УДК 621.452.3: 004.942 DOI: 10.18287/2541-7533-2016-15-4-91-101
ОСОБЕННОСТИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ РАБОЧЕГО ПРОЦЕССА МАЛОРАЗМЕРНЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ
© 2016
доктор технических наук, профессор кафедры теории двигателей летательных аппаратов, Самарский национальный исследовательский университет имени академика С.П. Королёва, [email protected]
кандидат технических наук, доцент кафедры теории двигателей летательных аппаратов, Самарский национальный исследовательский университет имени академика С.П. Королёва, [email protected]
аспирант кафедры теории двигателей летательных аппаратов, Самарский национальный исследовательский университет имени академика С.П. Королёва, [email protected]
Описаны подходы к формированию моделей термогазодинамического расчёта малоразмерных газотурбинных двигателей (МГТД), учитывающих влияние фактора размерности на эффективность происходящих в основных узлах рабочих процессов. Представлена классификация газотурбинных двигателей (ГТД) по размерам в зависимости от расхода воздуха через газогенератор, приведённого по параметрам на выходе из компрессора. Важными особенностями рабочего процесса МГТД является то, что при уменьшении их размеров возрастают потери в проточной части двигателей из-за увеличения относительной толщины пограничного слоя, а также уменьшаются величины коэффициентов полезного действия (КПД) компрессоров и турбин в связи с возрастанием относительных радиальных зазоров. Учёт данных факторов при компьютерном моделировании осуществлён путём введения поправок на базовые значения КПД компрессоров, коэффициента полноты сгорания топлива, коэффициента потерь полного давления в камере сгорания и КПД турбин. Предложенные подходы были использованы для совершенствования компьютерных моделей термогазодинамического проектирования ГТД различных типов в CAE системе АСТРА. Показано, что уменьшение размеров двигателя приводит к существенному уменьшению оптимальных параметров его рабочего процесса и удельных параметров. Поэтому учёт влияния размерности двигателя на эффективность его узлов в компьютерных моделях концептуального проектирования ГТД расширяет диапазон её применимости и повышает адекватность. Кроме того, описано соответствие уровня сложности модели (0 - метауровень, I - в сосредоточенных параметрах, II - в распределённых параметрах) и размерности модели (одномерная, двухмерная, трёхмерная).
Малоразмерный газотурбинный двигатель; параметры; рабочий процесс; КПД; компрессор; турбина; эффективность; моделирование; классификация; размер; термогазодинамический расчёт; анализ.
Цитирование: Кузьмичев В.С., Ткаченко А.Ю., Остапюк Я.А. Особенности компьютерного моделирования рабочего процесса малоразмерных газотурбинных двигателей // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2016. Т. 15, № 4. С. 91-101. DOI: 10.18287/2541-7533-2016-15-4-91-101
Введение
В настоящее время малоразмерные ГТД имеют широкую сферу применения. Они используются как силовые установки лёгких самолётов, самолётов-мишеней, крылатых ракет, вертолётов, как вспомогательные силовые установки самолётов, как силовые установки наземных и водных транспортных средств, как приводы электрогенераторов, как источники сжатого воздуха. В перспективе малоразмерные двигатели рассматриваются в составе распределённых силовых установок самолётов [1].
Для того, чтобы охарактеризовать особенности рабочего процесса малоразмерных ГТД, необходимо определить, какие двигатели относятся к этой категории. Конструктивный облик и размеры двигателя определяются его назначением и варьируются в
В. С. Кузьмичев А. Ю. Ткаченко Я. А. Остапюк
широких пределах. Существуют ГТД, габариты которых исчисляются в миллиметрах или сантиметрах, и двигатели, габариты которых измеряются в метрах. Следует отметить, что до настоящего времени различные авторы используют разные термины для характеристики размеров ГТД. Встречаются такие термины, как «микроразмерные», «миниразмерные», «малоразмерные», «полноразмерные» двигатели, причём непонятно, какие двигатели отнести к той или иной категории. В качестве количественных характеристик размерности используются разные параметры: тяга (мощность), габаритные размеры, расход воздуха на входе в двигатель в стандартных атмосферных условиях (для турбореактивных двухконтурных двигателей (ТРДД) - расход через внутренний контур), расход воздуха через газогенератор, приведённый по параметрам за компрессором [2]. В статье предлагается классификация ГТД по их размерам.
