РАДИОФИЗИКА
УДК 536.587
В.С. Гречишкин, С.Ю. Альтман, А.А. Шпилевой
ОСОБЕННОСТИ НАБЛЮДЕНИЯ СИГНАЛОВ ДВОЙНОГО ЯКР АЗОТА 14N В ТЕХНОЛОГИЧЕСКИХ СМЕСЯХ, СОДЕРЖАЩИХ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА
Для случая взрывчатых веществ типа технологических смесей представлена методика определения оптимальных условий регистрации сигналов ЯКР косвенным способом, посредством связи в протон-квадрупольной спиновой системе. Задача взаимного влияния параметров решается за счет комплексного моделирования экспериментального цикла. Методика апробирована на образце, содержащем тротил. Отмечается повышение амплитуды линий поглощения v_ и v+ на фоне сигналов примесей и шумов. Методика позволяет повысить эффективность метода ДЯКР 14N и увеличить достоверность распознавания ВВ.
It is showed the method of the determination the optimal conditions for NQR signal registration by indirect method using the connections in proton-quadruple spin system for the case of technological blend explosive. The problem of interference of the operation factors is settled with help of comprehensive modeling of the experimental cycle. The method was tested on the sample with trotil. There was noted the increasing of amplitude of the v_ and V+ absorbation lines with the background of the admixture and noise signals. The method allows to improve the effectiveness of DNQR of 14N and increase the reliability of the explosive identification.
Многие взрывчатые вещества (ВВ), обезвреживаемые в ходе пресечения террористических актов, представляют собой сложные технологические смеси, содержащие одновременно несколько детонирующих компонентов, а также невзрывоопасные примеси [1]. В результате процесс их идентификации существенно усложняется. В частности, при использовании метода ядерного квадрупольного резонанса (ЯКР) [2] потребуется исследовать всю частотную область с линиями поглощения предполагаемых ВВ, а затем попытаться отнести имеющиеся сигналы к соответствующим химическим соединениям. Для набора типовых ВВ — тротила C7H5N3O6, гексогена C3H6N6O6, октогена C4H8N8O8 и ТЭНа (пентаэритриттетранитрата) C5H8N4O12 диапазон сканирования составляет » 5 МГц. Если учесть различия в условиях наблюдения ЯКР азота 14N у веществ данной группы, определяемые особенностями внутреннего строения, набором релаксационных характеристик и другими факторами, то потребуется использовать несколько разновидностей
29
Вестник РГУ им. И. Канта. 2006. Вып. 4. Физико-математические науки. С. 29 — 32.
30
метода и работать в разных температурных режимах. Для целей бесконтактного экспресс-анализа такой способ является чересчур громоздким.
Решение проблемы может заключаться, как это неоднократно указывалось [3; 4], в наблюдении отдельных, наиболее характерных для данных ВВ линий. Имеются в виду преимущественно линии низкочастотных переходов у_ , наименее подверженные воздействию внешних статических полей. Диапазон поиска, таким образом, сужается до 1 МГц. В то же время присутствие в одном образце нескольких ВВ в сочетании с разнообразными примесями может существенно исказить ожидаемые спектральные характеристики, замаскировать или сделать ненаблюдаемыми отдельные сигналы. Эффективность регистрации ЯКР в данном диапазоне попытается за счет использования его косвенных разновидностей, в частности двойного ядерного квадрупольно-го резонанса с открытой магнитной системой [5]. При этом, с точки зрения методики, задача состоит в определении оптимальных условий экспериментального цикла: максимально возможного расстояния приема сигналов, способа энергетического обмена протонной и квад-рупольной подсистем образца, амплитудных и временных характеристик импульсных последовательностей.
Будем исходить из использованной нами ранее экспериментальной процедуры [5]. Поскольку длительность времени спин-решеточной релаксации Т ш позволяет выполнить никлирование индукции внешнего поля Во, то эффективность пересечения квадрупольных и протонных подуровней определяется величиной индукции промежуточного магнитного поля В1 и длительностью интервалов его наложения на образец [6]. Время переключения импульсного поля ограничено временем спин-решеточной релаксации протонов и в нашем случае составляет 0,1 с. Отсутствие непосредственной химической связи между спинами А и В снижает эффективность метода, но принципиальным препятствием не является, поскольку времена продольной релаксации квадрупольной подсистемы Т1В в рассматриваемых соединениях достаточно велики.
