Научная статья на тему 'Optimization of Bridge Crane Movement Control'

Optimization of Bridge Crane Movement Control Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
268
112
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
bridge crane / optimal control / integral and terminal criteria / simulation / oscillations / dynamic loads / differential evolution / мостовой кран / оптимальное управление / интегральный и терминальный критерии / моделирова- ние / колебания / динамические нагрузки / дифференциальная эволюция

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — V. S. Loveikin, Y. A. Romasevich

Transient modes of bridge cranes movement determine their energy, dynamic and electrical performance, as well as productivity and durability of work. An optimal control problem of its movement has been solved while making an analysis of indicators for efficient performance of a bridge crane. Terminal and integral criteria have been selected as optimization criteria. They represent undesirable dynamic properties of the crane. Legendre method has been used to determine the possibility for achieving minimum of the optimization criterion. An analysis of the Euler-Poisson equation, which is a necessary condition for the minimum of the integral criterion, has shown that it is impossible to find a solution for the optimization problem in an analytical form. A method of differential evolution has been used in order to find an approximate solution to the optimization problem. The approximate (suboptimal) solution has been found in the complex domain, which is a limited domain conjunction of dynamic parameters and phase coordinates of the system. Limitation in the domain of the system phase coordinates (a polynomial basis function has been used in the paper) provides the possibility to attain absolute minimums of terminal problem criteria. A simulation of the bridge crane motion has been carried out in order to establish an efficiency for implementation of the suboptimal control. During this process dynamic mechanical characteristics of its electric drive have been taken into account. While carrying out the simulation, a frequency and an amplitude of the electric drive voltage in the crane movement mechanism have been changed (frequency scalar method for speed changing of an asynchronous electric drive has been used). A comparative analysis of the dynamic, kinematic, electrical and energy performance indicators of the bridge crane under suboptimal and S-curved (standard) laws of frequency and voltage variations in the crane electric drive has made it possible to establish an improvement in the efficiency of its operation under suboptimal control.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Оптимизация управления движением мостового крана

Переходные режимы движения мостовых кранов определяют их энергетические, динамические и электрические показатели, а также производительность и долговечность работы. На основе анализа показателей эффективности работы мостового крана решена задача оптимального управления его передвижением. В качестве критериев оптимизации выбраны терминальные и интегральный критерии, отображающие нежелательные динамические свойства крана. С помощью метода Лежандра установлена возможность достижения минимума интегрального критерия. Анализ уравнения Эйлера – Пуассона, которое является необходимым условием минимума интегрального критерия, показал, что аналитическое нахождение решения оптимизационной задачи невозможно. Для нахождения приближенного решения оптимизационной задачи использован метод дифференциальной эволюции. Приближенное (субоптимальное) решение было найдено в комплексной области, которая является конъюнкцией ограниченных областей динамических параметров и фазовых координат системы. Ограничение области фазовых координат системы (в статье использована полиномиальная базисная функция) дало возможность достичь абсолютных минимумов терминальных критериев задачи. Для установления эффективности реализации субоптимального управления проведено моделирование движения мостового крана с учетом динамической механической характеристики его электропривода. В процессе моделирования изменению подвергались частота и амплитуда питающего напряжения электропривода механизма передвижения крана (использован частотный скалярный метод изменения скорости асинхронного электропривода). Сравнительный анализ динамических, кинематических, электрических и энергетических показателей работы мостового крана при субоптимальном и S-образном (стандартном) законах изменения частоты и напряжения питания электропривода крана дал возможность установить улучшение эффективности его работы при субоптимальном управлении.

Текст научной работы на тему «Optimization of Bridge Crane Movement Control»

https://doi.org/10.21122/2227-1031-2018-17-5-413-420 UDC 621.874-83

Optimization of Bridge Crane Movement Control

V. S. Loveikin1', Y. A. Romasevich"

1 'National University of Life and Environmental Sciences of Ukraine (Kiev, Ukraine)

© Белорусский национальный технический университет, 2018 Belarusian National Technical University, 2018