Параметры МГТД
В табл. 1 представлена предлагаемая классификация двигателей по размерности с разбиением ГТД на пять категорий. В качестве основной количественной характеристики, предложенной специалистами ЦИАМ, принимается приведённый по параметрам за компрессором расход воздуха через газогенератор Ов1 = Ов1 о /л^ 6. В качестве дополнительной информации приведены расход воздуха через двигатель (или внутренний
контур) в стандартных атмосферных условиях на земле Ов[ а также среднестатистиче-
^ ^ *
ская для этой категории двигателей степень повышения давления жкЕ и примеры двигателей. Эта классификация использовалась в дальнейшем при анализе параметров и характеристик ГТД. Согласно предложенной классификации к малоразмерным ГТД относятся двигатели с приведённым расходом воздуха Ощ от 0,25 до 1,5 кг/с при
-10.
Таблица 1. Классификация ГТД по размерам
Параметр
Микроразмерные
Миниразмерные
Малоразмерные
Средней размерности
Большой размерности
Расход воздуха (для ТРДД - через внутренний контур)
Ов , кг/с
<0,1
0,1...1
1...10
10...50
>50
Расход воздуха, приведённый по параметрам за компрессором
<0,03
0,03...0.25
0,25...1,5
1,5.5
>5
а
кг/с
Суммарная степень повышения давления
10
20
30
Примеры двигателей
Millimeter-scale, MEMS gas turbine engines (MIT)
TJ 20; FD-3
ТВ7-177; ВК-1500; ГТД-1250; F112; WR19-A7
РД-1700 ТМКБ «Союз»; RB401-07;
M.45H; GE Passport
RB211; GE90; CFM56; F-119
I 0
4
6
Рис. 1. Влияние ухудшения КПД и увеличения потерь в проточной части ТРДД на величины его оптимальных параметров
Особенности рабочего процесса малоразмерных двигателей заключаются в том, что при уменьшении размеров двигателя уменьшаются величины КПД узлов; возрастают потери в проточной части, обусловленные уменьшением числа Рейнольдса (Re),
возрастанием относительных радиальных и осевых зазоров в лопаточных машинах, относительным ростом толщины пограничного слоя. Как известно, влияние числа Re на характеристики узлов двигателя делится на две характерные области: автомодельную по числу Re область, в которой характеристики узлов, а следовательно и двигателя в целом, сохраняются неизменными, и область вне автомодельности, в которой снижение числа Рейнольдса ниже критического ^екр ) приводит к негативным
последствиям, описанным выше. При этом, если это влияние на двигатели большой размерности становится заметным лишь на определённых высотах, то на малоразмерные двигатели влияние заметно даже в условиях работы на земле.
В работах [3;4] показано, что при уменьшении КПД узлов и возрастании потерь в проточной части оптимальные значения параметров цикла: температуры газа перед турбиной Т*Г, суммарной степени повышения давления л*кЕ и степени двухконтурности т
уменьшаются. На рис. 1 приведены обобщённые результаты численных расчётов по влиянию уровня КПД и коэффициентов потерь на оптимальные значения суммарной степени повышения давления ж* и степени двухконтурности тор( ТРДД по таким
критериям оценки двигателя в системе самолёта, как суммарная масса силовой установки и топлива, потребного на полёт, и затраты топлива на тонна-километр перевозимого полезного груза. При этом под относительным изменением рассматриваемых параметров понимается отношение оптимальных значений при заданных исходных данных и при ухудшенных на 1% КПД компрессоров и турбин и коэффициентах потерь в проточной части ТРДД. Видно, что уменьшение рассмотренных оптимальных параметров является значительным (от 15-20 до 30-40%) в зависимости от величины температуры газа перед турбиной на расчётном режиме. В качестве другого примера на рис. 2 приведены зависимости от температуры Т* максимальной удельной мощности Ые уд тах,
Со. *
е тт и соответствующих им значений тгк ор1
при уровне потерь в узлах, характерном для вертолётных ГТД мощностью более 3000 кВт (штриховые линии) и мощностью менее 500...1500 кВт (сплошные линии) [5]. Из приведённых данных видно, что с увеличением уровня потерь в узлах менее мощных двигателей их удельные показатели ухудшаются, а оптимальные значения степени повышения давления уменьшаются. В связи с многообразием целевого назначения МГТД для них характерен весьма широкий диапазон изменения параметров рабочего процесса. Повышение эффективности МГТД за счёт увеличения Т* и л*кЕ связано с
большими проблемами, чем для двигателей средней и большой размерности. Особенно сложные проблемы возникают при создании малоразмерных авиационных двигателей. Образцы МГТД даже с наиболее высокими параметрами цикла имеют удельный расход топлива на 20...25%, а удельную массу /дв на 45...50% хуже, чем у лучших образцов
ГТД средней и большой размерности. Значения степени повышения давления п^ У МГТД на 8...20 единиц, а температуры Т* на 150...400 К ниже, чем у лучших образцов полноразмерных двигателей.
