Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
МИП-наночастиц "искусственных рецепторов", полученных в одном производственном цикле, выполненном при оптимизированных условиях, составлял 25 мг, при константе диссоциации равной Kd=3,4 х 10-9 М.
Дальнейшее развитие данной работы видеться в расширении спектра параметров оптимизации, например, тип растворителя, концентрация сшивающего мономера, а также в нахождении оптимальных соотношений функциональный мономер: сшивающий мономер и т. д.
Благодарности
Авторы выражают благодарность профессору Лестерского университета (Великобритания)
Пилецкому С. А. и его научной группе за предоставление возможностей синтеза
МИП-наночастиц на разработанном ими
автоматическом устройстве, и проведение
экспериментальных исследований афинности
синтезированных МИП-наночастиц, а также за
консультации в ходе выполнения работы.
Литература
1. Moreno-Bondi, M. C. Immuno-Like Assays and
Biomimetic Microchips [Text] / M. C. Moreno-Bondi, M. E. Benito-Pena, J. L. Urraca, G. Orellana // Top Curr. Chem. - 2012. - Vol. 325. - P. 111-164.
doi: 10.1007/128_2010_94
2. Muzyka, K. Current Trends in the Development of the Electrochemiluminescent Immunosensors [Text] /
K. Muzyka // Biosensors and Bioelectronics. - 2014. -Vol. 54. - P. 393-407. doi: 10.1016/j.bios.2013.11.011
3. Poma, A. Solid-Phase Synthesis of Molecularly
Imprinted Polymer Nanoparticles with a Reusable Template -“Plastic Antibodies” [Text] / A. Poma, A. Guerreiro, M. J. Whitcombe, E.V. Piletska, A.P.F. Turner and S. A. Piletsky // Advanced Functional Materials. - 2013. -Vol. 23, Issue 22. - P.2821-2827.
doi: 10.1002/adfm.201202397
4. Leardi, R. Experimental design in chemistry: A tutorial [Text] / R. Leardi // Analytica Chimica Acta. - 2009. -Vol. 652, Issue 2. - P.161-172. doi: 10.1016/j.aca.2009.06.015
5. Nicholls, I. A. Rational design of biomimetic
molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development [Text] / I. A. Nicholls, H. S. Andersson, K. Golker, H. Henschel, B. C. G. Karlsson, G. D. Olsson, S. Wikman // Analytical and Bioanalytical Chemistry . -2011. - Vol. 400, Issue 6. - P. 1771-1786.
doi: 10.1007/s00216-011-4935-1
6. Muzyka, K. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreator [Text] K. Muzyka, K. Karim, A. Guerreiro, A. Poma and S. Piletsky // Nanoscale Research Letters. - 2014. - Vol. 9, Issue 1. - P. 154-161. doi: 10.1186/1556-276x-9-154
References
1. Moreno-Bondi, M. C., Benito-Pena, M. E., Urraca, J. L., Orellana, G. (2012). Immuno-Like Assays and Biomimetic Microchips. Top Curr. Chem, 325, 111-164. doi: 10.1007/128_2010_94
2. Muzyka, K. (2014). Current Trends in the
Development of the Electrochemiluminescent Immunosensors. Biosensors and Bioelectronics, 54, 393-407.
doi: 10.1016/j.bios.2013.11.011
3. Poma, A., Guerreiro, A., Whitcombe, M. J.,
Piletska E.V., Turner A.P.F. and Piletsky, S. A. (2013). Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - “Plastic Antibodies”. Advanced Functional Materials, 23 (22), 2821-2827.
doi: 10.1002/adfm.201202397
4. Leardi, R. (2009) Experimental design in chemistry: A tutorial. Analytica Chimica Acta, 652 (2), 161-172. doi: 10.1016/j.aca.2009.06.015
5. Nicholls, I. A., Andersson, H. S., Golker, K.,
Henschel, H., Karlsson, B. C. G., Olsson, G. D., Wikman, S. (2011). Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development. Analytical and Bioanalytical Chemistry, 400 (6), 1771-1786.
doi: 10.1007/s00216-011-4935-1
6. Muzyka, K., Karim, K., Guerreiro, A., Poma A., Piletsky, S. (2014). Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreator. Nanoscale Research Letters, 9 (1), 154-161. doi: 10.1186/1556-276x-9-154
Рекомендовано до публікації д-р техн. наук Аврунін О. Г.
Дата надходження рукопису 27.09.2014
Музика Катерина Миколаївна, кандидат технічних наук, с.н.с., кафедра біомедичної інженерії, Харківський національний університет радіоелектроніки, пр. Леніна 14, Харків, Україна, 61166 Е-mail: [email protected]
УДК 004.932
DOI: 10.15587/2313-8416.2014.27536
ОБРОБЛЕННЯ ЗОБРАЖЕНЬ ПЛЯМ ЛАЗЕРНИХ ПУЧКІВ ІЗ ЗАСТОСУВАННЯМ ПАРАЛЕЛЬНО-ІЄРАРХІЧНИХ МЕРЕЖ
© Л. І. Тимченко, С. В. Наконечна
Представлено основні етапи для класифікації та прогнозування координат енергетичних центрів зображень плям лазерного променя, що дає можливість розробити нову інтелектуальну технологію для їх класифікації та прогнозування положення координат їх енергетичних центрів. Проведено експерименти з порівняльної оцінки прогнозування на основі відомих нейронних мереж і запропонованого методу з використанням паралельно-ієрархічної мережі.
Ключевые слова: класифікація, плямоподібне зображення профілю лазерного променя, енергетичний центр.
40
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
The basic steps for classification and prediction of energy centers coordinates of laser beam spots image, which makes it possible to develop a new intelligent technologies for classification and prediction of their energy centers coordinate position. Experiments on the comparative evaluation of prediction based on known neural networks and proposed method using a parallel-hierarchical network are conducted.
Keywords: classification, laser beam profile spot-similar image, energy center.
1. Вступ
Основною проблемою вирішення задач розпізнавання динамічних зображень є доволі велика кількість інформації, що необхідно обробити за короткий проміжок часу, а також їх нелінійна форма.
