Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦ1ЙН1 ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАН1ЗМИ
УДК 621.744.54
п. г. анофриев1*
1 Каф. «Прикладная механика», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 18, эл. почта [email protected], ОЯСГО 0000-0001-7997-3523
ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ КИНЕМАТИЧЕСКИХ ХАРАКТЕРИСТИК ФОРМОВОЧНОГО ВИБРОСТОЛА
Цель. Одним из эффективных способов получения отливок сложной формы является литье по газифицируемым моделям (ЛГМ) в вакуумируемые формы (контейнеры). Повышение качества этого способа литья требует совершенствования методики формовки. Формовочный процесс предусматривает послойное вибрационное уплотнение песка в контейнерах. Большинство линий участков ЛГМ оснащены вибростолами с инерционными вибраторами, с приводом от асинхронных электродвигателей, работающих на номинальных частотах вращения. Перспективным направлением совершенствования методики формовки является рациональная настройка таких параметров вибростола, как вибрационное перемещение, скорость и ускорение. Эти параметры определяются упруго-массовыми характеристиками системы «вибростол-форма» и возмущающими силами, создаваемыми инерционными вибраторами. Целью исследования является определение рациональных диапазонов настройки параметров вибраторов стола, при которых происходит качественное послойное уплотнение формовочного песка в форме. Методика. Критерием эффективности настройки характеристик вибростола приняты значения усредненных ускорений 6,5-7,5 м/с2, соответствующим наибольшей степени уплотнения сухого формовочного песка и диапазону значений ускорений 9-9,5 м/с2 для придания песку «псевдотекучести». Для целей исследования была разработана математическая модель колебаний подвижной части вибростола с двумя типами литейных контейнеров для установившихся и переходных режимов работы. Результаты. В процессе исследований колебаний формы на математической модели выполнены расчеты собственных частот колебаний при различных упруго-массовых характеристиках системы. Построены амплитудно-частотные характеристики (АЧХ) перемещений и ускорений подвижной части стола с контейнером, послойно заполненным формовочным песком. Научная новизна. Автором предложена методика определения диапазонов частотной настройки инерционных вибраторов стола, позволяющая получить качественное уплотнение сухого формовочного песка в форме. Практическая значимость. В процессе формовки, согласно технологии литья по газифицируемым моделям, из-за послойной засыпки модели формовочным песком масса формы возрастает. Изменение массовой характеристики формы требует оперативного изменения кинематической характеристики вибростола -вибрационного ускорения. Предложенная математическая модель позволяет определить диапазоны настройки частотных параметров инерционных вибраторов формовочного стола на всех этапах формовки.
Ключевые слова: вибрационное уплотнение; формовка; вибростол; математическая модель; собственные частоты; амплитудно-частотная характеристика
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
Введение
Технологическим процессом литья заготовок деталей сложной формы по газифицируемым моделям (ЛГМ) в вакуумируемые формы (контейнеры) предусмотрено заполнение полостей модели песком и последующее его уплотнение. Актуальность совершенствования способов уплотнения формовочного песка в литейных контейнерах, как одного из важных этапов процесса ЛГМ, отмечается в [11, 14, 15], при этом отсутствует единое мнение о параметрах вибрации форм с моделями, имеющими плохо заполняемые - «теневые» места.
В настоящее время на участках ЛГМ применяют вибрационный и газодинамический способы уплотнения песка [4, 5, 13, 16, 17, 18].
Большинство линий участков ЛГМ оснащены вибростолами с инерционными вибраторами с приводом от асинхронных электродвигателей и питанием трехфазным током частотой 50 Гц. Вибростолы проектировались под определенную номенклатуру отливок, близких по массе и сложности. Сегодня сильно возросла конкуренция в литейном производстве, и расширился перечень требуемых отливок. Для получения качественного литья необходимо изменять режимы и параметры вибрации стола в соответствии с параметрами новых отливок и физико-механическими свойствами литейных контейнеров.
Экспериментальные исследования показали хорошие результаты уплотнения разных кварцевых песков при правильно выбранных параметрах вибрации уже через 20 с работы вибраторов стола [7].
В настоящей работе определены кинематические параметры процесса формовки с применением вибростолов в линиях уже существующих участков ЛГМ. Для расчета этих параметров были разработаны математические модели работы вибростола в установившихся и переходных режимах. С помощью ПЭВМ в пакете Mathcad на математических моделях было исследовано влияние упруго-массовых характеристик и параметров вибраторов на динамику работы стола. Получено и решено частотное уравнение для определения критических частот вибростола. Построены амплитудно-частотные характеристики перемещений и ускорений вибростола
с двумя типами контейнеров и разным объемом загруженного в них формовочного песка.