В подтверждение этого, в качестве примера, на рис. 3, 4 приведены статистические зависимости Т* и п^ от тяги созданных малоразмерных ТРДД.
Рис. 2. Зависимости максимальной удельной мощности Ыеуд тах, минимального удельного расхода топлива Се т1п
и соответствующих им значений Як р от температуры газа Т* : ------N > 3000кВт ,--N = 500...1500 кВт
£ ? 1000
20 Тяга, кН
40
Рис. 3. Зависимость температуры газа перед турбиной от тяги для малоразмерных ТРДД
&
х
и
с ОС
* I
и X
« ч
го з
£ ш ГО о
§ с §
> и
40 к 30
Ц 20
т
а
^ 10
20 Тяга, кН
40
Рис. 4. Зависимость степени повышения давления в цикле от тяги для малоразмерных ТРДД
0
Влияние размерности на эффективность лопаточных машин
Уменьшение размеров двигателя ниже определённого уровня приводит к тому, что при уменьшении размеров элементов лопаточных машин снижаются значения критерия Rе и увеличиваются вязкие потери, растёт толщина пограничного слоя. У малоразмерных турбомашин возрастают относительные значения толщин лопаток, радиального зазора, радиусов входных и выходных кромок. Это связано, с одной стороны, с уменьшением абсолютных размеров проточной части двигателя, а с другой - с техно-
логией изготовления, рабочими нагрузками и эксплуатационными особенностями. Главный результат влияния уменьшения размерности - снижение КПД лопаточных машин, относительный рост потерь на утечки.
На рис. 5...10 приведены статистические зависимости влияния размерности турбин и компрессоров на их КПД, основанные на обобщении экспериментальных данных, полученных в работах Ю.И. Тулупова, В.Т. Митрохина, А.И. Шерстюка, А.Е. Зарянки-на, О.И. Емина, Б.Ш. Ланды и др.
Известно, что охлаждение турбин малоразмерных ГТД организовать сложнее, чем в двигателях средних и больших размеров. В связи с уменьшением размеров лопатки не только затрудняется размещение внутренних каналов охлаждения, но становится неблагоприятным отношение площадей поверхностей теплоотдачи (внутренней) и тепло-отвода (внешней). Аэродинамически выгодную тонкую выходную кромку охладить становится невозможно. Утолщение выходной кромки улучшает возможности охлаждения задней части лопатки, но из-за потерь на смешение и импульсных потерь суммарные потери в закромочных следах получаются большими. Дополнительный плёночный расход воздуха существенно улучшает процесс охлаждения, но является источником дополнительных потерь, уменьшающих КПД турбины. На рис. 7 приведены варианты обобщений поправок на КПД турбин А^Т охл в зависимости от расхода охлаждающего воздуха.
Рис. 5. Статистические данные и обобщённые зависимости поправок на КПД ступени осевой турбины от её пропускной способности
Рис. 6. Зависимость поправок на КПД радиально-осевой турбины от её пропускной способности (• - варианты турбин)
-0,04
-0,08
-0Д2
л
' "V .