Одним з напрямів, що швидко розвиваються і потребують обробки зображень є системи, в яких використовується лазерний промінь. Насамперед, до таких систем відносяться системи лазерної навігації та атмосферно-оптичні лінії зв’язку, в яких необхідно знати в якому напрямі зміщується промінь. Такі завдання в першу чергу зводяться до визначення енергетичного центру, тобто координат центру ваги лазерного променя і визначення його контуру.
Особливо ці задачі важливі для атмосферно-оптичних лазерних систем зв’язку, де внаслідок впливу атмосферних явищ траєкторія проходження лазерного променя постійно зміщується, а сам лазерний пучок зазнає значних дефектів внаслідок чого визначення його центру дає велику похибку.
Атмосферно-оптичні лінії зв’язку з
використанням лазерного променя набувають все більшого поширення завдяки тому, що в порівнянні з існуючими системами передачі даних вони мають ряд переваг:
- дсутність необхідності прокладання кабельних мереж;
- малий кут розходження променя, а отже менше енергоспоживання;
- можливість створення каналу без необхідності сплати за частоту.
Саме тому актуальною стає задача оброблення зображень плям лазерних пучків та розробки такого методу класифікації зображень, який, фільтруючи деформовані зображення, дозволить обчислити і спрогнозувати координати енергетичного центру нечіткого зображення з найкращою ефективністю і за прийнятний час.
Інститут фізики напівпровідників ім. В. Є. Лаш-карьова НАНУ.
У розвиток теоретичних і практичних основ обробки і розпізнавання зображень вагомий внесок зробили дослідження українських і зарубіжних учених: С. В. Абламейка, О. Г. Івахненка, Є. П. Пу-тятіна, М. І. Шлезінгера, С. Г. Антощук, Д. Д. Пе-лешка, В. П. Кожем’яка [1, 2], А.А. Ярового [3], Б. П. Русина, Р. О. Ткаченка, О. Н. Романюка, В. М. Опанасенко, В. П. Широчина, Р. А. Воробеля, Д. А. Орлов [4], R. W. Hamming, J. J. Hopfield, W. K. Pratt, S. R. Cummings, Michael Y. Hu, Paulo J. L. Adeodato та ін.
3. Розробка методу та демонстраційного прикладу для класифікації зображень із застосуванням паралельно-ієрархічних мереж
Для класифікації плямоподібних зображень профілю лазерного променя застосуємо метод розпізнавання в паралельно-ієрархічних (ПІ) мережах на основі формування нормуючого рівняння. Використовуючи властивість інваріантості суми початкових елементів (2 ai) ПІ мережі до суми
k
хвостових елементів (2 a1t1) складемо систему
рівнянь для одержання таких коефіцієнтів налаштування wi wk-1 у вигляді (1), щоб можна було
сформувати нормуюче рівняння (2):
2 <
_ t=2____
1 (a121+2 ai')
(an +2a3) (an +2a3)
a
11
2
(1)
2. Літературний огляд
Системи передачі даних за допомогою лазерного променя Free Space Optic широко застосовуються і активно розвиваються.
В задачах профілювання лазерних променів це підтверджують наукові дослідження та програмно-апаратні розробки таких провідних корпорацій США, як Spiricon Inc. (Logan, Utah, USA), Photon Inc. (San Jose, California, USA), Coherent Auburn Group (Auburn, California, USA). Подібні дослідження активно здійснюються науковими школами, різних країн СНД: наприклад, в Росії - НВО “Астрофізика”, ЗАТ “Космічні інформаційні аналітичні системи”, ФГУП Всеросійський науково-дослідний інститут оптико-фізичних вимірювань; в Україні -
НДІ Лазерної техніки і технології НТУУ “КПІ”,
w
k -2
wk-
1
k
2 an t _ 2 w1a121 + W2 a131 + — + wk- 2
(a111 +2 ai1 i ) a-1+2 ak-1) i
2 an t=2 2 . 3 . k-1 wa! + w an + + wk-2 an
(a1k1 +2 ai) (a1k1 +2 ai)
i i
k ^ ^ k
У виразах (1) та (2) 2 a1( - еталонні, 2 a ,
t_2 i
a2 ^ a* - поточні складові (ознаки) зображення, що розпізнається.
Для нормування результатів ПІ мережі з коефіцієнтами налаштування, що одержані на основі коефіцієнтів вигляду (1), використовуємо основну
k
властивість ПІ мережі - 2 a1( =2 ai. Тоді ліва частина
t_2 i
41
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
нормуючого рівняння (2) представляє відношення суми добутків усереднених значень коефіцієнтів налаштування і хвостових елементів до суми хвостових елементів мережі, а права при правильному розпізнаванні - наближається до одиниці, тобто d ^ 1. Ступінь цієї близькості до одиниці відбиває міру подібності розпізнаваних зображень і в ідеальному випадку при правильному розпізнаванні d «1.
d = -
Z ah Z ah
Z ah Z ah
Z wt-ia‘11
■—>----------• (2)
Z ah
Використовуючи нормуюче рівняння (2), у якому w=w2 =• • *=щ-2 =w>k-1 =1, можна по прийнятому значенню d достатньо просто здійснити попередню процедуру класифікації зображень, а потім відповідно до системи (1) сформувати коефіцієнти налаштування w1 + wk-1, тим самим здійснивши
процедуру визначення вагових коефіцієнтів для кожного класу.
Зокрема, якщо здійснювати класифікацію зображень у реальному часі й аналізувати, наприклад, сусідні кадри відеотраси лазера, то нормуюче рівняння (2) набуває наступного вигляду:
де
- сума хвостових
елементів і значення хвостових елементів зображень, відповідно, попереднього (/-го) і наступних кадрів (j+1), j - номер кадру, j = 1, m -1.
З огляду на наведену властивість ПІ мережі нормуюче рівняння (4) набуває такого вигляду.
d =
(g,)"1 + (/
(Z4 й< У
(4)
Тоді для нормування результатів оброблення вхідних даних (a1^ aN) j + 1-го кадру можна істотно
скоротити час розпізнавання в ПІ мережі на час обробки j +1 -го кадру.
