Научная статья на тему 'Организация штамповочного производства при использовании области компромисса'

Организация штамповочного производства при использовании области компромисса Текст научной статьи по специальности «Математика»

CC BY
93
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
конструкторско-технологическая подготовка производства / математическая модель / принятие решений / автоматизация. / design and technological preparation of production / mathematical model / decision making / automation

Аннотация научной статьи по математике, автор научной работы — Хаймович Ирина Николаевна, Иващенко Антон Владимирович, Нечитайло Александр Анатольевич, Ковалькова Екатерина Алексеевна

Статья посвящена описанию автоматизации процессов в конструкторско-технологической подготовке производства, выявлению проблем в данной области производства и их решению. Полученная математическая модель позволяет устранить противоречия между руководителями и сотрудниками подразделений в области принятия решений по повышению надежности изделий.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Хаймович Ирина Николаевна, Иващенко Антон Владимирович, Нечитайло Александр Анатольевич, Ковалькова Екатерина Алексеевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ORGANIZATION OF STAMPING PRODUCTION WHEN USING A COMPROMISE AREA

The article is devoted to the description of the automation of processes in the design and technological preparation of production, the identification of problems in this field of production and their solution. The resulting mathematical model allows to eliminate the contradictions between managers and employees of departments in the field of decision making on improving the reliability of products.

Текст научной работы на тему «Организация штамповочного производства при использовании области компромисса»

УДК 004:33

ОРГАНИЗАЦИЯ ШТАМПОВОЧНОГО ПРОИЗВОДСТВА ПРИ ИСПОЛЬЗОВАНИИ ОБЛАСТИ КОМПРОМИССА

© 2018 И.Н. Хаймович, А.В. Иващенко, А.А. Нечитайло, Е.А. Ковалькова

Самарский национальный исследовательский университет им. академика С. П. Королева

Статья поступила в редакцию 16.12.2018

Статья посвящена описанию автоматизации процессов в конструкторско--технологической подготовке производства, выявлению проблем в данной области производства и их решению. Полученная математическая модель позволяет устранить противоречия между руководителями и сотрудниками подразделений в области принятия решений по повышению надежности изделий.

Ключевые слова: конструкторско-технологическая подготовка производства, математическая модель, принятие решений, автоматизация.

В настоящее время при рассмотрении организации производства на предприятии в области конструкторско-технологической подготовки производства (КТПП) актуальной задачей является принятие согласованных решений между элементами «сотрудники подразделений» и «руководители подразделений»: руководитель конструкторского подразделения (РКП); руководитель технологического подразделения (РТП); руководитель производственного подразделения (РПП), которые в свою очередь подчинены руководителю организационной системы (РОС).

Главная задача руководителей подразделений заключается в предоставлении комфортных условий для работы, которые нужны сотруднику, включая и все необходимые орудия труда, не говоря уже о достойной оплате [1]. На современном производстве активно внедряются новые информационные технологии [2-5] и методы бережливого производства [6,7]. Особенно эти методы важны при автоматизации штамповочного и литейного технологических производств [8, 9], а также производства раскатных колец [11, 12].

Но, не все сотрудники одной квалификации, и, следовательно, не могут получать равную оплату и поощрения. Поэтому, для определения объема оптимального финансового стимулирования, а также для проведения каких-либо действий для увеличения мотивации (побуждении) и стимулирования, заинтересованности

Хаймович Ирина Николаевна, доктор технических наук, профессор. E-mail: [email protected] Иващенко Антон Владимирович, доктор технических наук, профессор, профессор кафедры вычислительной техники, e-mail: [email protected], Нечитайло Александр Анатольевич, доктор экономических наук, профессор. E-mail: [email protected] Ковалькова Екатерина Алексеевна, аспирант. E-mail: [email protected]

сотрудников в увеличении объёма производства - нужно рассмотреть структуру, в которой будет отражаться взаимосвязь между исследуемыми объектами организационной системы в КТПП.

Для нахождения оптимального финансирования разработаем математическую модель организационной структуры для управления ресурсами, которая представляет матричную структуру взаимодействия (рис. 1).