\ ч \ ч ч ч
0,02 0,04 0,06 0,08
Рис. 7. Понижение КПД турбины Аг;Т в зависимости от затрат воздуха на охлаждение Св
вохл ст
(разные линии соответствуют различным вариантам обобщения)
Рис. 8. Зависимость отклонения политропического КПД А^к*пол центробежных компрессоров от базового значения
(ъ тлбз = 0,835)
Рис. 9. Зависимости отклонения политропического КПД Д ц* пол осевых и осецентробежных компрессоров от базового значения {ц* тлбаз = 0,89)
* й
■А
'о ^ Созданные ГТД с Эксперимент о Зй СГО моделирование -1-г-1-
Расход воздуха, кг'с
Рис.10. Влияние размерности на политропический КПД компрессора
Как известно, в малоразмерных ГТД применяются центробежные, осевые и осецен-тробежные компрессоры. На рис. 8 показано влияние размерности на КПД центробежных ступеней компрессора, а на рис. 9 - осевых и осецентробежных компрессоров на основе данных по созданным компрессорам (отмечены точками). На рис. 10 приведена обобщённая зависимость политропического КПД компрессоров в зависимости от расхода воздуха через них в широком диапазоне, начиная от микроГТД и до двигателей больших размеров [6].
Для использования в математической модели МГТД обобщённые зависимости аппроксимированы следующими выражениями [5]:
-для осевой турбины Дц* = 0,00006 / АТ + 0,0022;
-для радиально-осевой турбины Дц* = 0,020481п ЛТ + 0,08471, где АТ = Ог^Т/ тГР* = ¥ад{Лса) - пропускная способность турбины;
-для центробежного компрессора Дц*к пол = 0,01582/ ОвпрвЬ1х + 0,00184; -для осевого и осецентробежного компрессоров ДЦ пол = 0,02308/ ОвпРвЬ1Х + 0,00522
Таким образом, приведённые обобщённые зависимости подтверждают тот факт, что с уменьшением размеров лопаточных машин возрастают аэродинамические и гидравлические потери, приводящие к снижению их КПД.
Другой характерной особенностью лопаточных машин МГТД является рост частоты вращения ротора с уменьшением размеров двигателя. Это обусловлено тем, что для поддержания рабочего процесса двигателя приходится соблюдать кинематическое подобие треугольников скоростей в соответствующих сечениях. На рис.11 в качестве примера представлена зависимость частоты вращения ротора от диаметра колеса центробежного компрессора.
250
| 1
ш щ 200
3 °
20 70 120
Диаметр рабочего колеса центробежного компрессора, мм
Рис. 11. Зависимость частоты вращения ротора от диаметра колеса центробежного компрессора [7]
За максимальный режим обычно принимается периферийная окружная скорость центробежного компрессора равная 400 м/с, при этом приведённая скорость на выходе из колеса X становится практически равной единице. Зная периферийную скорость, можно для различных диаметров колёс компрессоров рассчитать максимальную частоту вращения ротора.
Влияние размерности на массу
Одним из стратегических направлений развития авиационной техники является создание так называемых распределённых силовых установок, глубоко интегрированных с самолётом (рис. 12).
Рис. 12. Распределённые системы, встроенные в крыло и фюзеляж
В качестве примера можно привести проект пассажирского самолёта на 800 мест с распределённой силовой установкой, состоящей из 264 двигателей Williams international FJ22, вместо традиционной схемы с двумя двигателями General Electric GE-90 [1]. Очевидно, что в этом случае двигатели распределённой силовой установки будут малоразмерными. Определим, есть ли в этом случае преимущества малоразмерных двигателей с точки зрения весового совершенства, т.е. уменьшения массы.
С уменьшением габаритов при сохранении конструктивных особенностей ГТД его удельная масса, т.е. отношение массы двигателя к тяге (или мощности), теоретически должно снижаться по линейному закону. Это следует из того, что тяга двигателя пропорциональна расходу рабочего тела, который, в свою очередь, пропорционален площади поперечного сечения - квадрату его диаметра (D2), а масса двигателя меняется пропорционально D . Следовательно удельная масса двигателя теоретически должна меняться пропорционально отношению D3/ D2, т.е. при уменьшении размеров двигателя (диаметра) линейно уменьшаться (рис. 13).