Контакт подсистем А и В устанавливается после процесса адиабатического размагничивания в статическом магнитном поле Вск , удовлетворяющем условию /АВск = а>вв, в течение полного времени тск. С точки зрения обратных спиновых температур эволюция спинов в статическом поле Вск определяется следующими соотношениями:
— для протонов:
в сИ
= -ТР ( (х)-в (*))- т;1 (А (х)-в); (1)
— для ядер азота: ^ = -Т-Р (в (¿)-вл (*))-ТВ (в (ЬЛ); (2)
ах
где е — относительная концентрация ядер В и А; в — обратная температура решетки; ТсР — эффективное время кросс-поляризации. Для результативности экспериментального цикла должны выполняться со-
Наблюдение двойного ЯКР азота 14Ы в технологических смесях
отношения: Т1, T1B >> TCP ; тси > TCP . При нулевой частотной расстройке TCP минимально и дальнейшее его сокращение ограничено параметрами протонной подсистемы. Таким образом, основным фактором, которым мы можем регулировать изменение температуры вА, является длительность тси. На основании уравнений (1) и (2) спиновая температура протонной подсистемы выражается соотношением
Р'А=Р, П + с • exp
е 1
+
Т
V 1в
Т
1А У
^АВТсИ
1+е
(3)
начальные спиновые
Здесь С = [вске(рТ + РГ)]/Б0(1 + е); 0? и вТ — температуры; WAB — скорость взаимных переходов в связанных подсистемах А и В. В результате относительная интенсивность линий ЯКР выражается функцией
р =Апа - Дпси АИдп
(4)
Числитель и знаменатель выражения (4) содержат следующие разности населенностей уровней протонной подсистемы: ДпАП — равновесную в поляризующем поле Вп, ДпА — после прохождения цикла с нулевым кросс-релаксационным полем, Дпси — после цикла с наложением поля Вси. Значения ДпА вычисляются из соотношения:
ДПА =[(1А + П2 А МеХР(А®А )- 1)] /(еХРвА®А ) + 1), причем Дпсц определяется спиновой температурой из выражения (3), а ДпА и ДпАП — величинами для соответствующих этапов цикла адиабатического перемаг-ничивания. Графики функциональной зависимости Р = /(^АВтси) показаны на рисунке 1.
31
Рис. 1. Зависимость относительной интенсивности сигнала от параметров экспериментального цикла для различных концентраций квадрупольных ядер
32
В нашем случае (спин I = 1) е = 2ЫВ/3ЫА , Т = 291 К; уа = 20 МГц. Значение №АВгск при насыщении функции Р соответствует оптимальной продолжительности эволюции спиновых подсистем в кросс-релаксационном поле. Дальнейшее увеличение длительности контакта нежелательно, так как приводит к снижению интенсивности регистрируемых сигналов.
Окончательно чувствительность метода вычисляется в виде: а = РаА, где аА — отношение сигнал/шум для протонов в сильном магнитном поле.
При учете возможных факторов, влияющих на эффективность теплового контакта спиновых подсистем в промежуточных полях, и оптимизации параметров цикла чувствительность метода достаточна для регистрации линий ЯКР в технологических смесях при комнатной температуре. В частности, измерения на образце технического ТНТ, загрязненного примесями, с релаксационными характеристиками Т1А = 3 с, Т1С = 1,8 с, показали увеличение интенсивности линий поглощения в 1,4 раза (первоначальное отношение сигнал/шум = 2 : 1). Это позволило откорректировать измеренные ранее [7] частоты переходов у- и у+ : 742,6 кГц и 843,4 кГц соответственно. В результате точность определения частот ЯКР при шаге перестройки статического поля 0,2 Гс, повысилась до ±0,2 кГц, что очень важно для отнесения регистрируемых линий ЯКР в сложных смесях. Различия в значениях частот по сравнению с очищенными тестовыми образцами могут свидетельствовать о сильном влиянии других компонентов смеси.
Список литературы
1. Петров С. И. // Специальная техника. 2001. № 4. С. 16 — 20.
2. Гречишкин В.С. Ядерные квадрупольные взаимодействия в твердых телах. М., 1973.
3. Гречишкин В. С. // Известия вузов. Сер. Физика. 1992. № 7. С. 62 — 65.
4. Гречишкин В.С., Синявский Н.Я. // УФН. 1993. № 10. С. 95—119.
5. Гречишкин В.С., Шпилевой А.А., Персичкин А.А. // Специальная техника. 2005. № 3. С. 26—33.
6. Гречишкин В. С., Гречишкина Р. В., Шпилевой А.А. // Известия вузов. Сер. Физика. 1997. № 3. С. 108 — 110.
7. Гречишкин В. С., Шпилевой А.А. Бурмистров В. И. // Специальная техника. 2004. № 5. С. 18—25.
Об авторах
B. С. Гречишкин — д-р физ.-мат. наук, проф., РГУ им. И. Канта.
C.Ю. Альтман — асп., РГУ им. И. Канта, [email protected].
А. А. Шпилевой — канд. физ.-мат. наук, доц., РГУ им. И. Канта.