При обробленні послідовності зображень можливо використання нормуючого рівняння для сусідніх двох зображень, у яких перше приймається як еталонне. Тоді нормуюче рівняння прийме наступний вигляд:
де коефіцієнти налаштування w1 + wk отримані при
попередній обробці на перших зображеннях набору; (a1'1)j,(aj1)j-1 - хвостові елементи відповідно
поточного і попередніх зображень.
При вказаних розрахунках використовуємо паралельні алгоритми для підрахунку суми масиву даних з використанням методу програмної бібліотеки thrust::reduce(). Для подальшої обробки необхідно обирати лише визначені значення d, що більші деякого порогу.
Демонстраційний приклад оброблення та класифікації фрагменту зображення у ПІ мережі на основі формування нормуючого рівняння наведено нижче.
Нехай задано квадратну матрицю Аі, розмірністю 3x3:
Л =
( 2 4 1
8 2) 2 5
19 3
Перша ітерація. G-перетворення:
(6 6 0 ) Лп =64 1
I3 4 I6.
Транспонування:
Лп.
(6 6 3 N
6 4 4
\0 1 l6,
Друга ітерація. G-перетворення:
( 9 6 )
Л2 = 12 2
\ 2 I5 ,
Зсув: (9 6 0 0 N
Л22 = 0 12 2 0
\0 0 2 l5,
Хвостовий елемент - a\1 = 9 . Транспонування:
(6 12 0 N
Л= ^22T 0 2 2
\0 0 l5,
W1(aj1)J + W2(a121)J Z Gnl-1 ZGnV-1
wt-1(a1k1-1) j + wk (ah) j =Z wt (a11) , (5)
Z (a/) j -1 Z (a/)J-1 Z (a/V-1
Третя ітерація. G-перетворення: (12 6)
Л3 =
4
15
42
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
Зсув:
Л =
/12 6 0)
0 4 0
0 0 15 ,
Хвостовий елемент - а/ = 12 . Транспонування:
A =
6 4 0
0 0 15
Четверта ітерація. G-перетворення:
A4 =
8 2 0 15
Зсув:
A44
2
Хвостовий елемент - а/ = 8 .
Транспонування: A44T = (2 15)
П ’ята ітерація.
A5 =(4 13)
Хвостовий елемент - а/ = 4. Хвостовий елемент - а51 = 13.
Перевірка: {та) = (І«;1 ). В
підрахунків отримуємо 46=46.
Сформуємо нормуюче рівняння:
результаті
Т ап
1 (ал + Т °і)
І
Т ап
(ап + Т ai3) (ап + Та3)
t= 2
W-2
Wk-1
Т ап t=2 w1a121 + w2a131 + • • • + wk-3< 2
(ап1+Т аІ І 1) а-1+т ak-1) І
Т ah t=2 wa2 + w2 a131 + • + wk 2 a^ 1
(ап +Т аІ) (a1k1 +Т аІ)
І І
Т а2 = 4 + 2 + 5 = 11,
І
Т а] = 1 +19 + 3 = 23,
І
w1
w
2
46
12 +11 46
8 + 23
= 2,
«1,484,
d =
Т ah
11
Т ап
wk-а ~
Т ап
k
Т w-1а11
t=2_______
k
Т ап
d = (2 * 9) +(1,484 *12) = 0,778.
46
Отже, зображення з малим ступенем спотворення. Проведений порівняльний аналіз показує, що запропоновані методи дозволяють здійснити оброблення та аналіз плямоподібних зображень у реальному часі з підвищеною точністю [5] вимірювання координат енергетичного центру (ЕЦ) як складових характеристик профілю лазерного променя (до 1,5 пікселя), які за точністю перевершують відомі, наприклад на основі визначення центру ваги за допомогою моментних ознак, у середньому в 1,5 рази. В проведених експериментах досліджено 14 відеотрас лазера з кількістю зображень - 2044 в кожній трасі. Проведені експерименти показують, що для зображень відеотрас лазера у результаті дії різноманітних дестабілізуючих чинників неможливо точно виміряти координати їх ЕЦ. Тому, в роботі запропоновано метод вимірювання координат на основі аналізу взаємного розташування двох сусідніх зображень профілю лазерного променя. Результатом аналізу такого взаємного розташування двох сусідніх зображень є скориговане значення координат ЕЦ поточного зображення. На рис. 1 представлено результати класифікації плямоподібних зображень профілю лазерного променя. Такий принцип вимірювання координат ЕЦ дозволяє виключити застосування неточних процедур на основі різноманітних апроксимуючих операторів [6-8].
Рис. 1. Результати класифікації плямоподібних зображень профілю лазерного променя
4. Розробка програмної моделі паралельно-ієрархічних мереж на основі GPU-орієнтованої апаратної платформи для реалізації класифікації плямоподібних зображень
Розглянемо реалізацію ПІ перетворення на основі GPU-орієнтованої апаратної платформи [3] з подальшою їх класифікацією. Мережевий метод прямого перетворення у ПІ мережі полягає в послідовному застосуванні до початкових множин
43
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
S
U Us
по одному разу операторів G -перетворення і
транспонування (T), а потім (д _ 1) раз функціонала О:
k ґ ґ s ТІ
О T G U Us
= 2 V S=1 V J)
(6)
де JUs - початкові множини ^ = 1,2,3,...), а^1 -
елементи розкладання початкових множин, одержувані по одному на кожному рівні, починаючи з другого.
Відповідно до даної математичної моделі ПІ перетворення зображень (6), та запропонованого методу розпізнавання в ПІ мережах на основі формування нормуючого рівняння розроблено схему алгоритму, який реалізує ПІ перетворення та класифікацію зображень на основі паралельних GPU-систем. В ході алгоритму виконуються такі основні етапи.
1. Завантаження зображення розмірністю nxm в пам’ять комп’ютерної системи, де відповідно n -висота, m - ширина зображення.