Полученные в работе результаты расчетов и построенные алгоритмы в полном объеме могут использоваться на этапах модернизации упругих опор действующих вибростолов и полной автоматизации процесса вибрационного уплотнения на основе информационных технологий управления с использованием интерфейса Я8-485 и современных инверторов. Применение информационных технологий позволит полностью исключить ошибки оператора, управляющего виброуплотнением песка контейнеров, повысить производительность и качество литья.
Цель
Качественные отливки с использованием газифицируемых моделей получаются при условии качественного уплотнения сухого формовочного песка в литейных контейнерах. Эффект уплотнения насыпных грузов в основном определяется величиной ускорений воздействующих на песок. Экспериментальными методами определен диапазон рациональных значений усредненных ускорений 6,5-7,5 м/с2, соответствующий наибольшей степени уплотнения сухого формовочного песка, и диапазон значений ускорений 9-9,5 м/с2 для предания песку псевдотекучести. Для вибрационного уплотнения сыпучих материалов наиболее широко применяются инерционные вибраторы, создающие колебания в вертикальной и горизонтальной плоскостях. Наиболее высокие степени уплотнения материалов достигаются при работе вибраторов в диапазоне 8,3-36,7 Гц [2].
С целью минимизации энергетических и материальных затрат вибростолы с размещенными на них формами (контейнерами) настраивают для работы вблизи их собственных частот. Такая настройка хорошо подходит для уплотнения материалов с одинаковой массой. В литейном производстве деталей с использованием газифицируемых моделей формовочный песок засыпается в литейные контейнеры несколькими слоями, то есть масса контейнера в процессе формовки изменяется. Конфигурация моделей в большинстве случаев имеет сложную форму, поэтому перед уплотнением песка необходимо
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2016, № 6 (66)
обеспечить его движение в труднодоступные -«теневые» места моделей отливок.
Целью работы является определение значений настройки параметров вибростола, обеспечивающих заполнение «теневых» мест моделей отливок песком и последующее его уплотнение.
Для достижения указанной цели работы необходимо решить следующие задачи:
1. Разработать математические модели колебаний для установившегося и переходного режимов работы вибростола.
2. С помощью компьютерного моделирования динамики вибростола получить рациональные параметры упругих опор вибростола и диапазоны настройки рабочей частоты вибраторов для разных уровней заполнения литейных контейнеров песком.
Методика
В данной работе разработана математическая модель колебаний подвижной части вибростола с двумя типами литейных контейнеров в установившихся и переходных режимах работы. Математическая модель описывается системой обыкновенных дифференциальных уравнений второго порядка. Численное решение этих уравнений позволяет получить спектр собственных частот вибростола и амплитудно-частотные характеристики ускорений, действующих на сухой формовочный песок для различных значений упруго-массовых характеристик вибростола и параметров настройки его инерционных вибраторов. Анализ амплитудно-частотных характеристик ускорений разрешает определить рациональные параметры вибростола и режимы настройки вибраторов, соответствующие фазам псевдотекучести и уплотнения формовочного песка в литейных контейнерах.
Математическая модель колебаний вибростола с контейнером. При построении расчетной схемы вибростола (рис. 1) были приняты следующие допущения:
- рассматриваются малые колебания вибростола;
- вибростол, контейнеры с песком обладают сосредоточенными массами и абсолютно жесткие;
- амортизаторы вибростола имеют линейную характеристику восстанавливающей силы;
- восстанавливающая силовая характеристика амортизатора имеет две независимые составляющие: вертикальную и горизонтальную;
- энергия колебаний рассеивается только в амортизаторах за счет внутреннего трения и пропорциональна скорости;
- фундамент вибростола абсолютно жесткий;
- колебания спроецированы на плоскость ввиду симметричности вибростола;
- контейнер жестко установлен на вибростоле;
- установлен один вибратор, создающий возмущающую силу в вертикальной плоскости.
Рис. 1. Расчетная схема вибростола с контейнером
Fig. 1. Calculation model of the vibrating table with container
Горизонтальные вибраторы условно на схеме не показаны.