Abstract. Transient modes of bridge cranes movement determine their energy, dynamic and electrical performance, as well as productivity and durability of work. An optimal control problem of its movement has been solved while making an analysis of indicators for efficient performance of a bridge crane. Terminal and integral criteria have been selected as optimization criteria. They represent undesirable dynamic properties of the crane. Legendre method has been used to determine the possibility for achieving minimum of the optimization criterion. An analysis of the Euler-Poisson equation, which is a necessary condition for the minimum of the integral criterion, has shown that it is impossible to find a solution for the optimization problem in an analytical form. A method of differential evolution has been used in order to find an approximate solution to the optimization problem. Hie approximate (suboptimal) solution has been found in the complex domain, which is a limited domain conjunction of dynamic parameters and phase coordinates of the system. Limitation in the domain of the system phase coordinates (a polynomial basis function has been used in the paper) provides the possibility to attain absolute minimums of terminal problem criteria. A simulation of the bridge crane motion has been carried out in order to establish an efficiency for implementation of the suboptimal control. During this process dynamic mechanical characteristics of its electric drive have been taken into account. While carrying out the simulation, a frequency and an amplitude of the electric drive voltage in the crane movement mechanism have been changed (frequency scalar method for speed changing of an asynchronous electric drive has been used). A comparative analysis of the dynamic, kinematic, electrical and energy performance indicators of the bridge crane under suboptimal and S-curved (standard) laws of frequency and voltage variations in the crane electric drive has made it possible to establish an improvement in the efficiency of its operation under suboptimal control.

Keywords: bridge crane, optimal control, integral and terminal criteria, simulation, oscillations, dynamic loads, differential evolution

For citation: Loveikin V. S., Romasevich Y. A. (2018) Optimization of Bridge Crane Movement Control. Science andTech-nique. 17 (5), 413^120. https://doi.org/10.21122/2227-1031-2018-17-5-413-420 (in Russian)

Оптимизация управления движением мостового крана

Докт. техн. наук, проф. В. С. Ловейкин1', докт. техн. наук, доц. Ю. А. Рочасси';;;

1 'Национальный университет биоресурсов и природопользования Украины (Киев, Украина)

Реферат. Переходные режимы движения мостовых кранов определяют их энергетические, динамические и электрические показатели, а также производительность и долговечность работы. На основе анализа показателей эффективности работы мостового крана решена задача оптимального управления его передвижением. В качестве критериев оптимизации выбраны терминальные и интегральный критерии, отображающие нежелательные динамические свойства крана. С помощью метода Лежандра установлена возможность достижения минимума интегрального критерия. Анализ уравнения Эйлера - Пуассона, которое является необходимым условием минимума интегрального критерия, показал, что аналитическое нахождение решения оптимизационной задачи невозможно. Для нахождения приближенного решения оптимизационной задачи использован метод дифференциальной эволюции. Приближенное (субопти-

Адрес для переписки

Ромасевич Юрий Александрович

Национальный университет биоресурсов

и природопользования Украины

ул. Тероев Обороны, 12,

03041, г. Киев, Украина

Тел.: +380 44 527-87-34

гота8еу1с11уипу@акг,пе1

Address for correspondence

Romasevich Yuriy A.

National University of Life

and Environmental Sciences of Ukraine

12 Geroev Oborony str.,

03041, Kiev, Ukraine

Tel.: +380 44 527-87-34

romasevichyuriy(2)ukr,net

Ml Наука

.техника. T. 17, № 5 (2018)

мальное) решение было найдено в комплексной области, которая является конъюнкцией ограниченных областей динамических параметров и фазовых координат системы. Ограничение области фазовых координат системы (в статье использована полиномиальная базисная функция) дало возможность достичь абсолютных минимумов терминальных критериев задачи. Для установления эффективности реализации субоптимального управления проведено моделирование движения мостового крана с учетом динамической механической характеристики его электропривода. В процессе моделирования изменению подвергались частота и амплитуда питающего напряжения электропривода механизма передвижения крана (использован частотный скалярный метод изменения скорости асинхронного электропривода). Сравнительный анализ динамических, кинематических, электрических и энергетических показателей работы мостового крана при субоптимальном и ¿»-образном (стандартном) законах изменения частоты и напряжения питания электропривода крана дал возможность установить улучшение эффективности его работы при субоптимальном управлении.

