Научная статья на тему 'One property of the weak covergence of operators iterations in von Neumann algebras'

One property of the weak covergence of operators iterations in von Neumann algebras Текст научной статьи по специальности «Математика»

CC BY
35
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по математике, автор научной работы — Katz Alexander A.

Conditions are given for *-weak convergence of iterations for an ultraweak continuous fuctional in von Neumann algebra to imply norm convergence.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «One property of the weak covergence of operators iterations in von Neumann algebras»

Владикавказский математический журнал Апрель-июнь, 2003, Том 5, Выпуск 2

УДК 517.98

ONE PROPERTY OF THE WEAK COVERGENCE OF OPERATORS ITERATIONS IN VON NEUMANN ALGEBRAS

A. A. Katz

Conditions are given for *-weak convergence of iterations for an ultraweak continuous fuctional in von Neumann algebra to imply norm convergence.

Let M be a von Neumann algebra [5], acting on a separable Hilbert space H. Let T be a contraction from Л/„, to Л/,„. so that TM*+ с M*+ . On the pre-conjugate to M space Л/„, there are two topologies selected: the weak, or the ct(M*,M) topology, and the strong topology of the convergence in the norm of the space M*.

Let now T = a*, where a be an automorphism of the algebra M. We will say that T in Л/„, is mixing, if for all x € M* and A £ M, the following condition is valid:

lim (Tnx, A) = 0,

га—» оо

where

M° = {у G М* : 2/(1) = 0}.

We will say that a positive contraction T in Л/„, is completely mixing, if for all x € M" the following condition is valid:

lim ||Т"ж|| = 0.

га—»оо

The following theorem is valid:

Theorem. Let T be a pre-conjugate operator to an automorphism a of a von Neumann algebra M for which there is no invariant normal state. Then, for x € A/„,. the weak convergence of Tnx implies the strong convergence of Tnx. In particular, if T is mixing, then T is completely mixing.

<1 Let us denote by \Tnx\ the sum

(Tnx)+ + (Tnx)-, where Tnx = (Tnx)+ - (Т"ж)_

is the Hahn decomposition of the functional Tnx [4]. The sequence {^"жЦ^^ is ст(М!И,М) pre-compact [4] and, therefore, the convex envelope of the set {\Tnx\}^=l is pre-compact as well. The sequence {An is also pre-compact because it belongs to the convex envelope

of the set {|Тиж|}~=1.

Because T is pre-conjugate to an automorphism, then \Tnx\ = Tn \x\. In fact, the support of T(Tnx)+ is orthogonal to the support of Т(Т"ж)_, T(Tnx)+ - T(Tnx)_ = T(Tnx) = Tn+lx, and from the uniqueness of the Hahn decomposition [4] it follows that \Tnx\ = Tn \x\.

© 2003 Katz A. A.

Weak Convergence Of Iterations In von Neumann Algebras 35

Let x be a(M*, M)-limit point of the set {An l®]}^^. Then the functional x will be T-invariant. In fact,

Tx = lim У2(ткх,у)

ТЬу—^oo \ /

= lim

k=1

11'у —1

n7 1 • Y1 (T*®> у) - n7 1 ' у) +n7 1 • (ТП~'Х, у}

к=О

= X.

It is easy to see that x ^ 0 and, therefore, from the conditions of the theorem it follows that x = 0. Now we know that the only weakly limit point of the set {An |a?|is the point x = 0. Therefore

0= lim P"b|||= lim (An |®|)(1) = lim (Tn b|)(l) = lim ||T"b|||,

n—>oo n—>oo n—>oo n—>oo

because (Tn |®|)(1) = (Tm |®|)(1) for all n, m € N. The theorem is proven. >

References

1. Bratteli O., Robinson D. Operator Algebras and Quantum Statistical Mechanics.—New York-Heidelberg-Berlin: Springer-Verlag, 1979,— 500 p.

2. Katz A. A. Ergodic Type Theorem in von Neumann Algebras.—Ph. D. Thesis.—Pretoria: University of South Africa, 2001.—84 p.

3. Pedersen G. K. C*-algebras and their automorphism groups.—London-New York-San Francisco: Academic Press, 1979.— 416 p.

4. Sakai S. C*-algebras and W*-algebras.—Berlin: Springer-Verlag, 1971.—256 p.

5. Takesaki M. Theory of Operator Algebras. I.—Berlin: Springer-Verlag, 1979,—vii+415 p.

Статья поступила 11 апреля, 2003 Alexander A. Katz, Ph.D.

Department of Mathematics & CS, St. John's University, 300 Howard Ave., Staten Island, NY 10301, USA. E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.