ап(У-гп)

РКП РТП РПП

я I сотрудники ||

Рис. 1. Матричная структура взаимодействия в КТПП

За основу для моделирования взаимосвязей в организационной системе возьмем работу [10], в которой целевые функции участников, имеют вид:

Фо ( (Я > Г ( Гт )>&„ ( Г ) Г, Гт, Гп ) = = В(Н,7)-ак (н,гк)-ат (гт)-а(у,г;), С1)

т

ф.((н,г) (),Н,гк) (Н,гЫпЬО-с,(г), (2)

I=1

фт (( (У>гш)Лт ()У,ги)) (у,гт)-]ТП(т1)-Сда(гт), (3)

Ф„ ((Г ),ЧЯ (),у,гп ) (у,гп)-±П{К)-¿с;(Гп), (4)

5=1 5=1

г: (( (г (щ,в,г) (г )(в)-с^ н \г*!, (5) /Л (( ЫI„ (у),н,^ ) = = € (< ) + С (н) - С1 (н, т1), ] * 3, (6) г: ((у, к), у, г:1) (у, г)- с*>, * * 5/7)

где 0(И, у) - функция дохода организационной системы;

Ъ (Г((гш)„ ((Г) - бюджетные ресурсы, выделяемые конструкторскому (КП), технологическому (ТП) и производственному (ПП) подразделениям со стороны руководителя организационной системы (РОС);

Лк (л),Лт (л)>Хд* (У'<) - функции стиму-

¿=1

лирования КП, ТП и ПП;

Пкт (Н) - функция стимулирования / -того конструктора со стороны ТП;

Птп (у) - функция стимулирования } -того технолога со стороны ПП;

Л» (К) - функция стимулирования сотрудников 5 -того ПП;

С (Л ), Ст (гт ), X С №) - функции затрат КП, ТП и ПП соответственно;

С'' Г)

пКп ' - функции затрат /-того сотрудника 5 -того подразделения;

Н - качество (надёжность) изделия; у - количество изделий; гк' Гт' гп - квалификация, соответственно, конструктора, технолога, сотрудника ПП.

В рассматриваемой модели матричной

структуры задача взаимодействия, решаемая с точки зрения руководителя организационной системы, заключается в определении РОС бюджетных средств, побуждающих руководителей функциональных и производственных подразделений выбирать такие стратегии, которые максимизировали бы целевую функцию РОС (1). В свою очередь, руководители функциональных и производственных подразделений при заданных со стороны РОС объёмах бюджетных средств решают задачу определения систем стимулирования своих сотрудников, побуждающих их выбирать такие стратегии, которые максимизировали бы целевые функции РКП (2), РТП (3), РПП (4).

Основная трудность при решении задач взаимодействия заключается в том, что модели принятия решений по выбору параметров организационной системы в ограничениях содержат модели оптимизационных задач нижних уровней. В связи с этим рассмотрим задачи согласованного взаимодействия нескольких двухуровневых систем иерархических систем - задач верхней и нижней иерархии.

Решением задачи взаимодействия является область параметров функции стимулирования, которая наиболее выгодна для РОС. В то же время, эта область позволяет ставить и решать задачи выбора параметров, оптимальных с точки зрения функциональных подразделений и их сотрудников.

Рассчитаем математическую модель задачи согласованного взаимодействия в рассматриваемой организационной системе, на примере машиностроительного предприятия.

Исходными данными для расчёта математической модели послужили данные, полученные в конструкторском (таблицы 1 и 2) и технологическом (таблица 3) отделах машиностроительного предприятия, а также в производственных подразделениях ОАО «Волгабурмаш» (таблица 3).

Таблица 1. Исходные данные для расчёта математической модели принятия решений в конструкторском отделе

Обозначение Числовое значение Условные доли

у, шт. 120 шт. 1,2

Уп у °, шт. 100 шт. 1

Ау 7 ,шт. 20шт. 0,2

С, руб. 51000 руб. 1

Н - 0,5

Н 0 - 0,4

Н - Н 0 =АН - 0,5-0,4=0,1

Таблица 2. Исходные данные для расчёта математической модели принятия решений РКП

