на любом объекте; Р(Бг/кг-)- апостериорная вероятность состояния Д при проявлении фактора к1 .
Смысл метода Байеса заключается в оценке вероятностной характеристики выявления состояния Р(Д-/к-) на базе комплекса доступных для анализа факторов. При последовательном учете различных комбинаций факторов рост значения Р(Бг/кг-) указывает на высокую вероятность события Д, а снижение - на практическую нереали-зуемость.
Большое число статей и работ посвящено оценке технического состояния СТ с помощью метода Байеса, но в основном метод Байеса применяется для анализа данных СТ по результатам хроматографического анализа содержащегося в нем масла и без учета вероятностей проявления для каждого газа в отдельности. Это связано с тем, что в настоящее время используется большое число маслонаполненного оборудования, что в свою очередь делает зону поиска дефекта СТ ограниченной именно хроматографическим анализом масла.
Наряду с хроматографическим анализом масла ежегодно проводятся и другие методы контроля состояния СТ, такие как тепловизионный контроль, локализация разрядных явлений и т.д.
В данной статье предпринята попытка создания модели для оценки технического состояния СТ с помощью метода Байеса по нескольким видам технической диагностики, которая позволит не только устранить основные минусы метода Байеса - уменьшить объем предварительной ин-
формации для каждого конкретного метода диагностики и избежать «угнетения» редко встречающихся диагнозов (пропуска дефекта), но и увеличить достоверность полученного результата по данным других методов технической диагностики.
Метод Байеса уместно использовать для оценки состояния СТ только по данным методов диагностики, которые применяются длительное время, так как метод Байеса предполагает накопление информации, с помощью которой возможно оценить априорное распределение вероятностей. Среди всех методов диагностики СТ можно выделить три основных, достаточно долго применяемых метода: ХАРГ, тепловизионная диагностика и метод частичных разрядов.
ХАРГ позволяет выявить дефекты СТ ранней стадии, а также их предполагаемый характер и степень полученного повреждения. Оценка состояния СТ выполняется путем сопоставления полученных при анализе количественных характеристик с их граничными значениями как по концентрации газов в масле, так по скорости роста концентрации газов.
Для СТ тепловизионный контроль является вспомогательным методом диагностики, с помощью которого можно получить дополнительную информацию о состоянии СТ. Это связано с тем, что, во-первых, тепловыделения, являющиеся следствием возникновения локальных дефектов в СТ, «заглушаются» естественным выделением теплоты обмоткой и магнитопроводом, а, во-вторых, работа устройств систем охлаждения ускоряет циркуляцию масла, отводит теплоту в окружающую среду и снижает температуру в месте дефекта, затрудняя его выявление. При анализе результатов тепловизионного контроля необходимо учитывать конструкцию СТ, его систему охлаждения, условия и срок эксплуатации, технологию производства и ряд прочих факторов [4].
Метод регистрации частичных разрядов используется для контроля состояния высоковольтной изоляции СТ. Так же, как и тепловизионный метод, его можно отнести скорее к вспомогательным методам диагностики, так как в процессе регистрации частичных разрядов отдельной и сложной задачей является отстройка от помех.
Определение вероятностей исходных
состояний
Для определения состояний СТ введем следующие градации, представленные в табл. 1, и предположим наличие четырех различных состояний у СТ для каждого вида диагностики.
В связи с тем, что все три метода диагностики для СТ применяются достаточно давно и частота их проведения регламентируется нормативными документами, есть возможность составить статистику по каждому типу состояния для каждого вида диагностики.
Для этого на основе экспертных оценок опре-
деляются априорные вероятности исходных состояний.
Таблица 1 Возможные состояния оборудования
Состояние Показатель в пределах нормы Наличие дефекта
А Да Нет
Дг Да Да
Д3 Нет Да
Д4 Нет Нет
Для каждого вида диагностики примем, что признаки являются независимыми. Тогда состояние СТ характеризуется комплексом независимых признаков, каждый К из которых является двухразрядным,
К = (к1, к2), (2)
где к1 - проявление признака К, а к2 - не проявление.