2. З метою прискорення швидкодії обчислень та оптимізації проміжних результатів оброблення інформації у ПІ мережі зберігатимемо лише дані про кожен піксель зображення, значення якого відмінне від нуля. Вказані дані зберігатимемо у власній програмній структурі, що містить три поля: значення (val), рядок (r), стовпець (с):
struct elem {
int val, r, c;};
3. Введемо ще одну програмну структуру
розмірністю [n*m], що містить максимально
можливу кількість ненульових елементів матриці зображення і заповнимо її даними при кожному ненульовому елементі.
4. Введемо дві змінні L та R, відповідно ліва і права границя, в межах яких ми працюємо з нашим масивом даних. Ініціалізуємо їх (змінна L=0, а змінна R рівна кількості ненульових елементів).
Відповідно до виразу (6) в основі ПІП є три операції: транспонування (Т), G-перетворення (G), зсув (S). Розглянемо детальніше їх реалізацію на GPU.
4. 1. Транспонування (Т)
У масиві даних, в межах [L, R), для кожного елемента паралельно змінюємо місцями значення рядка (r) та стовпця (с). Відповідно змінюємо місцями значення n та m. Отримані дані є транспонованими, проте необхідно впорядкувати масив в межах [L, R), оскільки можлива ситуація, при якій буде неправильний порядок даних в масиві. Впорядковуємо масив в межах [L, R)
використовуючи таку логіку. Елемент А передує елементу В, якщо значення рядка елемента А менше, ніж значення рядка елемента В. У випадку їх рівності - значення стовпця А менше, ніж значення стовпця В. Операцію сортування виконуємо паралельно,
використовуючи метод програмної бібліотеки thrust::sort() і власно створений компаратор.
4. 2. G-перетворення (G)
Впорядковуємо масив у межах [L, R) використовуючи вище описану логіку стосовно рядків матриці та процедуру сортування. Таким чином всі рядки матриці будуть впорядковані за зростанням. Для кожного рядка матриці паралельно підраховуємо, яку кількість елементів він містить. Вводимо змінну sum = 0.
Паралельно для кожного рядка матриці здійснюємо обчислення результатом яких є новоутворені елементи у перетвореній матриці. Вони визначаються як добуток елемента матриці на кількість ненульових елементів, тобто: int tmp_val = (data[cur].val - sum) x (row_cnt[i] - j).
Якщо в результаті перетворення утворюється ненульовий елемент, то записуємо його в рядок матриці та, відповідно, змінюємо значення суми:
sum += (data[cur].val - sum).
При цьому змінна R рівна сумі змінної L та кількості утворених ненульових елементів, а m -відповідно, максимальній кількості ненульових елементів в новоутворених рядках матриці. Процедуру знаходження максимального значення елемента в масиві виконуємо паралельно з використанням методу програмної бібліотеки thrust::reduce().
4. 3. Зсув (S)
Присвоюємо значення змінній L = L + 1. В масиві даних, в межах [L, R), для кожного елемента до значення стовпця додаємо значення рядка та віднімаємо 1 (індексація з 0). Таким чином
здійснюємо зсув i-того рядка. Процедуру додавання здійснюємо паралельно для кожної комірки масиву даних. В отриманому масиві даних, в межах [L, R), паралельно знаходимо максимальне значення стовпця та присвоюємо m цьому значенню, з використанням методу програмної бібліотеки thrust::reduce().
5. У результаті виконуємо копіювання отриманих та введених даних на GPU та виконаємо пряме оброблення інформації у ПІ мережі. Оброблення інформації у ПІ мережі здійснюємо доти, доки в результаті оброблення не залишиться один елемент, тобто доки L<R—1. Елементи в межах (0, L] є хвостовими елементами (результатом прямого оброблення у ПІ мережі).
5. Процес визначення центру максимальної інтенсивності випромінювання при обробленні плямоподібних зображень лазерного променя
Сутність процесу полягає у визначенні центра максимальної інтенсивності зображення
використовуючи метод знаходження центра мас. В загальному випадку центр максимальної інтенсивності можна визначити за таким виразом [6-8]:
44
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
n m
ЕЕ^ о
i=1 j=1_
ЕЕо
i=1 j=1
(7)
де Г - радіус-вектор центра максимальної інтенсивності; Fj - радіус-вектор поточного піксели
з координатами (i;j); о. - інтенсивність поточного
піксели з координатами (i;j); n - висота зображення в пікселях; m - ширина зображення в пікселях.
Враховуючи те, що є можливість спроектувати всі вектори на одну площину та при цьому вираз (7) не втратить сенсу, а також те, що ми працюємо з двовимірною ортогональною системою координат, для кожної координати можна записати такі вирази:
x =
i=1 j=1
ЕЕо
y =
ЕЕ Уа
i=1 j=1
О
ЕЕо
i=1 j=1 i=1 j=1
де x - абсциса центра максимальної інтенсивності; y - ордината центра максимальної інтенсивності; x.. - абсциса поточного пікселя з координатами (i;j);
y - ордината поточного пікселя з координатами
•У .
(i;j);
Якщо обрати за початок відліку верхній лівий кут зображення, то дані вирази приймуть вигляд:
n m n m
ЕЕi-о ; ЕЕj-о . (9)
i=1 j=1 i=1 j=1
x =—-------- y =-----------
n m s n m
ЕЕо ЕЕо
i=1 j=1 i=1 j=1
Необхідно відзначити, що запропонований спосіб вимірювання центра максимальної інтенсивності плямоподібного зображення лазерного променя, з одного боку, є достатньо зручним для моделювання та програмної реалізації, а також, з іншого, показує достатньо непогані результати при обробці плямоподібних зображень різних геометричних форм. Це важливо, оскільки методи визначення центру максимальної інтенсивності плямоподібного зображення лазерного променя, в даній роботі, призначені для підвищення продуктивності оброблення, а також швидкості прогнозування поведінки плями в реальному часі.
Розглянемо основні етапи для класифікації та прогнозування координат енергетичних центрів зображень плям лазерного променя [6].