Ключевые слова: мостовой кран, оптимальное управление, интегральный и терминальный критерии, моделирование, колебания, динамические нагрузки, дифференциальная эволюция

Для цитирования: Ловейкин, В. С. Оптимизация управления движением мостового крана / В. С. Ловейкин, Ю. А. Ро-масевич /¡Наука и техника. 2018. Т. 17, № 5. С. 413^120. https://doi.org/10.21122/2227-1031-2018-17-5-413-420

Introduction

Bridge cranes are used m many processing of the state-of-the-art technology. The efficiency of crane operation has an impact on the productivity process of production. In order to state the ways of increasing crane effectiveness, the study of crane process has to be done.

In the first scientific researches of bridge cranes dynamics the simple models of the systems and external forces were used 11 4|, The two-and three-mass models have been used. The drive force was assumed constant. The results of these works allowed calculate dynamical loads with analytical expressions at a first approximation. In the works [5-8] assumed that drive force is a function of time or speed of a system drive. The compilation of the models allowed find an analytical expressions for dynamical loads calculation.

The new approaches to dynamic loads calculation comprise the dynamic mechanical characteristic of the system's drive [7, 9], non-lmear effects [10-15] etc.

The problems of rationalization of the bridge crane movement were studied in the works [16, 17]. Another approach to increase bridge crane efficiency is to obtain the optimal law of its movement. One of the major conditions that have been met in many works is to eliminate cargo oscillations. The major factor in such approach is optimization criterion. Minimization of transition regimes duration [18-25] is attended by increasing of dynamical loads. The integral criterion which includes dynamical and energetic functions [9, 26, 27] allows to increase productivity, reliability and energy effi-

ciency. Because of a system processing depends on the external forces and system parameters [28, 29], the solution of optimization problems if crane dynamics has to be found in domains of movement regimes and system parameters.

In spite of rigorous research in the area of crane dynamics and its optimal control, the unsolved scientific problems still remain: 1) optimization of the bridge crane regimes has done only m relation to one criterion (time, energy, force etc.). This problem statement is limited; 2) the implementation of the optimal laws of crane motion with frequency-controlled drive did not study properly; 3) the capability of using a particular techniques in optimization problems has been studied improperly; 4) the analysis of the solved optimal problem, carried out upon not all indications and so on.

For this reason the goal of the article is to obtain optimal movement regime of the bridge crane and its dynamic parameters, which allows to increase the efficiency processing of the crane upon such indications: productivity, reliability, energy efficiency, etc. In order to achieve the goal the following tasks, it is necessary to solve next issues: 1) to state an optimization regime's problem for bridge crane; 2) to find the solution of the stated problem; 3) to carry out a comparison study of the obtained results and to estimate the effect of the optimization.

Main part. In order to provide a research we have chosen a dynamics model of the bridge crane and the scheme of its asynchronous drive (fig. 1) [9, 17].

^■Наука

итехника. Т. 17, № 5 (2018)

Fd

Fig. 1. Four-mass dynamics model of the bridge crane (a) and scheme of the bridge crane asynchronous drive (b): W - variable resistance of the bridge crane movement; I - length of flexible suspension of a cargo; g - acceleration of gravity; x, xb, xbn xj - generalized coordinates of the cargo, an end beams, the crane bridge and the drive respectively; m, mb, mbn mj - reduced masses of the cargo, the end beams, the crane bridge and the drive respectively; cbr, - reduced coefficients of stiffness of the crane bridge and the transmission respectively; kbr, kj reduced dissipation factor of the crane bridge and the transmission respectively;

vector projections of voltage stator to coordinate axes a and p

f ( t \

"la = C0S 27t j" fdt -

V 0 J

% =^#1 271

jjt

f/mx - phase voltage amplitude of the drive;/- frequency of drive voltage; e2p, e2a - EMF, which was inducing by flux linkage of rotor to axes a and p respectively; (e2a =p«>m(L1i2?, + ¿12'ip) + haRiX «2p = P^>m(hf7a +£i2'ia) + hfBa)\P ~ number of the crane electric drive pairs of poles; Rx - active resistance of the stator winding; R2 - reduced to the stator active resistance of the rotor winding; 8 - dispersion coefficient (8 = 1 - (1 +A"1(2ji/L12)~1(1 +A2(2ji/L12)~1)"1);A1 - inductive reactance of the stator winding; A2 - reduced to the stator inductive reactance of the stator winding; JLh Ln - inductance of the stator and the rotor windings respectively; Ln - coefficient of the mutual induction; kn ks - magnetic coupling ratio of the rotor and the stator respectively (kr = Li2L2 ; ks = L\jL, $ % s>m - angular speed of the drive; ;'la, / lp and i2a, ;2p - projections of generalized vector of current of'the stator and rotor to coordinates axes a and p

Mathematical model of the crane is the system of the non-linear homogeneous differential equations of second order:

at cxLj

il

dp ^

1

din

dt di.