Поэтому малоразмерные ГТД должны иметь меньшую удельную массу, чем двигатели больших размеров. Однако на практике при уменьшении габаритов двигателя некоторые элементы конструкции не могут пропорционально изменяться по условиям прочности или из-за технологических ограничений. Кроме того, масса большей части агрегатов двигателя не может уменьшаться пропорционально габаритам двигателя. Это приводит к тому, что реальная зависимость удельной массы от размеров двигателя является нелинейной (рис. 13).
100
s= 80
га
£ 60 га
к
Ï 40 .о
5 20
0
N \ \
\ V__-
теорети ческая
--- действи тельная
0
100
20 40 60 80
Линейные размеры, %
Рис. 13. Зависимость удельной массы двигателя от его размерности
Анализ статистики параметров созданных ГТД показал, что их удельная масса имеет минимум в диапазоне расходов воздуха (для ТРДД - через внутренний контур) от 5...10 до 20...30 кг/с. ГТД такого размера имеют наилучшие показатели по массе. Для малоразмерных двигателей с Ов01 < 10 кг/с характерно возрастание относительной массы при уменьшении размеров двигателя. У ГТД больших размеров, напротив, относительная масса увеличивается с возрастанием размеров.
Компьютерное моделирование рабочего процесса
Особенностью разработанной математической модели малоразмерного ГТД является то, что в ней введены поправки на КПД осевого, осецентробежного и центробежного компрессоров, на коэффициент полноты сгорания топлива и потери полного давления в камере сгорания, на КПД осевой и радиально-осевой турбин, учитывающие снижение КПД лопаточных машин и возрастание потерь в проточной части при уменьшении размера двигателя. Кроме того, усовершенствована модель массы МГТД. Эти модели реализованы в САЕ-системе термогазодинамического расчёта и анализа АСТРА [8].
Сравнительный анализ результатов расчётов показал (рис. 14), что, например, для малоразмерного двигателя с тягой 0,4 кН удельный расход топлива без учёта влияния размерности на 15% меньше, чем с её учётом. По мере увеличения тяги двигателя из-за ослабления влияния размерности разница по расчётному удельному расходу топлива снижается.
Одной из ключевых проблем при проектировании ГТД является обоснованный выбор уровня сложности моделей для разных этапов развития проекта. Для обоснованного выбора тех или иных технических решений необходимо, чтобы математические модели, используемые при разработке двигателя, имели достаточный уровень достоверности.
На начальном (концептуальном) этапе проектирования объективно существует неопределённость исходной проектной информации. Поэтому на этом этапе нецелесообразно использование сложных моделей. По мере накопления информации по проекту следует использовать модели с возрастающим уровнем сложности. Исходя из этого, возникает концепция многоуровневой модели ГТД, которая сопровождает изделие на всех этапах проектирования и доводки.
В настоящее время существуют различные классификации математических моделей по уровню сложности (уровню описания физических явлений), например [1;2;5;9]. Предлагается классификация, представленная в табл. 2.
Модели нулевого уровня (метауровень) соответствуют описанию параметров и характеристик двигателя с помощью таблиц или формальной аппроксимации.
Модели первого уровня (в сосредоточенных параметрах) соответствуют описанию взаимосвязей между параметрами узлов и элементов в двигателе с помощью уравнений, отражающих условия балансов расходов, мощностей и других параметров с формальным представлением в алгоритме характеристик узлов двигателя в виде таблиц
160
155
150
т 145
* X 140
135
к-X 130
3 125
и 120
115
110
—МТРД
—»-ТРД
\
\
„ТГг-?-*-!
Р, кН
10
15
Рис. 14. Зависимости удельного расхода топлива от тяги для малоразмерного (МТРД) и большеразмерного (ТРД) двигателей
или аппроксимации (нулевой уровень). Уравнения модели имеют, как правило, вид нелинейных алгебраических уравнений.
Модели второго уровня (в распределённых параметрах) соответствуют описанию системы с распределёнными в пространстве параметрами. Уравнения модели имеют вид дифференциальных уравнений в частных производных.