Обозначение Числовое значение

Коэффициент правильно принимаемых решений Да 0,7

Д 2 0,5

Уровень квалификации гК1 0,2

Г 2 0,1

Начальный уровень квалификации г 'к 0 0,15

г2 'к 0 0,1

Коэффициент уровня квалификации ЬК1 0,2

Кг 0,1

Коэффициент начального уровня квалификации Ко 0,2

Кк0 0,1

Начальные затраты при базовом уровне надёжности с1 W 0 0,15

с2 W 0 0,1

Модель задачи принятия решений РКП:

t К (И, rK ),Лк (rK ), H, rK ) = ак (H, rK ) - £ п (H,, r ) - CK (rK );

¿_1

2 _ 0,7 + 0,5 _

rk _

2 2

rkl + rk 2 0,2 + 0,1 _ (

2 2

bk\ + bk 2 0,2 + 0,1

_ 0,6;

2 2

о* (Я, гк) = РКП / гк + ЬЛ = 0,6 ■ 0,1/0,15 + 0,15 ■ 0,15 = 0,4225; П (Гн) = в ■ ДЯ / Гк! + Ьи ■ гк1 = 0,7 ■ 0,1/0,2 + 0,2 ■ 0,2 = 0,39; П2(гк2) = в2 ■ ДЯ/Гк2 + Ьк2 ■ Гк2 = 0,5■ 0,1/0,1 + 0,1 ■ 0,1 = 0,51;

2

X П (Я,, Г!' ) = щ (Га) + %2 (Гк 2) = 0,39 + 0,51 = 0,9; 1=1

СК1Ы = С^ - Ь[0 (Гк1 - Ло) = 0,15- 0,2 ■ (0,2 - 0,05) = 0,12; Ск2Г2) = С- Ь2к0 (Гк2 - Г2К0) = 0,1 - 0,15 ■ (0,1 - 0,025) = 0,08; Ск Г) = Ск1 (Гк1 ) + Ск2 (Гк 2) = 0,12 + 0,08 = 0,2;

£ П (Я,, Г' ) + СК (Гк ) (Я, Гк ); ¿=1

0,9+0,2=1,1>0,4225 - условие не выполняется.

Таблица 3. Исходные данные для расчёта математической модели принятия решений РТП

Обозначение Числовое значение

Дт\ 0,5

Дml 0,3

Гт\ 0,15

Гт2 0,1

r mO 0,05

r2 mO 0,025

Кх 0,2

Ьт2 0,1

Ьт0 0,1

Ьт0 0,05

C1 mO 0,2

C2 mO 0,1

Модель задачи принятия решений РТП:

Ф« ffm (У '"m )>Vm (rm ), У '"m ) _ffm ( У '"m )- К (y > '"m ) Cm (rm )>

2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

e

i_i

. Д«1 + Д«2 _ 0,5 + 0,3

2 2

Г«1 + Г«2 0,15 + 0,1

2 2

bml + bm2 0,2+0,1

_ 0,4;

_ 0,125;

'"2 2

ff« ( y, г« ) _ в m Ay i "m + Vm _ 0,4-0,2/0,125 + 0,15-0,125 _ 0,659; vmii'mi) _ Д«1 - Ay I г«\ + bml - « _ 0,5 - 0,2 /0,15 + 0,2 - 0,15 _ 0,7; vmii'mi)_emï-AyIг«2 + b«2 - « _0,3-0,2/0,1 + 0,1-0,1 _0,61;

2

yjtm (y> г« ) _ vmi ("mi )+п«г (г«2 ) _ 0,7 + 0,61 _ 1,31;

C«i(r«i) _ C«0 + b«0(« - /mo) _ 0,2 + 0,1 - (0,15-0,05) _ 0,205; C«2 ('«2 ) _ С«а + b2Jr«2 - г2«„) _ 0,1 + 0,05 - (0,1 - 0,025) _ 0,104; С« К ) _ с«1(г«1) + с«1(г«1) _ 0,205 + 0,104 _ 0,309;

%im (H , '« ) + C« (r«) < ff« (H, Г« );

m

m

Таблица 4. Исходные данные для расчёта математической модели принятия решений РПП

Обозначение Числовое значение

в 0,3

вт 0,2

гт 0,2

Гп2 0,1

Г 'пО 0,2

г2 'пО 0,1

Ъщ 0,05

ЬП2 0,2

Ко 0,1

Ъ1о 0,1

с1 иО 0,4

С2 йО 0,2

До 0,2

Д 0,1

Таблица 5. Исходные данные для скорректированного расчета математической модели принятия решений РПП