J_

5/.

i(n:a i ,Rj/K ♦ c..):

'2

dt' \ dt dt

?pl,:(i i; . hahn) d' ~m.

(1)

d2x,

mh

dx j dx.

= cj(xj-xb)*kA—r—-r hi,«-xbr)~kb -r-

rn,-,

dt1 l\dt dt d I dXfr dXfr

— Cb \Xb ~ Xbr) + H

dxp, dx>

'bf

dt dt

-W:

br df

dt dt

mg_ I

(Xbr

d~x

, tXbr XX

.dt" /

where u - gear ratio of the drive; r|dr - efficiency of the transmission; rw - radius of a wheel of the crane movement mechanism. Variable resistance of the bridge crane movement W determined as follow:

H ay Ka

,-TexHMKa. T. 17, № 5 (2018)

W =

éça it

dx

СЛ + % if cdxd +kd~f< - 0,02)(m6 + тЪг + m)g-

at

(0,012 ... 0,02)(тк + мт +mb)g, if cdxd + kd > (0,012 ... 0,02)(mb + mbl. + m)g.

cbcj dt

(2)

The chosen mathematical model includes mechanical and electrical values. Thus, in the research we took into account complicate electrical-mecha-mcal processes and its mterinfluence.

One of the ways to increase a crane operation is to optimize its transition regimes of motion and its parameters. In the framework of this study a complex (terminal-integral) criterion has been chosen, which can be presented as follows:

Cr = Ter + Int = (sf'T/ (0) + §Щ СГ))'

? Т

(3)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+ ôfi?r.+ôfQ>2Ar2)i/i

•min,

where Ter and Int - terminal and integral parts of complex criteria Cr respectively; T - duration of the transition process (acceleration or deceleration of a crane); Rhr and Rd - dynamical loads in the

crane bridge and the drive (transmission) respectively; At - lack of perpendicularity of the cargo, which determines low-frequency dynamic loads in the crane bridge; Q0 - free frequency of a load on a flexible suspension; 8,7er and - weight coef-

ficients for terminal part of Cr; щ" , ô

Int Int о Int

and S4" - weight coefficients for integral part of Cr. Weight coefficients for both parts of criterion (2) are dimensionless, their sum is equal to one. The values of weight coefficients stated the importance of respective factors, i. e. how important to decrease one or the other factor.

Minimization of criterion Cr (2) allows to increase life duration of the crane elements (bridge, couplings, gears, shafts etc.), crane's productivity and energy efficiency.

Without consideration of electromagnetic transition processes in the crane drive and dissipation of the energy in mechanical elements, the criterion Cr (2) could be presented in the following form:

C.r =

d2"x V

и-1

df

+ 5i

( 4 j;2 h

nt^A^T)

dt

2 i "V

eT_x df

(

+ 8

Int

w + f

^ dt3

\

i=i

+ Ô

Int

d2qxЛ dt2q

. s Int 2

+ o4 m

f d2x^

df

f T

T 'J(

\ 0

f Л

dt

/

0,5

where J.,, B}, Cq - coefficients, which are determined by the following expressions:

• mm.

(4)

A = m + mbr + mh + md ;

A =

(m.hr + m)(nid + mb) md (mbr +m + mb)

■0

+ \mbr +WÎJ+M

'X^O »

"br

A3 = -

(mbr + m)mdmb md(mbr+mb) mbr(md +mb)

ubr

a

-2 . 0 '

. m,mc]mh „ 2 о Aa = ———-—- Ç1Q ; Bl=m + mbr + mb ;

c,e.

d br

-2 Ш,

17Î YYl

B2 = (mbr + mh )il(r +^{mbr + m) ; B3 =

'0 '

■■br

-br

Cl=m + mbr; C2=mbrCL02.