Для обобщения и верификации проявления признаков настоящей работой предложен метод определения вероятности проявления признаков на основе характеристических функций принадлежности.
Вероятности проявления (непроявления) могут быть представлены функциями распределения следующего вида. На рис. 1 представлены функции проявления признаков состояний: Д1 - ц1 (х),
Д2 - ц2 (х), Д3 - ц 3 (х), и Д4 - ц4 (х), которые определяются на интервале Х = {0...3} .
Аргумент функций соответствует рангу состояния объекта исследования.
Обобщенные линеаризованные представления функций сильного ц1(х) и нормального проявления признаков ц2(х) дают вероятностные характеристики проявления какого-либо признака цР (х) одновременно с тем, как обобщенные линеаризованные представления функций слабого проявления ц3(х) и его отсутствия ц4(х) дают вероятностные характеристики непроявления признаков цм (х).
Л' / , л ^ч ч
/И1 (*) / \ \ /МгОО/ / V
\ \ / / / \ \ V
4 / / С \
у' ✓ / \ ч
чч ч N. _
0 0,5 1 1,5 2 2,5 3
1________________I__________________I___________________I__________________I__________________I___________________I
Рис. 1. Характеристические функции распределения проявления признаков состояний
\кх,к2,к3,...,ку }, п - число диагнозов состояния, Р (Di) - предварительная вероятность диагноза Di, Р (К / Di) - вероятность проявления признаков в диагнозе Di, вычисляемая в соответствии со следующим выражением:
Р(К / Б,) = Р(кх / Б,) Р(к2 / Б,)... Р(к, / Б,), (4) где К - множество двухразрядных признаков {к!,к2,кз,...,К } .
Такой анализ позволяет получить количественную характеристику сочетания диагностируемых признаков состояния по принадлежности тому или иному состоянию.
Для ХАРГ предлагается произвести анализ для семи основных газов (табл. 2): метан (СН4 ) , углекислый газ (С02), этилен (С2Н4), ацетилен (С2Н2), этан (С2Н6 ) , водород (Н2), угарный газ (С°).
Для тепловизионной диагностики (табл. 3) предлагается произвести анализ по трем признакам:
- перегрев высоковольтных вводов,
- перегревы в системе охлаждения
- перегревы контактных соединений.
Для метода частичных разрядов (табл. 4) предлагается произвести анализ по трем признакам: изоляция с наличием частичных разрядов, узлы с искрением, дуговые процессы в активной части.
Таблица 2
Диагностическая матрица Байеса для ХАРГ
Признак Диагноз
А О2 Оз О4
+ - + - + - + -
К и Р(к„Юі) Р(кп^і) P(kll/D2) P(kl2/D2) P(kll/Dз) Р(кі2^з) P(kll/D4) P(kl2/D4)
со2 Р(к21^) Р(*22/Оі) P(k2l/D2) РСк^) P(k2l/Dз) Р(к22Юз) Р(к2і^4) P(k22/D4)
С2 Н 4 Р(кзіЮ0 P(kз2/Dl) P(kзl/D2) Р(кз2^2) P(kзl/Dз) P(kз2/Dз) P(kзl/D4) P(kз2/D4)
С2Н2 Р(к4іЮ0 P(k42/Dl) P(k4l/D2) P(k42/D2) РЛі^з) P(k42/Dз) P(k4l/D4) P(k42/D4)
С2Н6 Р(кзі^і) Р(*я/Оі) P(k5l/D2) P(k5l/Dз) Р^^з) P(k5l/D4) P(k52/D4)
Н2 Р(Лбі^і) Р(кб2/Оі) Р(кбі^2) P(k62/D2) P(k6l/Dз) Р(кб2^з) P(k6l/D4) P(k62/D4)