1,31+0,309=1,619>0,659 - условие не выполняется. Модель задачи принятия решений РПП:

2 2

Фп С (У, Гп ),П„ (У, Гп ), У, Гп) = Сп (У, гп)- ^ПП (У, <)- X Сп Г);

¿=1 ¿=1

2 2 С (У, Гп) = ЕД Ау / Гп + Ё Кгп = 0,75; ¡=1 ¡=1

АлЫ = /по • (Гп! -г'по) = 0,2• (0,2-0,1) = 0,02;

Пп2 Ы = Д21п0 • (Гп2 - г 21по) = 0,1 • (0,1 - 0,05) = 0,005;

2

Е Пп (гп ) = Пп1 (Гп1) + Пп2 (Гп2) = 0,02 + 0,005 = 0,025; ¿=1

Сп1 Ы = СП0 + ^ (Гп1 - г'по) = 0,4 + 0,1 • (0,2 - 0,1) = 0,41;

Сп2 Ы = СП0 + ^ (п - г2по) = 0,2 + 0,1 • (0,1 - 0,05) = 0,205;

2

Е Сп (Гп) = СпХ(гпХ) + Сп2(гп2) = 0,41 + 0,205 = 0,615; ¡=1

2 2

ЁпП Г) + Ё Сп (Гп) <С (у, Гп); ¿=1 ¡=1

0,025+0,615=1,64>0,75 - условие выполняется.

При анализе матричной модели принятия решения РКП и РТП было выявлено, что для выполнения условия принятия решения не нужен сотрудник высокой квалификации, так как с задачами сможет справиться менее опытный специалист.

Произведем расчет с уменьшенными значениями коэффициентов квалификации.

Обозначение Числовое значение

А, 0,1

Д 2 0,075

ГК1 0,175

Г 2 0,15

0,15

К 2 0,1

) = РК1 ■АН/гкХ + Ьк1 -гк1 = = 0,1 • 0,1 / 0,175 + 0,15 • 0,175 = 0,0834;

П 2 (Гк 2 ) = РК 2 'АН/Гк 2 + Ък 2 'Гк 2 =

= 0,075 • 0,1 / 0,15 + 0,1 • 0,15 = 0,065;

2

X П (Нг,К) =Пк\(Гк\) + П 2 (Гк 2 ) =

г=1

0,0834 + 0,065 = 0,1484;

XП(НМ + СК(тк) < Ск(И,тк);

г=1

0,1484+0,2=0,3484^0,4225 - условие выполняется.

Таблица 6. Исходные данные для скорректированного расчета математической

Обозначение Числовое значение

0,1

Дт2 0,075

Ьт1 0,1

ь. т2 0,05

Пт/Гт1) = РИ1 ^АУ/Гт1 + Ът1 ^ ГшХ =

= 0,5 •О,2 / 0,15 + 0,2 • 0,15 = 0,7;

Пт2 (Гт2 ) = Дт2 ' АУ / Гт2 + Ьт2 ' Гт2 = = 0,3 • 0,2 / 0,1 + 0,1 •ОД = 0,61;

2

X Пт(У'Г'ш) = П т/ГтХ ) + Пт 2 (Гт2 ) = г=1

= 0,7 + 0,61 = 1,31;

I П'т(Н К) + Ст(Гт) <Ст(Я,Тт);

1=1

0,303+0,309=0,612<0,659 - условие выполняется. Полученные в ходе расчетов результатов сведем в таблицу 7.

Рис. 2. Область компромисса при принятии согласованных решений в КТПП

Таблица 7. Сводная таблица результатов

Значение ск Ст Сп

Расчетное значение 0,4225 0,659 0,75

Скорректированное значение 0,3484 0,612 0,64

По данным значениям построим график (рис. 2), где определим область, которая будет являться для всех оптимальной (область компромисса) при принятии согласованных решений в конструкторско-технологической подготовке производства (КТПП) на уровне руководителей подразделений.