1. Етап оброблення (сегментування) зображень на основі методу S- препарування. Після попередньої обробки зображень, і виділення фону та об’єкту - зображення лазерної траси, поставимо задачу високоточного визначення та прогнозування координат його енергетичного центру.
2. Етап виділення граничних ліній. Починаючи від визначеного на зображенні пікселя із максимальним значенням яскравості формують N значень яскравості: Bmax - L, де L=1,...,N. Крайні точки із значенням яскравості “Bmax - L” сформують
граничну лінію.
3. Етап визначення попередніх центрів. Під координатами точки прив’язки (x,y) (далі - точкою прив’язки) ми розуміємо координати енергетичного центру плямоподібного зображення лазерного променя Z(n(t)), що повинні залежати лише від сигналу Z(t), а також інваріантні до функції деформації n(t). Координати (x,y) енергетичного центру двовимірного сигналу з питомою нелінійною щільністю w(f (x, y)), що відповідає даному значенню f (x, y) (далі щільністю), виражаються так:
і N-1N-1
x=77 ЕЕт (f (x,y Ж;
7 x=0 y=0
1 N-1N-1
y = 77 ЕЕЮ (f (x,y Ж
7 x=0 y=0
де 7 - моментна ознака.
m=Е Е ® (f (x,y)),
x =0 y=0
4. Етап сегментування граничних ліній. Для розбиття граничних контурів на декілька частин в якості точки прив’язки використовуємо координати попереднього ЕЦ плямоподібного зображення лазерного променя. Далі, скануємо кожну ділянку отриманого сегмента граничної лінії (у полярних координатах) через визначений інтервал. Обрані точки будуть надалі використовуватися, як дані для апроксимації (коефіцієнти апроксимації c2, c3). Для кожного сегмента граничної лінії знаходимо зсув граничної лінії в цьому напрямі (АХ, AY).
5. Етап апроксимації граничних ліній. Для кожного сегмента граничної лінії методом найменших квадратів здійснюємо апроксимацію та визначаємо коефіцієнти апроксимації.
6. Етап пошуку еталонного зображення. Для навчальної вибірки визначаємо для кожного сегмента усереднені значення відношення коефіцієнтів
_ с
апроксимації ( q = 2 , де i - номер сегмента,
i C
i=1,..4). В проведених експериментальних
дослідженнях для навчальної вибірки
використовувалося 50 % зображень.
7. Етап "тунелювання" [9] - здійснюється за
усередненими коефіцієнтами апроксимації. Межі тунелю визначаємо на основі тих зображень, у яких найбільш близько, за мінімумом
середньоквадратичного відхилення, підходять поточні значення коефіцієнтів апроксимації до
еталонних значень C1, C2, C3, С4 ліворуч і
праворуч від них. Потім ці близько зміщені значення усереднюємо та формуємо межі тунелю: ліворуч і праворуч. На рис. 2 всередині пунктирних ліній знаходяться значення відповідних C1, C2 , C3, C4 для всіх зображень. Відповідно, для них знаходимо
усереднені значення С1, С2, С3, С4. Суцільні лінії
є межами сформованого тунелю для відповідних сегментів.
45
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
Cl C2 C3 C4
Рис. 2. Процес формування тунелю за усередненими коефіцієнтами апроксимації
8. Етап навчання ПІ мережі. Формуємо еталонну структуру ПІ мережі для відповідного еталонного зображення. Таким чином, формуємо еталонну ПІ мережу для тих зображень, що формують визначені межі тунелю ліворуч і праворуч від центрального тунелю.
9. Етап оброблення поточних зображень. На цьому етапі також визначаються відношення С2/С3 для кожного сегмента (виконуються етапи 1-7 наведеного алгоритму). У випадку влучення значення С2/С3 в один із тунелів і збігу результатів перетворення у ПІ мережі для еталонного і поточного зображень останнє вважається зображенням з малим ступенем спотворення, у протилежному випадку -зображенням з великим ступенем спотворення. Якщо поточне зображення класифіковано, як зображенням
3 малим ступенем спотворення, то відповідно з етапу
4 для нього обчислюється зсув Sx , 8y.
10. Етап оптимізації ваг. Для зображень з малим ступенем спотворення здійснюємо оптимізацію вагових коефіцієнтів. Координати енергетичного центру таких плямоподібних зображень профілю лазерного променя формують остаточний результат.
11. Етап прогнозування координат зображень плям лазерних пучків.
На рис. 3 зображено приклад екранної форми опції „Детальний розгляд”, що дозволяє користувачеві, за допомогою додаткової опції „Open Frame Image”, завантажити початкове зображення та розрахувати його крайові лінії та їх центри, з їх одночасним відображенням на екрані за шістьма рівнями інтенсивності, а також визначити координати ЕЦ зображення. З * * *
F 1 Level Intensity F 2 Level Intensity F 3 Level Intensity F A Level Intensity F" 5 Level Intensity F 6 Level Intensity
Рис. 3. Екранна форма опції „Детальний розгляд” програмного продукту для оброблення зображень відеотраси лазера
З фізичного моделювання можна зробити
висновок, що звичайний персональний комп’ютер не
може бути використаний для обробки у реальному часі, оскільки середній час обробки більше, ніж час
надходження кадрів (для камери зі швидкістю 25 кадрів/с , відповідно час обробки одного кадру не
може перевищувати 40 мс). Все це робить застосування GPU прискорювачів набагато вигіднішими для використання у спеціалізованих комп’ютерних системах.
6. Аналіз результатів експериментальних досліджень
Для точного вимірювання положення енергетичних центрів зображень плям лазерних пучків шляхом визначення центру ваги [7, 8]
розроблено програмне забезпечення.
Рис. 4. Головна екранна форма розробленого програмного продукту для оброблення зображень відеотраси лазера
Для початку роботи зі зображеннями лазерної траси її файл необхідно відкрити через діалогове вікно вибору файлу траси. Розроблений програмний засіб містить вікно для ілюстрації динаміки руху плям лазерних пучків по осях Х і Y, графік прогнозу їх руху, а також такі інформаційні блоки :
1) інформація про відеотрасу;
2) визначення центру ваги (ЕЦ плямових образів лазерної траси);
3) статистичні параметри;
4) прогнозування.