со P(k7l/Dl) Р(^і) P(k7l/D2) P(k72/D2) P(k7l/Dз) P(k72/Dз) Р(к7і^) P(k72/D4)
Таблица 3
Диагностическая матрица Байеса для тепловизионного контроля
Признак Диагноз
А О2 Оз О4
+ — + — + — + —
Перегрев высоковольтных вводов Р(*8.і/Оі) Р(*8.2/Оі) Р(*8.і/02> Р(к8.2/02) Р(к8Л/Бз) Р(к8.2/Оз) Р(*8.і/04) Р(к8.2/04)
Перегревы в системе охлаждения Р(*9.і/Оі) Р(к92/Оі) Р(*9.і/02) Р(к9.2/Э2) Р(*9.і/Оз) Р(к92/Оз) Р(к9л/04) Р(к92/04)
Перегревы контактных соединений Р(кшл/Оі) Р(кю.2/Оі) Р(кю.і/02) Р(кі0.2/О2) Р(кіо.і/Оз) Р(кіо.2/Оз) Р(кіо.і/04) Р(кі0.2/О4)
Характеристические функции цР (х) и цы (х) позволяют определить распределение вероятностей проявления признаков для определенного диагноза (рис. 2).
0,9 0,8 0,7
0,6 0,5 0,4 0,3 0,2
0,1 0
0 0,5 1 1,5 2 2,5 3
Рис. 2. Характеристические функции вероятностного проявления признаков
Подобные характеристики должны быть определены для всех диагностируемых признаков во всех состояниях объекта исследования, которые представлены в табл. 2—4.
Вероятность того или иного состояния при различных сочетаниях признаков может быть определена по формуле Байеса:
р (о, / * )■ Р(0<>Р(К / 0 > , (3)
11■Р ( О, ) Р ( К / )
где К — множество двухразрядных признаков
Таким образом, модель для оценки состояния СТ позволяет использовать представленные методы технической диагностики как взаимодополняемые в случаях недостаточности исходных данных или взаимопроверяемые в случаях неточности исходных данных.
Практическое применение
С целью верификации проведенных исследований выполним расчет для ХАРГ СТ с использованием функций принадлежности к различным состояниям, а также вероятностей проявлений и непроявлений признаков для каждого газа в отдельности. Расчет вероятностей состояний СТ для ряда сочетаний признаков, приведенных в табл. 5.
Значения вероятности каждого из диагнозов показаны в табл. 6.
В соответствии с выражением (2) выполним расчет вероятности диагноза Di при соответствии всего комплекса признаков К = к11 л к21 л к31 л лк41 л к51 л к61 л к71, представленных в табл. 5, нормальным граничным условиям:
Р (Д/ К ) =
= (0,5 • 0,998 • 0,990 • 0,940 • 0,895 • 0,821- 0,804 • 0,990) / /(0,5 • 0,998 • 0,990 • 0,940 • 0,895 • 0,821 • 0,804 • 0,99 +... +0,3 • 0,001 • 0,001 • 0,004 • 0,003 • 0,002 х х0,001 • 0,001) = 0,9999. (5)
При полном несоответствии комплекса диагностируемых признаков допустимым значениям
Кк = кп л к^2 л кз2 л к42 л к52 л к62 л к72 вероятность диагноза состоянию СТ D1 чрезвычайно мала и составляет:
Р (О1 / К) = (0,5 • 0,002 • 0,010 • 0,060 •х х0,105 • 0,179 • 0,196 • 0,010) /
/(0,5 • 0,002 • 0,010 • 0,060 • 0,105 • 0,179 • 0,196 • 0,010 + ...
+0,3 • 0,999 • 0,999 • 0,996 • 0,997 • 0,998 х
х0,999 • 0,999) = 0,04 ‘10-9. (6)
Ряд расчетов вероятностей для комплекса диагностируемых признаков приведен на рис. 3.
