Научная статья на тему 'Оценка паяемости электронных компонентов и деталей в электронике'

Оценка паяемости электронных компонентов и деталей в электронике Текст научной статьи по специальности «Химические технологии»

CC BY
394
131
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по химическим технологиям, автор научной работы — Ланин Владимир

Проблема обеспечения качественных паяных соединений при сборке и монтаже изделий электроники заставляет обращать внимание на использование эффективных методов контроля паяемости электронных компонентов и функциональных покрытий деталей. Методы должны обеспечивать наименьшее время контроля, высокую достоверность, возможности автоматизации контроля и анализа результатов.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Оценка паяемости электронных компонентов и деталей в электронике»

Владимир ЛАНИН

[email protected]

Оценка паяемости электронных компонентов

и деталей в электронике

Проблема обеспечения качественных паяных соединений при сборке и монтаже изделий электроники заставляет обращать внимание на использование эффективных методов контроля паяемости электронных компонентов и функциональных покрытий деталей. Методы должны обеспечивать наименьшее время контроля, высокую достоверность, возможности автоматизации контроля и анализа результатов.

Проблемы паяемости при сборке и монтаже

В производстве современных изделий электроники процессы пайки являются весьма трудоемкими и составляют более 30% от затрат труда на сборку и монтаж. К качеству изделий предъявляются все более жесткие требования, поскольку от него зависит надежность и работоспособность электронных комплексов. Так как в каждом электронном изделии присутствует печатная плата, то именно качеству сборки и монтажа данных плат уделяется особое внимание, и в частности — качеству паяных соединений [1]. Для улучшения качества паяных соединений и снижения их переходного сопротивления, а также для повышения скорости пайки на выводы элементов, коммутационных устройств и на проводники печатных плат наносят функциональные покрытия.

Обеспечение указанных выше требований невозможно без разработки высокоэффективных, производительных методов контроля, особое место среди которых, в связи с широким распространением в электронике гальванических покрытий, занимают методы контроля их паяемости. Качество паяных соединений во многом зависит от свойств покрытий деталей, электронных компонентов и их паяемости.

Паяемость

Паяемость — это способность материала смачиваться расплавленным припоем и образовывать с ним качественное паяное соединение. Паяемость определяется физико-химической природой материалов и припоя, способом и режимами пайки, флюсующими средами, условиями подготовки паяемых поверхностей и т. д. [2]. Для образования паяного соединения необходимо и достаточно смачивания поверхности металла расплавом

припоя, что определяет возможность дальнейшего образования между ними химических связей. Пайка должна обеспечивать образование герметичных соединений и требуемую прочность при различных температурах работы. Для выполнения указанных функций расплавленный припой должен:

• хорошо смачивать соединяемые поверхности и проникать во все зазоры соединения, что позволяет определить его смачивающую способность;

• растекаться по поверхности металлов, что дает информацию о распространении припоев в зависимости от химической и физической природы соединяемых поверхностей, эффективности флюсов, времени температурных циклов при пайке. Паяемость выводов компонентов трудно

оценить визуально, к тому же опыт показывает, что покрытия теряют качества паяемос-ти при хранении. Постепенная диффузия меди в оловянное покрытие или припой образует интерметаллические соединения, которые, увеличиваясь на паяемых поверхностях, вызывают отсутствие смачивания. Поэтому необходимо проверять паяемость таких поверхностей после хранения с целью обеспечения высокой надежности и выхода годных изделий на операциях пайки.

Методы испытаний на паяемость

Для оценки паяемости предложены различные методы испытаний, которые можно подразделить на следующие виды: капиллярное проникновение припоя в зазоры, растекание припоя, погружение в припой, время смачивания. Критическая оценка различных методов испытаний позволяет правильно выбрать материалы при пайке для получения высокой надежности соединений и оценить оптимальные производственные данные на операциях пайки (табл. 1) [3].

Испытания

на капиллярное проникновение

Эти испытания используют для оценки влияния зазора соединения, активности флюса или состава припоя. Капиллярное пространство создается между двумя плоскими металлическими листами (рис. 1а). Соединяемые поверхности листов флюсуют, подогревают и погружают в ванну с расплавленным припоем на определенное время. После чего листы извлекают, охлаждают и измеряют капиллярный подъем припоя. Вследствие окисления металлических поверхностей или изменений в активности флюсов во время предварительного нагрева могут быть аномальные результаты.