Після завантаження файлу траси інформаційний блок 1 автоматично заповнюється інформацією про кількість кадрів, що містяться в трасі, ширині і висоті кадру (в пікселях), глибині кольору (в бітах) і про кількість кадрів (у секунду).
Автоматично заповнюється інформаційний блок 3 інформацією про мінімальні і максимальні значення координат по осях X і Y відповідно, а також про середні значення координат і середні квадратичні відхилення координат по всій трасі по осях X і Y.
В інформаційному блоці 2 обчислення центра ваги відбувається динамічно в реальному часі при роботі з файлом при фіксації наступних параметрів:
- положення енергетичного центру пучка по осях X і Y в пікселях з точністю до третього знака після коми;
- відхилення енергетичного центру пучка по осях X і Y від середніх значень в пікселях з точністю до третього знака після коми;
- номер кадру.
Інформаційний блок 4 програмної реалізації прогнозування призначений для прогнозування координат розташування енергетичних центрів
46
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
лазерних трас і регулювання наступних параметрів прогнозування:
- крок дискретизації прогнозування;
- кількість кроків, які необхідно спрогнозувати;
- значення точності, яке буде враховуватися при прогнозуванні.
Для перевірки ефективності роботи розробленої програмної реалізації проводилися експерименти над образами плям лазерних трас, для чого використовувались роботи [10-13].
Бази містять послідовності кадрів плям лазерних пучків, що формують окремі траси. Кожна траса складається з фрагментів (від двох до п’яти тисяч), отриманих від приймального пристрою з
періодичністю 40 мс. Зображення образу мають розмірність 128^128 е.р.
Для перевірки розробленого методу та визначення ефективності його роботи проводилися експерименти по прогнозуванню на один крок положення енергетичних центрів зображень лазерних пучків на основі відомих нейронних мереж (табл. 1). Прогнозування виконувалося на один крок. Експерименти промодельовані в програмі STATISTICA 6.0 [14]. Максимальна відносна
похибка dx max менша при використанні нейронних мереж, тому вони є більш бажаними для застосування в порівнянні з чисельними методами.
Таблиця 1
Результати експериментальних досліджень з прогнозування часових рядів, отриманих за допомогою ________________відомих типів нейромереж та паралельно-ієрархічної мережі______________________
Тип мережі Середня похибка прогнозування, % Максимальне значення похибки прогнозування, %
Radial basis function S1 1,63 5,81
Linear S5 1,63 4,74
Linear S3 1,63 4,75
Multilayer perceptron 5-8-4 1,63 5,04
Multilayer perceptron 5-5-4 1,63 5,04
Паралельно-ієрархічна 0,55 1,23
Time-Delay Neural Network 0,75 3.86
Похибки обчислювалися наступним чином:
Е|(Хпрогн. -Xтек.)/Хтек.|
^N-----------------------100% ,
^max = maX(j(Xпрогн. -Xтек.)/Хтек.|) ,
де Хрогб - прогнозоване значення координати; Хпот - поточне значення координати. 7
7. Висновки
Отже, дослідження численних прикладів підтверджують доцільність застосування
розробленого методу для задач кореляційного порівняння і прогнозування характеристик зображень, зокрема в задачах ідентифікації зображень для систем профілювання лазерних променів.
Проведене моделювання паралельно-ієрархічних мереж для класифікації та розпізнавання плямоподібних зображень лазерного променя в реальному часі, які використовують пряме перетворення у паралельно-ієрархічних мережах на основі формування нормуючого рівняння, що дозволяє в середньому в 1,5 рази підвищити точність класифікації в процесах профілювання лазерного променя. Експерименти показують, що метод прогнозування положення енергетичних центрів плям лазерних пучків з використанням ПІ мережі в порівнянні з відомими структурами нейронних мереж, які виконують таке ж прогнозування, більш ефективний і має істотно менші середню та максимальну похибки прогнозування.
Література
1. Кожем’яко, В. П. Вступ в алгоритмічну теорію
ієрархії і паралелізму нейроподібних обчислювальних середовищ та її застосування до перетворення зображень. Основи теорії пірамідально сітьового перетворення зображень [Текст] : посібник / В. П. Кожем’яко,
Л. І. Тимченко, Ю. Ф. Кутаев, І. Д. Івасюк. - К.: УМК ВО, 1994. - 272 с.
2. Кожем’яко, В. П. Паралельно-ієрархічні мережі як
структурно-функціональний базис для побудови
спеціалізованих моделей образного комп’ютера [Монографія] : / В. П. Кожем’яко, Л. І. Тимченко,
A. А. Яровий. - Вінниця: Універсум-Вінниця, 2005. - 161 с.
3. Яровий, А. А. Аналіз обчислювальної складності
GPU-орієнтованих паралельно-ієрархічних
обчислювальних систем та оцінювання продуктивності їх апаратного забезпечення [Текст] / А. А. Яровий,
Н. І. Кокряцька, С. В. Наконечна, М. С. Матейчук, Т. Д. Польгуль // Оптико-електронні шформацшно-енергетичні технології. - 2014. - № 1 (27). - С. 18-25.
4. Orlov, D. A. Determination of the position of the center of a laser beam when the dynamic range of the matrix receiver is exceeded [Тегі] / D. A. Orlov, E. A. Neverova // Measurement Techniques. - 2011. - Vol. 53, Issue 10. -Р. 1140-1146. doi: 10.1007/s11018-011-9631-1
5. Поплавский, А. А. Использование градиентных масок для быстрого определения центров изображений пятен лазерных пучков с повышенной точностью [Текст] / Л. И. Тимченко, Н. И. Кокряцкая, А. В. Поплавский // Штучний інтелект. - 2010. - № 3. - С. 422-426.