По результатам, приведенным на рис. 3, видно, что при нахождении в допустимом диапазоне пяти и более критериев оценки СТ, вероятность
Таблица 4
Диагностическая матрица Байеса для метода определения частичных разрядов
Признак Диагноз
А 02 03 04
+ - + - + - + -
Изоляции с наличием частичных разрядов р(к11.1/01) Р(к11.2/01) Р(к11.1/®2) Р(к11.2/®2) Р(кп.1/ВД Р(к11.2/®3) Р(к11.1/®4) Р(к11.2/®4)
Узлы с искрением Р(к12.1/01) Р(к12.2'®1) Р(к12.1/®2) Р(к12.2/®2) Р(к12.1/®3) Р(к12.2/03) Р(к12.1/04) -Р(к12.2/^^4)
Дуговые процессы в активной части Р(кш/О0 Р(к13.2/01) Р(к13.1/®2) Р(к13.2/®2) Р(к13.1/ОД Р(к13.2/03) Р(к13.1/04) -Р(к13.2/^^4)
Таблица 5
Диагностическая матрица Байеса для ХАРГ
Признак К] Вероятности непревышения (+) и превышения (-) граничных значений признаков для диагнозов 0
О1 О2 О3 О4
+ - + - + - + -
СН4 0,998 0,002 0,024 0,976 0,021 0,979 0,001 0,999
СО2 0,990 0,010 0,022 0,978 0,002 0,998 0,001 0,999
С2Н4 0,940 0,060 0,044 0,956 0,004 0,996 0,004 0,996
С2Н2 0,895 0,105 0,097 0,903 0,009 0,991 0,003 0,997
С2Н6 0,821 0,179 0,032 0,968 0,003 0,997 0,002 0,998
Н2 0,804 0,196 0,028 0,972 0,003 0,997 0,001 0,999
со 0,990 0,010 0,026 0,974 0,002 0,998 0,001 0,999
Таблица 6
Вероятности состояния
Вероятности диагнозов Р (Ог-)
А О2 О3 О4
0,5 0,1 0,1 0,3
Рис. 3. Результаты расчета вероятностей принадлежности состояниям: а) при соответствии большинства критериев граничным значениям (4 и более) б) при несоответствии большинства критериев
граничным значениям (4 и более)
определения его состояния как нормального (О1)
приближается к 100 %. Такое оборудование функционирует нормально и не требует оперативного вмешательства, связанного с осмотром, ремонтом и заменой элементов.
При невыполнении требований по трем диагностируемым показателям вероятность принадлежности нормальному состоянию резко снижается и сопровождается одновременным ростом вероятности принадлежности состоянию О2. Примером является совместное отклонение показателей СО и СО2 за граничные значения, соответствующее комбинации показателей
К = к12 лк22 лк32 лк42 лк52 лк62 лк72, (рис. 3). В
таком случае вероятностная принадлежность к О1 составляет около 13 %, а к О2 - 87 %.
Подобная тенденция сохраняется - рост числа отклонений диагностируемых показателей от нормы приводит к преобладанию негативных диагнозов, свидетельствующих о наличии дефекта в силовом оборудовании. Результаты, представленные на рис. 3, б, свидетельствуют об этом.
Для комбинации показателей
К = кц л к22 л к^2 л л к52 л к62 л ^72, (рис. 3, б) вероятность О3 составляет 20 %, а О4 превышает 63 %. Такое состояние требует незамедлительного принятия мер по восстановлению или замене оборудования на электроэнергетическом объекте.
Заключение
В представленной статье предпринята попытка решения задачи повышения достоверности оценки состояния оборудования на основе экспертных оценок с использованием метода Байеса.
Авторами предложен метод определения вероятности проявления или не проявления признаков состояния основного оборудования на базе технологии нечеткой логики, которая позволяет получить формализованный результат.
Проведенные расчеты наглядно свидетельствуют об адекватности приведенного подхода для оценки состояния объектов электрической сети.