Таблица 1. Применение методов испытаний материалов на паяемость

Методы испытаний

материалы и компоненты Капиллярное проникновение Растекание Погружение Время смачивания

Припой • • •

Флюсы • • •

Материалы соединений • • •

Покрытия * • •

Проводники печатных плат •

Металлизированные отверстия • *

Выводы компонентов * •

• — высокая достоверность результатов, * — невысокая достоверность результатов

Плоские металлические поверхности

Луженая плата

ш _

я ~

Плитка

Плитка

Н

И

Рис. 1. Испытание на капиллярное проникновение:

а) между плоскими металлическими поверхностями; б) в луженых платах

Выражение предполагает, что объем припоя небольшой, гравитационное воздействие отсутствует и позволяет дать количественную оценку паяемости, малые значения угла свидетельствуют о хорошей паяемости.

По максимальной высоте расплавленного припоя после опыта на поверхности можно судить о степени паяемости. Однако этот метод больше подходит там, где площадь растекания припоя приблизительно круглая. Растекание припоя часто носит неправильный характер вследствие химических и физических свойств испытываемых поверхностей.

Фактор растекания Р, предложенный Ь. Резэе! [4], вычисляется как:

Р = 100х(Д - Н)/Д,

(2)

И

Рис. 2. а) Испытание на проникновение припоя в трубах; б) в соединении из согнутых проволок

Для качественного контроля электролитически луженых плат (рис. 1б) образцы плат сгибают для образования капиллярного пространства. Испытываемые образцы флюсуют при обычной температуре и затем вертикально погружают в ванну на 1 мин. После удаления и охлаждения образца согнутый край отрезают и измеряют высоту подъема припоя. Чувствительность такого качественного испытания низкая, так как он лишь демонстрирует различие в капиллярном подъеме припоя от «хорошего» до «плохого» в интервале 0,2-0,4 см при полном подъеме до 3 см.

Измерение капиллярного подъема припоев может быть выполнено с помощью металлических труб, сгибанием проволок и с помощью внутренних замкнутых пространств (рис. 2).

В случае согнутых проволок показано, что растягивание проволок при погружении в расплавленный припой вызывает неконтролируемое изменение в размерах капиллярных зазоров. Следует отметить, что при всех испытаниях на капиллярный подъем, использующих оловянно-свинцовые сплавы, высота подъема припоя в значительной степени зависит от наличия эвтектики в сплаве припоя, причем чем выше процент эвтектики, тем выше капиллярный подъем.

Метод испытания на растекание припоя

В методах испытания на растекание припоя на тестовые образцы наносится определенный объем припоя и флюса, образцы затем нагреваются до заданной температуры с помощью электрического резистивного нагрева или горячих плит. Некоторые погружают образцы на поверхность жидкого припоя или

0 = 7,12(У/^3),

(1)

где Д — диаметр сферы, имеющий объем, эквивалентный используемому припою; Н — высота капли припоя.

Если отсутствует сила тяжести, то капля припоя будет иметь форму сферы, где Д будет эквивалентно Н и фактор растекания равен 0. Это свидетельствует об отсутствии паяемости. Процентная оценка паяемости покрытий приведена в таблице 2.

флюса в ванне или используют нагрев в печи. Однако такой нагрев не рекомендуется вследствие того, что время нагрева длительное, и без защитной или неокислительной атмосферы поверхность образцов может окисляться в такой степени, что это отражается на результате эксперимента, вдобавок длительный нагрев не отражает реальных условий большинства операций пайки.

При нагреве образцов припой расплавляется и растекается по поверхности. Величина растекания зависит от типа флюса, основного металла и состава припоя. Объем флюса и припоя контролируется путем применения флюсованного припоя определенного диаметра и размера сердцевины. В других случаях заготовки припоя или кольца штампуются из листа припоя известной толщины, дозированное количество флюса на образец наносится градуированной пипеткой.

После растекания припоя образец охлаждается, площадь может быть измерена либо планиметром, либо пятно фотографируется и увеличивается для облегчения проведения измерений и повышения достоверности измерений. Часто площадь растекания проецируют на экран микроскопа и для ее определения используют стандартные листы миллиметровой бумаги.