Разработанная модель согласованного взаимодействия участников КТПП является удобным средством для принятия решений при повышении надёжности изделий. Она позволяет устранить противоречия между конструкторским, технологическим и производственным подразделениями на уровне руководителей. На графике наглядно видны значения бюджетных ресурсов (средств), выделяемых руководителем организационной системы (РОС). Обозначена область компромисса, выход из какого-либо подразделения влечет затруднения и появления противоречий при принятии согласованных решений в целях повышения надежности.

СПИСОК ЛИТЕРАТУРЫ

1. Кузьмина Н.М., Хаймович И.Н. Методология системного подхода к анализу процессов формирования и развития кадрового потенциала организации // Известия Самарского научного центра

Российской академии наук. 2013. №6. С.525-527.

2. Гречников Ф.В., Хаймович И.Н. Разработка информационных систем управления конструктор-ско-технологической подготовкой производства как интегрированной базы информационных и функциональных структур// Кузнечно - штамповочное производство. Обработка материалов давлением. 2008. №3. С.34-41.

3. Гречников Ф.В., Ненашев В.Ю., Хаймович И.Н. Управление технологической подготовкой производства на основе интегрирования автоматизированного проектирования и инженерного анализа // Кузнечно - штамповочное производство. Обработка материалов давлением. 2008. №6. С. 42-46.

4. Хаймович И.Н. Применение методологии БЛЭТ при моделировании бизнес-процессов технологической подготовки машиностроительного предприятия // Известия Самарского научного центра Российской академии наук. 2008. Т. 10. № 3. С.933-939.

5. КлентакЛ.С., Хаймович И.Н. Усовершенствование методов сглаживания сложных поверхностей с использованием интерполяционных сплайнов // Фундаментальные исследования. 2013. № 10 (часть 12). С. 2634-2638.

6. Абрамова И.Г., Абрамов Д.А. Повышение эффективности производственных мощностей в свете реализации технологий бережливого и умного производства // Известия Самарского научного центра РАН. 2013. Т.15, № 6. С.557-562.

7. Симагина С.Г. Методика учета качественных характеристик готового продукта при принятии решения о переходе на новые прогрессивные технологии // Известия Самарского научного центра Российской академии наук. 2004. Т 6. № 2. С. 423-427.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Демьяненко Е.Г., Коврижкин Н. И. Попов И.П. Литьё погружением в производстве цилиндрических заготовок и прессованных профилей из алюминиевого сплава// Литейное производство. 2013 №6. С. 25-26.

9. Хаймович И.Н., Хаймович А.И. Процедурные правила разработки и согласования бизнес-процессов кузнечно - штамповочного производства // Вестник Самарского государственного аэрокосмического университета. 2007. № 1. С. 23-26.

10. Кириченко А.С., Хаймович И.Н. Поиск области компромисса при согласовании интересов конструкторов и технологов в конструкторско-техно-логической подготовке производства // Известия Самарского научного центра Российской академии наук. 2012. Т. 14. № 6. С. 187-189.

11. Костышев В.А., Ерисов Я.А. Изготовление колец для газотурбинных двигателей горячей раскаткой сварных заготовок // Вестник машиностроения. 2017. № 3. С. 53-56.

12. Костышев В.А., Ерисов Я.А. Исследование формирования анизотропии механических свойств в процессе производства раскатных колец // Известия высших учебных заведений // Цветная металлургия. 2016. № 1. С. 32-38.

ORGANIZATION OF STAMPING PRODUCTION WHEN USING A COMPROMISE AREA

© 2018 I.N. Khaimovich, A.V. Ivashchenko, A.A. Nechitailo, E.A.Kovalkova

Samara National Research University named after academician S.P. Korolyov

The article is devoted to the description of the automation of processes in the design and technological preparation of production, the identification of problems in this field of production and their solution. The resulting mathematical model allows to eliminate the contradictions between managers and employees of departments in the field of decision making on improving the reliability of products. Keywords: design and technological preparation of production, mathematical model, decision making, automation

Khaimovich Irina, Ph.D., Professor. E-mail: [email protected]

Anton Ivashchenko, Doctor of Technics, Professor, Professor

at the Computer Science Department.

E-mail: [email protected]

Alexandr Nechitailo, Doctor of Economics, Professor.

E-mail: [email protected]

Kovalkova Ekaterina, Post-Graduate Student.

E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.