6. Тимченко, Л. І. Метод знаходження
енергетичних центрів фрагментів лазерних протяжних трас в реальному масштабі часу для розпізнавання образів [Текст] : пр. 9-ї всеукр. міжнар. конф. / Л. І. Тимченко,
B. В. Мельніков, Н. І. Кокряцька та ін. // Оброблення сигналів і зображень та розпізнавання образів, 2008. -
C. 213-216.
7. Тимченко, Л. І. Новий метод прогнозування із
47
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
застосуванням паралельно-ієрархічної мережі [Текст] : матер. міжнар. наук.-техн. конф. / Л. І. Тимченко, Н. І. Кокряцька, В. В. Мельніков, С. В. Наконечна // Штучний інтелект. Інтелектуальні системи, 2012. -
С. 59-62.
8. Тимченко, Л. І. Новий метод прогнозування із застосуванням паралельно-ієрархічної мережі [Текст] / Л. І. Тимченко, Н. І. Кокряцька, В. В. Мельніков, С. В. Наконечна // Штучний інтелект. - 2012. - № 3. -
С. 96-104.
9. Timchenko, L. Method of reference tunnel formation for improving forecast results of the laser beams spot images behavior [Text] / L. Timchenko, A. Poplavskyy,
N. Petrovskyi, at al. // J. Opt. Eng. - 2011. - Vol. 50, Issue 11. - Р. 1-8. doi: 10.1117/1.3655502
10. Абдрахманов, К. Ш. Стандартизация методов
измерений ширин, углов расходимости и коэффициентов распространения пучков лазерного излучения (Измерение расходимости лазерного пучка) [Текст] /
К. Ш. Абдрахманов, О. Г. Быкова, М. В. Улановский // Метрология. - 2010. - № 2. - С. 23-44.
11. Быкова, А. Г. Стандартизованные методики измерений мощности, энергии и временных характеристик лазерного пучка [Текст] / А. Г. Быкова, А. А. Либерман, М. В. Улановский // Метрология. -2009. - № 12. - С. 15-30.
12. Fujiwara, Y. Demelenne Optical inter-orbit communications engineering test Satellite [ТехГ] /
Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kunimori, Z. Sodnik, A. Bird, B. // Acta Astronauts. - 2007. - Vol. 61, Issue 1-6. - Р. 163-175. doi: 10.1016/j.actaastro.2007.01.021
13. Garcia-Zambrana, A. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels [ТехГ] / A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez // Optics Express. - 2010. - Vol. 18, Issue 6. - Р. 5356-5366. doi: 10.1364/oe.18.005356
14. Боровиков, В. П. Statistica. Искусство анализа данных на компьютере [Текст] / В. П. Боровиков; 2-е изд. - СПб.: Питер, 2003. - 688 с.
References
1. Kozhem'iako, V. P., Tymchenko, L. I., Kuta-ev, Yu. F., Ivasiuk, I. D. (1994). Vstup v alhorytmichnu teoriiu iierarkhii i paralelizmu nejropodibnykh obchysliuval'nykh seredovysch ta ii zastosuvannia do peretvorennia zobrazhen'. Osnovy teorii piramidal'no sit'ovoho peretvorennia zobrazhen' [Introduction to algorithmic theory of hierarchy and parallelism neural computing environments and its application to image conversion. Basic theory of network pyramid image conversion]. Kyiv: UMK VO, 272. [in Ukrainian].
2. Kozhem'iako, V. P., Tymchenko, L. I., Yaro-vyj, A. A. (2005). Paralel'no-iierarkhichni merezhi iak strukturno-funktsional'nyj bazys dlia pobudovy spetsializovanykh modelej obraznoho komp'iutera [Parallel-hierarchical network as a structural and functional basis for building specialized models shaped computer]. Vinnytsia: Universum-Vinnytsia, 161. [in Ukrainian].
3. Yarovyj, A. A., Kokriats'ka, N. I., Nakonechna, S. V., Matejchuk, M. S., Pol'hul', T. D. (2014). Analiz obchysliuval'noi skladnosti GPU-oriientovanykh paralel'no-iierarkhichnykh obchysliuval'nykh system ta otsiniuvannia produktyvnosti ikh aparatnoho zabezpechennia [Analysis of computational complexity GPU-oriented hierarchical parallel computing and performance evaluation of hardware]. Optyko-elektronni informatsijno-enerhetychni tekhnolohii - Opto-electron Information technology the energy, 1 (27), 18-25 [in Ukrainian].
4. Orlov, D. A., Neverova, E. A. (2011). Determination
of the position of the center of a laser beam when the dynamic range of the matrix receiver is exceeded. Measurement Techniques, 10 (53), 1140-1146 [in English].
doi: 10.1007/s11018-011-9631-1
5. Poplavskiy, A. A., Timchenko, L. I., Kokryats-kaya, N. I., Poplavskiy, A. V. (2010). Ispolzovanie gradientnyih masok dlya byistrogo opredeleniya tsentrov izobrazheniy pyaten lazernyih puchkov s povyishennoy tochnostyu [Using gradient masks for the rapid determination of the centers of spot images of laser beams with high accuracy]. Shtuchniy Intelekt -Artificial Intelligence, 3, 422-426 [in Russian].
6. Tymchenko, L. I., Mel'nikov, V. V., Kokriats'-ka, N. I. (2008). Metod znakhodzhennia enerhetychnykh tsentriv frahmentiv lazernykh protiazhnykh tras v real'nomu masshtabi chasu dlia rozpiznavannia obraziv [The method of the energy centers of fragments laser longest runs in real-time pattern recognition], pr. 9-i vseukr. mizhnar. konf. Obroblennia syhnaliv i zobrazhen' ta rozpiznavannia obraziv -Signal processing and image and pattern recognition, 213-216 [in Ukrainian].
7. Tymchenko, L. I., Kokriats'ka, N. I., Mel'nikov, V. V., Nakonechna, S. V. (2012). Novyj metod
prohnozuvannia iz zastosuvanniam paralel'no-iierarkhichnoi merezhi [A new forecasting method using the parallel-hierarchical network], materialy mizhnar. nauk.-tekhn. konf. Shtuchnyj intelekt. Intelektual'ni systemy - Artificial Intelligence. Intelligent Systems, 59-62 [in Ukrainian].