Таблица 2. Соответствие размерностей моделей уровням сложности
Уровни сложности моделей Размерность моделей Описание
0 (метауровень) - Данные модели по определению не подразумевают размерность
I (в сосредоточенных параметрах) 0D [+t] Модели с поузловой детализацией двигателя. Параметры осреднены по сечениям проточной части ГТД. Формальное представление характеристик узлов (или ступеней лопаточных машин)
1D [+t] Модели расчёта двигателя на среднем радиусе с детализацией по лопаточным венцам турбомашин
2D [+t] Модели расчёта двигателя на различных радиусах по высоте лопатки с детализацией по лопаточным венцам турбомашин
II (в распределённых параметрах) 2D [+t] Модели плоских решёток и осесимметричных потоков
3D [+t] Модели решения пространственных задач (например, CFD расчёт)
Первому и второму уровням сложности могут соответствовать модели с различными размерностями (степенями детализации). В общем случае в этих моделях параметры могут зависеть от времени.
В соответствии с приведённой классификацией описанная выше модель МГТД относится к 0D модели I уровня сложности.
Таким образом, использование разработанных моделей позволило расширить область их применения в составе многоуровневой модели САЕ-системы АСТРА от боль-шеразмерных до малоразмерных ГТД и повысить их адекватность.
Библиографический список
1. Sehra A.K., Whitlow W.Jr. Propulsion and power for 21st century aviation // Progress in Aerospace Sciences. 2004. V. 40, Iss. 4-5. P. 199-235.
DOI: 10.1016/j.paerosci.2004.06.003
2. Скибин В.А., Солонин В.И., Темис Ю.А., Сосунов В.А. Машиностроение. Энциклопедия. Т. IV-21. Самолёты и вертолёты. Кн. 3. Авиационные двигатели. М.: Машиностроение, 2010. 720 с.
3. Маслов В.Г., Кузьмичев В.С., Коварцев А.Н., Григорьев В.А. Теория и методы начальных этапов проектирования авиационных ГТД. Самара: Самарский государственный аэрокосмический университет, 1996. 147 с.
4. Григорьев В.А., Ждановский А.В., Кузьмичев В.С., Осипов И.В., Пономарёв Б.А. Выбор параметров и термогазодинамические расчёты авиационных газотурбинных двигателей. Самара: Самарский государственный аэрокосмический университет, 2009. 202 с.
5. Григорьев B.A., Зрелов B.A., Игнаткин ЮМ., Кузьмичев B.C, Пономарёв БА., Шахматов E.B. Bертолётные газотурбинные двигатели. M.: Maшиностроение, 2007. 491 с.
6. Epstein A.H. Millimeter-scale, MEMS gas turbine engines // Proc. of ASME Turbo Expo 2003. 2003. V. 4. P. 669-696. DOI: 10.1115/gt2003-38866
7. Порошкин KB., Сенюшкин Н.С., Ямалиев P.P. Особенности проектирования силовой установки для беспилотного летательного аппарата // Mолодой учёный. 2011. Т. 1, № 3 (26). С. 85-88.
8. Кузьмичев B.C, Кулагин B.B., Крупенич И.Н., Ткаченко A^., Pыбaков B.H Формирование виртуальной модели рабочего процесса газотурбинного двигателя в CAE системе «ACTPA» // Труды MAH. 2013. № 67. http://mai.ru//upload/iblock/c28/c28cebd188b7e5afafe2f3c5b5444af2.pdf.
9. Кулагин B.B., Бочкарёв С.К., Горюнов ИМ., Григорьев B.A. Теория, расчёт и проектирование авиационных двигателей и энергетических установок. Кн. 3. Основные проблемы: Начальный уровень проектирования, газодинамическая доводка, специальные характеристики и конверсия авиационных ГТД. M.: Maшиностроение, 2005. 464 с.
PECULIARITIES OF COMPUTER MODELING OF THE WORKING PROCESS IN SMALL GAS TURBINE ENGINES
© 2016
Doctor of Science (Engineering), Professor of the Department of Aircraft Engine Theory, Samara National Research University, Samara, Russian Federation, [email protected]
Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Engine Theory, Samara National Research University, Samara, Russian Federation, [email protected]
postgraduate student, Samara National Research University, Samara, Russian Federation, [email protected]
The article describes a thermo-gas-dynamic model of small gas turbine engines. The model takes into account the influence of the engine size on the efficiency of work processes in the crucial components. Gas turbine engines are classified according to their size depending on the value of the gas generator mass flow rate corrected by the compressor exit parameters. An important feature of the working process in small gas turbine engines is that hydraulic losses in the flow section increase with the decrease in the engine's size due to the increase of the boundary layer relative thickness. The efficiency of the compressor and turbine also decrease because of the increase in relative radial clearances. These factors are taken into account in computer modeling by making allowances for the initial values of compressor efficiency, fuel combustion efficiency, the total pressure loss coefficient and turbine efficiency. The suggested approaches were used to improve computer models of gas turbine engines. It is shown that reducing the engine size results in considerable decrease of the work process optimal parameters and specific parameters. Taking into account the influence of the engine size on the efficiency of its components widens the range of its applicability and improves the adequacy. Thus, the models provide a more adequate solution for the optimization of working process parameters and can be used for conceptual designing of small gas turbine engines.