^■Наука

«техника. T. 17, № 5 (2018)

The boundary conditions for the reduced masses are followed:

*(0)4(0) = 0; *6(0) = ^(0) = 0;

(5)

x(T) - xbr(T) = xbr (T) - xb(T) = xb{T)-xd(T) = 0, (4(n ) = ^l(T) -^(D = —J—:(T) -^(T) = 0,

dt

dl

dt

dl

dt

dt

Boundary conditions (5) could be rewritten in following form:

-jt~(0) = 0, / = (0, 7);

dt'

dx

dJx

(6)

x(T) = s, -1-{T) = v, —m = o, j = (2, 7). dt dt3

Note, that augmentation to boundary conditions (6) extra conditions:

dsx

(il dsx

ldts

(0) = 0; (T) = 0

(7)

could allow hitting the global minimum of the terminal criteria Ter (3).

The study of the integral criterion I ni with Le-gendre condition [30] shows that it could be minimized. Indeed, the strong of the Legendre condition occurs:

d2I

^V2

= 25j

IntAl > 0,

(8)

5

dt8

where I - integrand of the functional Int.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The first part of the expression (2) does not cause a significant effect. So, during optimal control problem solving, let us assume W is constant and equal to 0,015(mb + mbr + m)g. This assumption greatly simplifies the solving of the problem.

Let us try to use the variation calculus [30] to find solution to the problem. For this purpose it is

necessary to obtain the extremum necessary criterion of the Cr - the Euler-Poisson equation. It could be presented as follow:

z=0 aT dx

(8)

where L - differential functional, which forms the Euler-Poisson equation. The expanded form of the expression (8) has the following form:

8 d2zr

0,

(9)

where /)- - coefficients, which are depend on already known coefficients A„ B, and ( '....

In order to solve differential equation to find the auxiliary equation is necessary:

r2z = 0.

(10)

Taking out a factor r4 and substituting r" to v

we obtain the next equation:

/¿A+2/=O.

(ii)

It is impossible to find the solution of the sixdi-degree algebraic equation. Consequently, to find the solution of the optimal control problem is also impossible. It may be shown; that analytical solution could not be found with Pontryagin's maximum principle or dynamic programming method neither.

Hence, we could use an approximate approach. In order to find the approximate solution of the problem let use direct variation method [31]. The basis function is a polynomial of the «-th order:

Hayxa

,-TexHMKa. T. 17, № 5 (2018)

â = ZG/ + ÊGA (12)

6=0 (5=18

where Ge - unknown coefficients; n - the highest degree of among extra members of the polynomial, which will be used in order to minimize integral criterion Int.

The unknown coefficients Gh must be found in such a way that function (12) met boundary conditions:

d'à

df

(0) = 0, / = (0, 8);

Ф) v. : --(/ ) v. ~(T) = 0, j = (2, 8).

dt dt3

(13)

So, the polynomial expression (12) is the function of »-18 unknown coefficients Ge. We can find the expression:

f

Y

f

'J ôf W + Y^A,

df

lint

w + ¿ В

c/'q.

df3

lint

( 2

V ?=1

d2qa dfq

^14)

2

o4 m

d2à df

M - y 2 Л 5

= /(Ge,4, в., С s, Т).

у

dt

J J

Note, the system parameters md, mb, mbr, m are unchangeable (based on meeting of the crane design conditions). Parameters T, v could be changed, but they were defined by the technological conditions of the crane processing. Accept that, they are unchangeable. Parameters chr, / are changeable but only in limited domains. We might obtain the values of cbr, /, in their limited domains such, that expression (14) attains the minimum. The same is true for regime parameter

In order to minimize the expression (14) the stated optimal control problem has been reduced to the linear programming problem [32]:

/(<Л

К s)

nun;

с j ■ < с j < с j

d. mm — d — а. шах' 'min — ^ — ^max i

(15)

where cdmm and cAmax - lower and higher border of parameter cd domain respectively; /mm and /max -lower and higher border of parameter / domain respectively.

In the context of the used application n has been chosen equal to 5. It is the rational value -

the compromise between a computational compilation and an accuracy of problem solution.

The stated linear programming problem has been solved with the differential evolution method [33] for tabulated parameters (tabl. 1).