8. Tymchenko, L. I., Kokriats'ka, N. I., Mel'nikov, V. V., Nakonechna, S. V. (2012). Novyj metod
prohnozuvannia iz zastosuvanniam paralel'no-iierarkhichnoi merezhi [A new forecasting method using the parallel-hierarchical network]. Shtuchnyj intelekt - Artificial Intelligence, 3, 96-104 [in Ukrainian].
9. Timchenko, L., Poplavskyy, A., Petrovs-
kyi, N. (2011). Method of reference tunnel formation for improving forecast results of the laser beams spot images behavior. J. Opt. Eng, 50 (11), 1-8 [in English].
doi: 10.1117/1.3655502
10. Abdrahmanov, K. Sh., Byikova, O. G.,
Ulanovskiy, M. V. (2010). Standartizatsiya metodov izmereniy shirin, uglov rashodimosti i koeffitsientov rasprostraneniya puchkov lazernogo izlucheniya (Izmerenie rashodimosti lazernogo puchka) [Standardization of methods of measurement of width, divergence angles and beam propagation ratios of laser radiation (laser beam divergence measurement)]. Metrologiya - Metrology, 2, 23-44
[in Russian].
11. Byikova, A. G., Liberman, A. A., Ulanovskiy, M. V. (2009). Standartizovannyie metodiki izmereniy moschnosti, energii i vremennyih harakteristik lazernogo puchka [Standardized methods of measuring power, energy and temporal characteristics of the laser beam]. Metrologiya -Metrology, 12, 15-30 [in Russian].
12. Fujiwara, Y., Mokuno, M., Jono, T., Yamawa-
ki, K., Arai, M., Toyoshima, H., Kunimori, Z., Sodnik, A., Bird, B. (2007). Demelenne Optical inter-orbit communications engineering test Satellite. Acta Astronauts, 61 (1-6), 163-175 [in English].
doi: 10.1016/j.actaastro.2007.01.021
13. Garcia-Zambrana, A., Castillo-Vazquez, C., Castillo-Vazquez, B. (2010). Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels. Optics Express, 18 (6), 5356-5366 [in English]. doi: 10.1364/oe.18.005356
14. Borovikov, V. P. (2003). Statistica. Iskusstvo analiza dannyih na kompyutere [Statistica. Art computer data analysis]. SPb.: Piter, 688. [in Russian].
48
Технічні науки
Scientific Journal «ScienceRise» №3/2(3)2014
Дата надходження рукопису 26.09.2014
Тимченко Леонід Іванович, доктор технічних наук, професор, кфедра телекомунікаційних технологій та автоматики, Державний економіко-технологічний університет транспорту, вул. Лукашевича, 19, м. Київ, Україна, 03049 Е-mail: timchen @ list.ru
Наконечна Світлана Вячеславівна, апірант, кфедра телекомунікаційних технологій та автоматики, Державний економіко-технологічний університет транспорту, вул. Лукашевича, 19, м. Київ, Україна, 03049
Е-mail: [email protected]
УДК 637.358.073:66-971.4
DOI: 10.15587/2313-8416.2014.27537
STUDY OF GELATIN INFLUENCE IN PRODUCT RESIPE THAT STRUCTURED ON THE ACTIVATION ENERGY
© P. Gurskyi, D. Prasol
Influence of gelatin on the loss of mass and speed of transformations which take place in a product structured at permanent speed of his heating is investigated by the thermogravimetric method. The energy dependence of processes activation that take place during melting of structured product is set.
Keywords: activation energy, endothermic transformations, thermogravimetry, endoeffects, thermoanalysis
Термогравіметричним методом досліджено вплив желатину на втрату маси та швидкість перетворень, що відбуваються в продукті структурованому за постійної швидкості його нагрівання. Встановлено залежність енергії активації процесів, які відбуваються під час плавлення продукту структурованого.
Ключові слова: енергія активації, ендотермічні перетворення, термогравіметрія, ендоеффекти,
термічний аналіз
1. Introduction
Most of the physical and chemical processes are accompanied by heat consumption (endothermic transformation) or release (exothermic transformation). Moreover, some of them may go in forward or reverse direction: melting-crystallization, boiling-condensation, polymorphic transformations. All these processes may be investigated while fixing mass and temperature changes [1, 2].
The determination of kinetic parameters of endothermic processes, which take place along with changes of mass under non-isothermal conditions was fulfilled with the help of differential thermogravimetry (DTG) and differential thermal analysis (DTA) using a derivatograph. Basic to these methods is the assumption that at constant rate of heating the values corresponding to the degree of mass change or heat consumption in the area of fixed beginning and maximal development of the process are proportional to the constant of transformation rate for each temperature value [2, 3].
The analysis of literary sources of domestic and foreign scientists rotined that application of curd unfat, concentrate of kernel of seed of sunflower and gelatin in composition food products is actual from point of providing of technology of production valuable albuminous raw material. Also scientific and in area of technologies of the combined food stuffs carried out specialists research on development of scientific direction, related to creation of technologies of feed from raw material of vegetable and animal origin.
Thermogravimetry researches of influence of gelatin on thermal firmness of product structured and energy of activating of water together with other scientific researches allow to specify compounding composition and temperature the range of thermal treatment [4].
2. Tasks of experiment
- research of processes which take place in a product structured with different maintenance of gelatin because of the intensive heating during his melting [4, 5];
- research of influence of gelatin on the size of losses of mass and thermal firmness of product of structured;
- determination of the power state of product of the gelatin structured depending on maintenance.
3. Conditions of the experiment
Thermogravimetry devices, in particular derivatograf Q-1000 (fig. 1), are one of the most rational thermo-analytical devices, by which with large exactness it is possible to define all quantitative changes in the samples which are accompanied diminishing or gain in weight in food products because of redistribution of moisture during thermal treatment [6].
An universal fourchannel registration device which tails to derivatograf allows to produce the record of processes which take place depending on time, or from a temperature.
49