Колебательная система имеет три степени свободы: две линейных х, y и одну угловую а; m, J - приведенные инерционные характеристики стола и контейнера; mD - масса дисбаланса вибратора; е - эксцентриситет массы дисбаланса вибратора.
Уравнения свободных колебаний вибростола с контейнером. Свободные колебания вибростола с контейнером описываются уравнениями Лагранжа II рода [8, 9]
dt
где T, П - кинетическая и потенциальная энер-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з&шзничного транспорту, 2016, № 6 (66)
гии колебательной системы; ^ - время; qi, qi -
обобщенные координаты и скорости; Ф -функция рассеивания энергии.
В качестве обобщенных координат приняты координаты х, у, а центра масс колебательной системы.
Кинетическая энергия системы
T =
-2 ( mx2 + my2 + Ja2) .
Потенциальная энергия системы, накапливаемая при деформации амортизаторов
П = c1 y2 + (La)2 + c2 (x + ba)2.
Функция рассеивания энергии
o = ßj y2+(La)2 +ß2 (x+ba)2.
После подстановки кинетической и потенциальной энергий в уравнения Лагранжа II рода и алгебраических преобразований получены однородные дифференциальные уравнения движения, описывающие свободные колебания вибростола с контейнером без учета рассеивания энергии в системе
my + 2ci y = 0; mx + 2c2 x + 2c2ba = 0;
J a + 2c2bx + 2 (clL2 + c2b2) = 0.
Функция рассеивания энергии, как известно, не оказывает существенного влияния на собственные частоты систем [1], поэтому в уравнения Лагранжа не подставлялась. Первое уравнение системы описывает вертикальные колебания стола и не связано с остальными уравнениями, поэтому рассматривается отдельно от остальных. Второе и третье уравнения описывают горизонтальные и угловые колебания соответственно. Расчет инерционных характеристик колебательной системы выполнен на основании чертежей вибростола, контейнеров и фактической плотности формовочного песка. Инерционные характеристики двух типов контейнеров и подвижной части вибростола представлены табл. 1, 2. Условно, малый и большой
контейнеры названы «small» и «great» соответственно.
Таблица 1 Инерционные характеристики контейнеров
Table 1
Inertia characteristics of containers
Тип кон- Масса, кг
тейнера Контейнер Песок Общая
small 290 885 1 175
great 324 1 294 1 618
Окончание табл. 1 End of table 1
Тип кон-
Момент инерции, кг-м
тейнера Контейнер Песок Общая
small 53,5 94 178
great 69,6 174 281
Таблица 2
Инерционные характеристики столешницы вибростола с контейнерами
Table 2
Inertia characteristics of vibrating table countertop with containers
Главный
Тип контейнера Масса, кг 2
момент инерции, кг-м
small 1 756 387
great 2 200 519
Собственные частоты колебаний вибростола с контейнером. Наиболее качественно уплотнение песка происходит при работе виб-роуплотняющих установок на частотах, близких к собственным частотам колебаний [12].
Собственные частоты горизонтальных и угловых колебаний подвижной части вибростола с контейнером определяются при решении частотного уравнения
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
mJp4 - 2
mL2c
(J + mb2 )c
- 4c1c2 L2 = 0.
Собственная частота вертикальных колебаний подвижной части вибростола с контейнером
Р0 =
2c,
m
В процессе формовки масса контейнера изменяется. Вначале засыпают порцию песка и формируют так называемую «постель модели». Далее формовщик устанавливает модель и послойно засыпает ее песком. Каждому слою песка необходимо с помощью вибрации придать «текучесть», а затем его уплотнить.
С целью определения влияния массы песка на собственные частоты вертикальных, горизонтальных и угловых колебаний с помощью ПЭВМ в пакете Mathcad [6] были решены полученные выше частотные уравнения при следующих исходных данных (контейнер small):
m=1057...1756 кг; J=303...386 кг-м2 L=0,45 м; b=0,5 м; С;=2,04 МН/м; С2=0,33 МН/м.
Влияние массы подвижной части вибростола с контейнером на собственную частоту можно увидеть на графиках (рис. 2).
Угткз-гги гямя баних
/Тартании дни гша^гнхг
........
1000 1200 1400 1600 щ и-
Рис. 2. Зависимость собственных частот от массы контейнера с песком
Fig. 2. Dependence of the natural frequencies on the container mass with sand
Собственная частота угловых колебаний системы изменяется незначительно, а собственные частоты колебаний по линейным обобщенным координатам изменяются на 20-25 %. Очевидно, для качественного послойного уп-
лотнения песка в контейнерах необходимо изменять параметры работы вибраторов.