Table 1

Values of system parameters, which have been used in calculations

Parameter Unit of measurement Value

md kg 3,50 • 103

nib 2,05 • 104

mbr 2,60 • 104

m 2,00 • 104

T s 4,00 • 10°

P d.nom Wt 2x1,50- 104

Aran m 1,50- 10°

Aran 8,00 -10°

V m/s 2,10- 10°

Cbr Il/m 6,90 • 106

^d. min 4,80 • 104

Cd. max 1,92- 107

The optimal value parameter cd is the domain boundary cdmm. The best values for parameters / and 5 are 2,15 m and 4,2 m respectively. In order to show the advantages of the obtained suboptimal regime of the bridge crane processing the comparative analysis have been carried out. The suboptimal regime of the crane movement was comparing with S-curve law of the crane motion. Such law took in comparing because it is standard curve in variable-frequency crane drive [34]. The comparing was carried out with indicators: maximum of load deflection angle cpmax during the crane movement; maximum of load deflection angle cpmaxj after the crane stop; maximum of force in the crane bridge Rbr.imx, maximum of force in the crane transmission Rdmax; maximum of the crane drive torque MdmaX; root-mean-square force in the crane bridge j^,RMS; root-mean-square force in the crane transmission i%RMs; root-mean-square of the crane drive torque M^rms; relative maximum of the crane drive power Pmax (in fractions of nominal value);

relative maximum of the crane drive current /max (in fractions of nominal value). The indicators that have been calculated for all cycle of motion ""acceleration-steady movement-deceleration" are tabulated in tabl. 2.

Duration of the steady movement of the crane is equal to 3 s. Analysis of the tabl. 2 data shows that suboptimal control of the crane movement reduced root-mean-square forces and torques, but maximums of the dynamical loads slightly increased.

^■Наука

«техника. T. 17, № 5 (2018)

The reason why root-mean-square forces and torques have decreased is the oscillation of the load on the flexible suspension became much lesser and dynamical loads, which have been caused by oscillation, have decreased. The residual oscillation (after the crane stop) of the cargo during subop-timal control practically non-exists. It allows to increase the crane productivity. Also, the intensity of cranes operator's work became much lesser.

In order to show quality of implementation, the curves have been plotted (fig. 2).

Gray curve on the fig 2 presents preset speed of the crane. Analysis of the curves shows that frequency-controlled crane drive able to implement the suboptimal law at high quality. Plots, which are presented in fig. 2, shows, that the determine factor of the crane working process is the shape of the acceleration and deceleration curves.

a

xbr, m/s

2.0

1.5

1.0

0.5

Table 2

Values of indicators

Indicators Unit of measurement Regime of motion Reduction

S-curved Suboptimal

фтах grad 1,10 • 101 7,56 • 10° 45,5 %

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

фтах. 7 1,10 • 101 2,50 • 10"1 44 times

n '^hr.mux H 4,67 • 104 4,88 • 104 -4,3 %

^¿/.niax 1,49 • 10" 1,75 • 10" -14,8 %

-^fti-.RMS 1,25 • 104 1,06 • 104 17,9 %

-fMRMS 3,53 • 102 3,36 • 102 5,1 %

Mci ma x Hm 9,77 • 102 9,98 • 102 -2,1 %

Л^/.RMS 2,24 • 102 2,16 • 102 3,7 %

P mas - 3,70 • 10° 3,52 • 10° 5,1 %

A]K1\ - 4,47 • 10° 3,91 • 10° 14,3 %

Дф, grad

b

xbr, m/s

L s

2 4 6 8 10 d

Дф, grad/s

h s

2 4 6 8 10 с

Дф, grad/s

Дф, grad

Fig. 2. Curves of crane speed during suboptimal (a) and S-curve (b) control; phase trajectory' of the cargo oscillation during suboptimal (c) and S-curve (d) control

CONCLUSIONS

The major scientific results, obtained in the article are:

1) it is impossible to find the exact solution of the optimal control problem for four-mass dynamical model of the crane. An efficient method which reduces the optimal control problem to the linear programming problem is direct variational techniques. It is desirable to seek the solution of the problem in limited domains of phase coordinates and dynamical parameters of a system;

Наука

итехника. T. 17, № 5 (2018)

2) obtained in the work suboptimal control of the crane movement could be implemented with the frequency-controlled drive. The optimal values of the stiffness coefficients of the crane transmission and a length of flexible suspension might be used in improvement of crane processing;

3) one of the determine factor of the crane working process is the shape of the acceleration and deceleration curves. During suboptimal control of the crane movement root-mean-square forces and torques are decreasing, but maximum dynamic loads are increasing slightly.