Если известна площадь растекания и объем припоя, то значение теоретического контактного угла капли припоя на поверхности определяют, используя выражение:

Таблица 2. Оценка паяемости покрытий

Фактор растекания Паяемость Величина угла смачивания, вычисленного по площади растекания

60 Очень плохая 50°

60-70 Плохая 50-34°

70-80 Удовлетворительная 34-12°

80-90 Хорошая 12-3°

90 Отличная 3°

Учитывая, что в реальных условиях пайки высота «лежащей» капли расплавленного припоя Нпр всегда меньше диаметра гипотетической сферы припоя Ц для расчета коэффициента растекания припоя Кр предложено выражение [5]:

Кг"

н^-нк

(3)

где Нпр — высота «лежащей» капли расплавленного припоя, определяемая как:

где 0 — угол в градусах, У — объем припоя, 5 — площадь растекания.

>а-с.е), (4)

РЯ

где 0 — угол смачивания поверхности припоем.

При испытаниях на растекание гальванических покрытий со значительными оксидными пленками было показано, что припой растекался под ними, что затрудняло контроль площади. Отсюда следует, что испытания на площадь растекания не подходят для состаренных толстых покрытий.

Методы погружения

Методы погружения являются наиболее ранними испытаниями на паяемость, по-

скольку выводы компонента просто погружаются сначала во флюс, а затем в расплавленный припой и по степени покрытия их припоем оценивается паяемость. Выводы выдерживают в ванне 2 с, затем удаляют из ванны, охлаждают и очищают изопропиловым спиртом. Значительное распространение припоя по длине вывода (на 95%) свидетельствует о хорошей паяемости, а образование шарика припоя с большими контактными углами — о плохой паяемости. Оставшиеся 5% не смоченной поверхности могут приходиться на поры, пустоты при условии, если они концентрируются не в одном месте. Оценка результатов испытаний иногда затруднительна, поскольку недостаточно четко различаются грубые и ровные покрытия.

Модификацией метода погружения является метод плавающего образца при контроле паяемости металлизированных отверстий. Платы флюсуются и затем выдерживаются в плавающем состоянии на поверхности ванны в течение 5 с. После удаления плат отверстия осматриваются визуально. Однородное смачивание вдоль краев отверстий, также как и в длину, свидетельствует о хорошей паяемости. Однако для сложной электронной техники требуется увеличенная надежность. Кроме того, производственные требования предполагают, что несколько сотен соединений должны выполняться на плате методом групповой пайки. Время контакта каждого из соединений с расплавленным припоем около 2 с, и поэтому время и полнота смачивания поверхностей компонентов припоем очень важны для образования надежного электрического соединения.

Испытания на время смачивания

Испытания на время смачивания позволяют воспроизводить довольно точно условия операции массовой пайки и могут быть использованы для определения качества пайки выводов элементов или слоев плат либо в других случаях — печатных схем.

Эти испытания предложены С. I. Thwaites, главным металлургом Института исследования олова в США [6]. В настоящее время создано оборудование для определения минимального времени смачивания, пригодное для промышленности. Оно состоит из радиального плеча, несущего тестовый образец по поверхности ванны с припоем и движущегося с помощью мотора. С помощью устройства несколько тестовых образцов находятся в длительном контакте с ванной припоя. Визуально возможно определить минимальное время смачивания, а также время, начиная с которого смачивание не увеличивается. После достижения полного смачивания дальнейшее увеличение выдержки в припое ухудшает распределение припоя. Ротационный метод применяют для проверки паяемости различных поверхностей и оптимальных параметров операции пайки.

Метод шарика припоя

Для проверки на паяемость материалов выводов электронных компонентов J. A. ten Duis (Philips) предложил метод шарика припоя (glob test). Определенный объем припоя (зависящий от размера испытываемого провода) расплавляется на нагретом блоке, а офлюсованный вывод горизонтально опускается в шарик припоя, расщепляя его надвое (рис. 3а). Время, в течение которого припой обтечет провод и в итоге закроет верх провода, является временем смачивания.

На нагретый столик 4 укладывают дозу припоя, которая, расплавляясь, образует каплю 2. К капле подводят проводник 3, который делит ее на две части. По мере нагрева вывода припой начинает его смачивать и обтекать. В момент полного смыкания над выводом припой касается зонда 1, и отсчет времени прекращается. Такие приборы выпускаются фирмой Multicore (Англия).