Small gas turbine engine, parameters, working process, efficiency, compressor, turbine, modeling, classification, size, thermo-gas-dynamic calculation, analysis.
Citation: Kuz'michev V.S., Tkachenko A.Yu., Ostapyuk Ya.A. Peculiarities of computer modeling of the working process in small gas turbine engines. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2016. V. 15, no. 4. P. 91-101. DOI: 10.18287/2541-7533-2016-15-4-91-101
V. S. Kuz'michev A. Yu. Tkachenko Ya. A. Ostapyuk
References
1. Sehra A.K., Whitlow W. Jr. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences. 2004. V. 40, Iss. 4-5. P. 199-235.
DOI: 10.1016/j.paerosci.2004.06.003
2. Skibin V.A., Solonin V.I., Temis Yu.A. Mashinostroenie. Entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli [Mechanical Engineering. Encyclopedia. V. IV-21. Aircraft and helicopters. Book. 3. Aircraft engines]. Moscow: Mashinostroenie Publ., 2010. 720 p.
3. Maslov V.G., Kuz'michev V.S., Kovartsev A.N., Grigor'ev V.A. Teoriya i metody nachal'nykh etapov proektirovaniya aviatsionnykh GTD [Theory and methods of the conceptual stages of aircraft gas turbine engines design]. Samara: Samara State Aerospace University Publ., 1996. 147 p.
4. Grigor'ev V.A., Zhdanovskiy A.V., Kuz'michev V.S., Osipov I.V., Ponomarev B.A. Vybor parametrov i termogazodinamicheskie raschety aviatsionnykh gazoturbinnykh dvigate-ley [Parameter selection and thermogasdynamic calculations of aircraft gas turbine engines]. Samara: Samara State Aerospace University Publ., 2009. 202 p.
5. Grigor'ev V.A., Zrelov V.A., Ignatkin Yu.M., Kuz'michev V.S., Ponomarev B.A., Shakhmatov E.V. Vertoletnye gazoturbinnye dvigateli [Helicopter gas turbine engines]. Moscow: Mashinostroenie Publ., 2007. 491 p.
6. Epstein A.H. Millimeter-scale, MEMS gas turbine engines. Proceedings of ASME Turbo Expo 2003. 2003. V. 4. P. 669-696. DOI: 10.1115/gt2003-38866
7. Poroshkin K.V., Senyushkin N.S., Yamaliev R.R. Features of propulsion system designing for unmanned air vehicle. Molodoy uchenyy. 2011. V. 1, no. 3. P. 85-88. (In Russ.)
8. Kuzmichev V.S., Kulagin V.V., Krupenich I.N., Tkachenko A.Yu., Rybakov V.N. Generation of the gas turbine engine working process virtual model Subject area of the case. Trudy MAI. 2013. No. 67. (In Russ.)
Available at: http://mai.ru//upload/iblock/c28/c28cebd188b7e5afafe2f3c5b5444af2.pdf.
9. Kulagin V.V., Bochkarev S.K., Goryunov I.M., Grigor'ev V.A. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok. Kn. 3. Osnovnye prob-lemy: Nachal'nyy uroven' proektirovaniya, gazodinamicheskaya dovodka, spetsial'nye kha-rakteristiki i konversiya aviatsionnykh GTD [Theory, calculation and design of aircraft engines and power plants. Book 3. Main problems: initial level of designing, gas-dynamic adjustment, special characteristics and conversion of gas turbine engines]. Moscow: Mashinostroenie Publ., 2005. 464 p.