REFERENCES

1. Komarov M. S. (1969) Dynamics of Load-Lifting Machines. Moscow, Mashynostroenye Publ. 206 (in Russian).

2. Kazak S. A. (1968) Dynamics of Overhead Cranes. Moscow, Mashynostroenye Publ. 331 (in Russian).

3. Gohberg M. M. (1969) Metal Constructions of Hoisting-and-Transport Machines. Moscow, Mashynostroenye Publ. 520 (in Russian).

4. Gaidamaka V. F. (1989) Load-Lifting Machines. Kiev, Vyscha Shkola Publ. 328 (in Russian).

5. Sheffler M., Dresyh Kh., Kurt F. (1981) Load-Lifting Cranes. Book 2. Moscow, Mashynostroenye Publ. 287 (in Russian).

6. Lobov N. A. (1987) Dynamics of Load-Lifting Cranes, Moscow, Mashynostroenye Publ. 160 (in Russian).

7. BudikovL. Ya. (1997) Multiparametric Analysis of Over-head-Type Crane Dynamics. Luhansk, Publishing house of East Ukrainian National University named after V. Dal. 210 (in Russian).

8. Loveikin V. S., Chovniuk Iu. V., Dikterak M. H., Pas-tushenko S. I. (2004) Simulation of Dynamics for Lifting Machine Mechanisms. Kyiv-Mykolaiv, Mykolaiv National Agrarian University. 286 (in Ukrainian).

9. Loveikin V. S,, Romasevych Yu. O. (2016) Dynamics and Optimization of Overhead Cmne Movement. Kyiv, KOMPRINT Publ. 314 (in Ukrainian).

10. Blackburn D., Singhose W., Kitchen J., Patrangenara P., Lawrence J. (2009) Command Shaping for Nonlinear Crane Dynamics. Journal of Vibration and Control, 16 (4), 477-501. httpsV/doi.org/lO.l 177/1077546309106142.

11. Naif B. Almutairi, Mohamed Zribi (2009) Sliding Mode Control of a Three-dimensional Overhead Crane. Journal of Vibration and Control, 15 (11). 1679-1730, https://doi.org/10.1177/1077546309105095.

12. Moustafa Kama! A. F., Ebeid A. M. (1998) Nonlinear Modeling and Control of Overhead Crane Load Sway. Journal of Dynamic Systems, Measurement, and Control, 110(3), 266-271. https://doi.org/10.1115/L3152680.

13. Sim N., Fang Yo (2014) Non-Linear Tracking Control of Under-Actuated Cranes with Load Transferring and Lowering: Theory and Experimentation. Automatica, 50 (9), 2350-2357. https://doi.Org/10.1016/j.automatica.2014.07.023.

14. Tuan L. A., Lee S., Dang V. H, Moon S., Kim B. S. (2013). Partial Feedback Linearization Control of Three-Dimensional Overhead Crane. International Journal of Control, Automation, and Systems, 11 (4), 718-727. https://doi.org/10. 1007/sl2555-012-9305-z.

15. Singhose W., Kim D., Kenison M. (2008) Input Shaping Control of Double-Pendulum Bridge Crane Oscillations. Journal of Dmamic Systems, Measurement, and Control, 130 (3), 034504-1-034504-6. https://doi.org/10.1115/L2907363.

16. Herasymiak R. P., Leshchev. V. A. (2008) Analysis and Swithesis Crane Electro-Mechanical Systems. Odessa, SMIL Publ. 192 (in Russian).

17. Budikov L. Ya. (1997) Multi-Paramettic Analysis of Over-head-Tvpe Crane Dynamics. Luhansk, Publishing House of East Ukrainian National University named after V. Dal. 210 (in Russian).

18. Grigorov O. V., Loveikin V. S. (1997) Optimal Control of Hoisting Machine Movement. Kiev, IZMN Publ. 264 (in Ukrainian),

19. Singhose W., Porter L., Kenison M., Kriikku £. (2000) Effects of Hoisting on Input Shaping Control of Gantry Cranes. Control Engineering Practice, 8 (10), 1159-1165. https: //doi.org/10.1016/s0967-0661 (00 )00054-x.

20. Dhanda A., Vaughan J., Singhose W. (2016) Vibration Reduction Using Near Time-Optimal Commands for Systems with Nonzero Initial Conditions. Journal of Dynamic

Systems, Measurement, and Control, 138 (4), 041006-1-041006-9. https://doi.org/10.1115/1.4032064.