Для контроля паяемости металлизированных отверстий в печатных и многослойных платах измеряют время заполнения их припоем с помощью таймера, связанного с зондом (рис. 3б). Для этого плату 1 приводят в контакт с припоем 2, при этом включается таймер. Постепенно поднимаясь по стенкам отверстий и смачивая их за счет капиллярного эффекта, припой касается зонда и отключает тем самым таймер. Для этих целей фирма Multicore выпускает универсальный прибор со сменной головкой на различные диаметры в платах, снабженный принтером и стандартным интерфейсом. Производительность контроля составляет до 150 отверстий в час. При времени смачивания более 3 с паяемость отверстий неудовлетворительна.

Смачивание поверхности расплавленным припоем включает постепенное уменьшение

контактного угла по мере изменения сил поверхностного натяжения вследствие взаимодействия припоя и основного металла. Следовательно, измеряя поверхностное натяжение, можно оценить паяемость. Для этой цели создана промышленная аппаратура и разработаны стандарты, позволяющие количественно оценить паяемость поверхностей, припоев флюсов.

Метод баланса смачивания

Метод баланса смачивания (Wetting Balance Test) состоит в прямом измерении сил смачивания и работы адгезии. Ванна с припоем 1 движется вверх с помощью привода 2 и эксцентрика 3, при этом в нее погружается исследуемый образец 4, закрепленный на датчике 5 (рис. 3в). Датчик тензометрического типа преобразует усилие в электрический сигнал, который усиливается тензометрическим усилителем 6 и подается на самописец 7. Пока образец не нагрет, смачивание отсутствует, мениск припоя вогнут вниз, на образец действует только выталкивающая сила припоя F:

Fa = Sxhxg, (5)

где S — площадь образца, h — глубина погружения.

При полном смачивании в точке В значение силы смачивания равно F1, при отрыве образца в точке С сила смачивания достигает F2 (рис. 4). Скорость погружения образцов выбирается в пределах 0,2-0,4 мм/с, время погружения 4-5 с, глубина 0,8-2,0 мм. Мерой паяемости служат сила F1 и время t1, за которое она достигает этого значения. Косинус краевого угла смачивания находят по формуле:

cos© = (Fj+Fa )/F2. (6)

Рис. 4. Кривая менискографического контроля паяемости

Этот метод введен в европейские и международные стандарты (MIL-DIN-JIN-IPC) и применяется для оценки паяемости широкого круга покрытий, образцов печатных плат, чиповых компонентов, эффективности активированных флюсов и бессвинцовых припоев [7, 8].

Менискографы выпускаются фирмами Metronelec (Швейцария), General Electric (Англия) [9]. Менискограф MeniscoST60 Wetting Balance (рис. 5) обеспечивает глубину погружения образцов в расплав припоя от 0,1 до 1,0 мм с шагом 0,1 мм со скоростью от 1 до 50 мм/с. Время выдержки и наблюдения составляет от 1 до 30 с. Хорошей смачиваемости соответствуют значения сил поверхностного натяжения припоя от 350 до 450 мН.

Для определения паяемости выводов компонентов применяют более простой менискометрический метод, заключающийся в измерении высоты мениска припоя, поднявшегося по выводу над зеркалом ванны под

действием сил поверхностного натяжения. Высоту мениска над зеркалом припоя измеряют с помощью специальной оптической головки или бинокулярного микроскопа. Мени-скометры с диапазоном измерения высоты подъема мениска 0-1,5 мм с погрешностью ±0,05 мм выпускаются фирмой Ме^опе1ес (Швейцария). Производительность контроля — до 30 шт./ч. Метод трудоемок, обладает значительной погрешностью.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Прибор для оценки паяемости покрытий

Для измерения высоты капли припоя после растекания предложен принцип бесконтактного измерения с помощью индуктивного преобразователя [10] (рис. 6). Для этого применены два индуктивных преобразователя 1 и 2, два высокочастотных генератора 3 и 4, смеситель 5, интегратор 6 и регистрирующий прибор 7. Балансная схема включения генераторов позволяет компенсировать изменение частоты в результате нагрева индуктивных преобразователей и повысить точность измерений. Регистрирующий прибор измеряет разностную частоту, получаемую в смесителе. В осевом отверстии катушки индуктивного преобразователя жестко закреплена игла 8 из материала, смачиваемого припоем 9, для центрирования капли припоя относительно датчика [11]. Игла устанавливается на исследуемую поверхность образца 10, длина иглы должна превышать высоту капель припоя при полной несмачиваемости поверхности.