Литература
1. Вдовико, В.П. Методология системы диагностики электрооборудования высокого напря-
жения / В.П. Вдовико // Электричество. - 2010. -№ 2. - С. 14-20.
2. Хренников, А.Ю. Основные дефекты и повреждения трансформаторов (реакторов) и классификация видов воздействий, ведущих к их появлению / А.Ю. Хренников, Г.Г. Гольдштейн // Промышленная Энергетика. - 2008. - №11. -С. 17-21.
3. Система информационной поддержки принятия управленческих решений при техническом обслуживании оборудования ТЭС / К.Э. Аронсон, В.И. Брезгин, Ю.М. Бродов и др. // Электрические станции. - 2006. - № 10. - С. 55-61
4. Завидей, В.И. Возможности применения тепловизионного контроля для диагностики технического состояния силовых трансформаторов / В.И. Завидей, В.И. Печенкин, С.В. Каланчин // Энергоэксперт. - 2011. - № 6 (29). - С. 64-67.
Хальясмаа Александра Ильмаровна, аспирант, ассистент кафедры «Автоматизированные электрические системы» Уральского энергетического института, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, тел.: +7(343)375-95-77, e-mail: [email protected].
Дмитриев Степан Александрович, кандидат технических наук, доцент кафедры «Автоматизированные электрические системы» Уральского энергетического института, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, тел.: +7(343)375-95-77, e-mail: [email protected].
Кокин Сергей Евгеньевич, кандидат технических наук, доцент кафедры «Автоматизированные электрические системы» Уральского энергетического института, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, тел.: +7(343)375-95-77, e-mail: [email protected].
Осотова Марина Викторовна, аспирант кафедры «Автоматизированные электрические системы» Уральского энергетического института, Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, тел.: +7(343)375-95-77, e-mail: [email protected].
Bulletin of the South Ural State University Series “Power Engineering” __________________________________________________2013, vol. 13, no. 2, pp. 114-120
ASSESSMENT OF POWER TRANSFORMERS BASED ON DATA ANALYSIS TECHNICAL DIAGNOSTICS
A.I. Khalyasmaa, Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russian Federation, [email protected]
S.A.Dmitriev, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation, [email protected]
S.E. Kokin, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation, [email protected]
M.V. Osotova, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation, [email protected]
The article describes the possibility of assessing technical state oil-filled power transformers based on technical diagnostics using Bayes’ method. The analysis is based on expert judgment using the membership functions, based on which the calculation of the probability of appearance the different states of power
transformers. In this paper we propose to use a mathematical method based on the synthesis of fuzzy linguistic variables and quantitative characteristics of diagnosed equipment. The accuracy of the proposed method is confirmed by the corresponding calculated results, which demonstrate adequate behavior of the model as applied to power transformers.
Keywords: power transformer, diagnostics, fuzzy logic, Bayes ’ method.
References
1. Vdoviko V.P. Methodology of diagnostic system of high voltage power equipment, Electrical Technology Russia, 2010, по. 2. pp. 14-20.
2. Khrennikov A.Yu., Gol'dshtein V.G. The main defects and damages of the transformers (reactors) and classification of the impact factors, Industrial energy, 2008, по. 11, рр. 17-21.
3. Aronson K.E., Brezgin V.I., Brodov Yu.M., Akifeva N.N., Rudenko A.S., Brezgin D.V. The system of information management decision support equipment maintenance TPP, [Sistema informatsionnoy podderzhki pri-nyatiya upravlencheskikh resheniy pri tekhnicheskom obsluzhivanii oborudovaniya TES], Power Technology and Engineering, 2006, по. 10, pр. 55-61 .
4. Envies V.I., Petchenkin V.I., Kalanchin S.V., Possibilities of application of thermal control for the diagnosis of power transformers technical state, Energoexpert, 2011, по. 6 (29), pp. 64-67.
Поступила в редакцию 09.08.2013 г.