21. Ermidoro M., Formentin S., Cologni A., Previdi F., Sa-varesi S. M. (2014) On Time-Optimal Anti-Sway Controller Design for Bridge Cranes. American Control Conference (ACC). Portland, Oregon, USA. 2809-2814. https://doi.org/10. 1109/acc.2014.6858939.

22. HazriqI. J., Nursabillilah M. A., Mohamed Z.,.SelamatN. A., Abulia A. F. Z., Jamian J. J., Kassim A. M. (2013) Optimal Performance of Nonlinear Gantry Crane System via Priority-Based Fitness Scheme in Binary PSO Algorithm. 5th International Conference on hiechatronics (ICOM'13). IOP Conf. Series: Materials Science and Engineering, 53. 012011. https://doi.Org/10.1088/1757-899x/53/l/012011.

23. Manson G. A. (2007) Time-Optimal Control of Overhead Crane Model. Optimal Control Applications & Methods, 3 (2), 115-120. https://doi.org/10.1002/oca.4660030202.

24. Solis C. U., Clempner J. B., Poznyak A. S. (2016) Designing Terminal Optimal Control with Integral Sliding Mode Component Using Saddle Point Method Approach: Cartesian 3D-Crane Application. Nonlinear Dwamics, 86 (2), 911-926. https://doi.org/10.1007/sll071-6l6-2932-9.

25. Smekhov A. A., Erofeev N. Y. (1975) Optimal Control of Lifting and Tmnsporting Machines.. Moscow, Mashynostroenye Publ. 239 (in Russian).

26. Loveikin V. S., Pochka K. I. (2017) Synthesis of Camshaft Driving Mechanism in Roller Molding Installation with Combined Motion Mode According to Acceleration of Third Order. Nauka i Tekhnika = Science & Technique, 16 (3), 206-214 (in Russian), https://doi.org/10.21122/ 2227-1031-2017-16-3-206-214.

27. Loveikin V. S., Chovniuk Yu. V., Liashko A. P. (2014) Crane Vibrating Systems Controlled by Mechatronic Devices with Magneto-Rheological Fluid: the Nonlinear Mathematical Model of Behavior and Optimization of Work Regimes. Nankovyi Visnvk Natsionalnoho Himy-choho Universytettt = Scientific Bulletin of National Mining University , 6, 97-102 (in Russian).

28. Loveikin V. S., Nesterov A. P. (2002) Dynamic Optimization of Hoisting Machines, Kharkiv, KhDADTU. 285 (in Ukrainian).

29. Kyrychenko Y., Samusia V., Kyrychenko V. (2012) Software Development for the Automatic Control System of Deep-Water Hydro-Hoist. Geomechanical Processes During Underground Mining, 81-86. https://doi.org/10.1201/bl3157-14.

30. Petrov Iu. P. (1977) Variational Methods of Optimal Control Theory, Leningrad, Energia Publ. 280 (in Russian).

31. Loveikin V. S., Romasevich Yu. O., Loveikin Yu. V. (2012) Analysis of Direct Variational Methods for Solving Optimal Control Problems. Visnvk Natsionalnoho Unh'ersytetu "Lvivska PoliteMmilia ". Optymimtsiia Vyrobnychykh Prot-sesh' i Teklmichnyt, Kontrol tt Mashynobuduvmmi ta Pryhdo-buduvamii [Bulletin of the Lviv Polytechnic National University. Series: Optimization of Production Processes and Technical Control in Mechanical Engineering and Instrument Making], 729,70-79 (inUkrainian).

32. Bronshtein I. N., Semendyayev K. A., Musiol G, Miih-lig H. (2015) Handbook of Mathematics. Springer. 799. https://doi.org/10.1007/978-3-662-46221-8.

33. Storn R., Kenneth P. (1995). Differential Evolution - Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012. International Computer Science Institute. 15.

34. Mitsubishi Electric (2011) FR-E700. Frequency Inverter Instruction Manual. 524.

Received: 04.07.2017 Accepted: 10.10.2017 Published online: 28.09.2018

^■Наука

итехника. Т. 17, № 5 (2018)

i Надоели баннеры? Вы всегда можете отключить рекламу.