Припой расплавляется резистивным нагревательным элементом Н, на котором размещаются исследуемые образцы. Контроль температуры осуществляют с помощью термопары типа ХК, погруженной в дозированную навеску припоя на образце-свидетеле и подключенной к электронному измерителю температуры БКТ, который стабилизирует температуру процесса. Перед началом испытаний в центре образца с покрытием наносят навеску припоя дозированной массы 250 мг и дозированный объем флюса 0,01 мл. Индуктивный преобразователь располагают на плоской заготовке припоя таким образом, чтобы игла фиксировала осевую симметрию преобразователя и заготовки припоя.

Обработка данных ведется с помощью Р1С-контроллера и вывода информации на светодиодные индикаторы. Для повышения точности измерений, а также с целью исключения температурного фактора в преобразователе разработанного прибора использованы две идентичные катушки индуктивности и частотомер на микроконтроллере КР1878ВЕ1. В микроконтроллере шестнадцатиразрядный таймер-счетчик имеет восьмибитный предварительный делитель и трехбитный счетчик переполнения, что в сумме составляет 27 разрядов. Быстродействие микроконтроллера зависит от максимальной измеряемой частоты сигнала 50 МГц. В устройстве применены светодиодные индикаторы серии АЛС318. Для повышения стабильности генератор образцовой частоты выполнен на ИМС КР1554ЛА3, питаемой от отдельного стабилизатора.

Для регулирования и поддержания температуры нагревателя на заданном уровне применен электронный регулятор мощности. Особенностью прибора является наличие встроенного блока контроля температуры, что позволяет отказаться от громоздкого внешнего измерителя температуры и уменьшить габариты (рис. 6б).

Основными параметрами прибора являются: разрешающая способность по высоте капли припоя, которая определяется чувствительностью прибора, и стабильность задания образцовой частоты. Точность определения коэффициента растекания в 1,5 раза выше, чем по стандартной методике. Для перехода к коэффициенту растекания построена специальная диаграмма. Значения коэффициентов рас-

Таблица 3. Коэффициенты растекания припоя ПОС 61 по покрытиям

Тип покрытия Состав, % Коэффициент растекания по площади по высоте, %

Оловянное 100 Sn 4,0-5,0 96-91

Золотое 100 Au 3,0-3,5 94-95

Серебряное 100 g 1,5-2,0 81-89

Сплав Р^№ 1,5 In, ост. Pb 1,4—1,5 81-88

Сплав Бп-М 3,5 Ni, ост. Sn 1,4—1,6 92-95

Сплав Бп-РЬ 50 Sn, ост. Pb 1,2 80-83

Палладиевое 100 Pd 1,2 80-82

Медное 100 Cu 1,2 18-80

Никелевое 100 Ni 1,0 10-15

текания Кр припоя ПОС 61 по площади и по высоте капли приведены в таблице 3 [12].

По результатам замеров Кр установлено, что отличной паяемостью обладают оловянное, золотое, серебряное покрытия, а также покрытия сплавами Sn-Ni, Pd-Ni. Хорошие результаты отмечены для покрытий Pd, Sn-Pb и Cu. По никелевым сплавам спиртоканифольные флюсы имеют низкую активность, а также образуют трудноудаляемые остатки на паяемых поверхностях. Для увеличения активности по медным и никелевым поверхностям необходимо использовать активированные флюсы на основе этиленгликоля, содержащие поверхностно-активные вещества и активаторы в виде щавелевой кислоты и гидрохлоридов производных бензиламина. Такие флюсы обладают в 1,6-2 большей активностью, чем флюс ФКСп, а его остатки легко удаляются с поверхности деталей промывкой в теплой проточной воде.

Для предотвращения потемнения серебряных покрытий при их эксплуатации используют композиционные электрохимические покрытия на основе серебра с включением частиц ультрадисперсного алмаза (УДА). Композиционные покрытия по сравнению с чистыми покрытиями имеют более высокую твердость и износостойкость, улучшенные антикоррозионные свойства и стойкость к искровой эрозии.

Исследование паяемости композиционных серебряных покрытий проводили методом

определения коэффициента растекания дозированной заготовки припоя ПОС 61 массой 250 мг в присутствии спиртоканифольного флюса при температуре 220 ±5 °С. Применяемый флюс содержал по массе 25% канифоли и 75% изопропилового или этилового спирта. Испытанию предшествовало ускоренное старение, которое проводилось при 155 ±5 °С в течение 16 часов. После проведения ускоренного старения образцы выдерживали в нормальных климатических условиях не менее 2 и не более 24 часов [13].

Результаты исследований паяемости серебряных покрытий показали, что некоторое ухудшение паяемости покрытий серебро-УДА наблюдается лишь при 15 г/л УДА в электролите. По значению коэффициента растекания паяемость более 80% композиционных серебряных покрытий можно считать хорошей.

Выводы

Требования к паяным соединениям в электронике становятся более комплексными, чем прежде. Для массовой пайки тысяч соединений в электронике нужны надежные и экономичные технологии, а также совершенные методы контроля качества. Методы испытаний на паяемость позволяют объективно и точно измерить способность компонентов и функциональных покрытий к пайке при оптимальном времени и заданной температуре формирования соединений.

Из большинства методов для печатных плат удобен метод ротационного погружения для оценки систем припой-флюс-металл, а также минимального времени смачивания. Для оценки паяемости широкого круга покрытий, образцов печатных плат, чиповых компонентов, эффективности активированных флюсов и бессвинцовых припоев применяют метод баланса смачивания. Эти методы могут успешно применяться в промышленности и встраиваться в производственные линии, что позволяет значительно сократить брак после пайки. ■

Литература

1. Литвинский И. Е., Прохоренко В. А., Смирнов А. Н. Обеспечение безотказности микроэлектронной аппаратуры на этапе производства. Минск: Беларусь, 1989.

2. Ланин В. Л. Пайка электронных сборок. Минск: НИЭИ Мин. эконом., 1999.

3. Long J. B. A Critical Review of Solderability Testing // J. of Electrochemical Society. 1975.V. 122. №2.

4. Harding W. B. Solderability Testing // Plating. 1965. №5.

5. Ланин В. Л., Хмыль А. А. Контроль паяемости выводов элементов радиоэлектронной аппаратуры // Неразрушающий контроль и системы управления качеством сварных и паяных соединений: Материалы семинара. М.: ЦРДЗ, 1992.

6. Manko H. H. Solders and Soldering: Materials, Design, Production and Analysis for Reliable Bonding. N.Y., 2000.

7. Джюд М., Бриндли К. Пайка при сборке электронных модулей / Пер. с англ. М.: Издательский Дом «Технологии», 2006.

8. Wassink K. R. J. Soldering in Electronics. — Ayr, Scotland, Electrochem. Publ., 2002.

9. Mackay D. The Meniscograph: A Method of Solderability Measurement // Circuits Manufacturing. 1974. V. 13. №7.

10. Ланин В. Л., Хмыль А. А., Кушнер Л. К. Исследование паяемости гальванических покрытий токопроводящих элементов электронной аппаратуры // Вопросы проектирования и производства радиоэлектронной аппаратуры и электрорадиоизделий: Межвуз. сб. научных трудов. М.: МИРЭА, 1988.

11. А. с. 757837 СССР, МКИ3 G 01 B 7/02. Индуктивный преобразователь / В. Л. Ланин, Л. Я. Мартыненко. № 2625866/25-28; Заявлено 02/06.78; Опубл. 23.08.80. Бюл. № 31 // Открытия. Изобретения. 1980. № 31.

12. Оценка паяемости гальванических покрытий токопроводящих элементов электронной аппаратуры / В. А. Емельянов, В. Л. Ланин, Л. К. Кушнер, А. А. Хмыль // Электронная техника. Сер. 7: Технология и организация производства. М.: ЦНИИ «Электроника», 1990. Вып. 3(160).

13. Ланин В. Л., Кушнер Л. К., Бондарик В. М. Свариваемость и паяемость композиционных серебряных покрытий для изделий электронной техники // Материалы междунар. конф. “ELECTRONICS- 2000”. Каунас: КПИ, 2000.

i Надоели баннеры? Вы всегда можете отключить рекламу.