На большинстве существующих столов установлены инерционные вибраторы общего назначения с ручной дискретной настройкой статического дисбаланса и частотой колебаний 46,3-47,5 Гц. Оперативно менять параметры вибрации с целью получения рациональных значений виброускорений стола с контейнером возможно изменением частоты тока питания асинхронных электродвигателей с помощью современных полупроводниковых инверторов.
Вынужденные колебания вибростола с контейнером в установившемся режиме работы. Уравнения динамики вибростола в установившемся режиме работ без учета диссипативных сил содержат в правой части возмущающие силы и момент от инерционного вибратора. Эти дифференциальные уравнения достаточно хорошо отражают динамику машины в нерезонансных режимах работы
my + 2c, y = mDea2 cos (at);
mx + 2c2 x + 2c2ba = mDea2 sin (at);
J a + 2c2bx + 2 (l2 + c2b2 )a = mDeha2 sin (at).
Каждому значению амплитуды соответствует своя наиболее выгодная частота колебаний, при которой достигается максимальное уплотнение формовочного песка [2].
Предполагаемый тип вибратора стола -ИВ-99 с максимальным моментом статического дисбаланса 0,114 кгм. Амплитудно-частотные характеристики (АЧХ) вибростола с принятыми выше исходными данными и контейнером «small» c «постелью» модели и одним вибратором (рис. 3-5) показывают развитие колебаний по всем обобщенным координатам системы. На этих рисунках хорошо виден рост амплитуд колебаний на критических частотах системы. При установке на вибростоле пары одинаковых синхронизированных вибраторов, создающих возмущающую силу исключительно в вертикальном направлении, возможно исследование только вертикальных колебаний с учетом диссипативных сил.
Дифференциальное уравнения движения, описывающее вынужденные колебания вибро-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
стола с контейнером с учетом рассеивания энергии в системе
my + 2Pj + 2c1 y = mDe sin ю t.
Решение этого уравнения не представляет никаких трудностей [9]. Ускорение системы с учетом рассеивания энергии в резиновых амортизаторах, обеспечивающее гашение амплитуд свободных колебаний на 90 % за n периодов
у=-
F а4
m
¡(к2 -а22 + 41 2,3кln10~I а
2пп
г sin (а t + а2,
Рис. 3. АЧХ вертикальных колебаний системы
Fig. 3. The amplitude-frequency characteristics of the vertical oscillations of the system
Рис. 4. АЧХ горизонтальных колебаний системы
Fig. 4. The amplitude-frequency characteristics of the horizontal oscillations of the system
folO
4x 10"
2x10
где к = 2ох1 т - собственная частота системы;
п=5 - количество периодов колебаний с уменьшением амплитуды на 90 %.
f, Гц
Рис. 5. АЧХ угловых колебаний системы
Fig. 5. The amplitude-frequency characteristics of the angular oscillations of the system
Для определения параметров вибровозбуждения с помощью ПЭВМ были выполнены вариантные расчеты вертикальных виброускорений стола с контейнерами типов «small» и «great» для различных значений жесткости амортизаторов стола (рис. 6, рис. 7). Жесткость амортизаторов варьировалась путем изменения их высоты. В расчетах суммарный статический момент дисбаланса двух вибраторов типа ИВ-99 принят равным 0,228 кг-м.
На АЧХ виброускорений (рис. 6, 7) пунктирными линиями выделена зона ускорений, соответствующая эффективному уплотнению песка. АЧХ виброускорений системы построены для загруженных первым слоем песка -«постелью» контейнеров при различных жест-костях амортизаторов. Критерием выбора жесткости опор стола принято отсутствие превышения ускорения свободного падения при прохождении системой резонансной зоны при загрузке контейнера песком «постели». Хорошо видно, что приемлемая характеристика ускорений получена при высоте амортизатора H=90 мм (1,583 МН/м).
АЧХ виброускорений системы с послойной загрузкой песка в контейнеры (рис. 8, 9) и с амортизаторами стола высотой H=90 мм (1,583 МН/м).
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
Усюреюк СS0&01 ^ лада гост „ | ^ H-6Q кх > / //'S ——»
, \ / ft
П=90ш! А
/,'' Jo ьа упшаяюск гксх ■б; 5
^''¡¡=¡20*01
>
Рис. 6. АЧХ ускорений контейнера типа «small»
Fig. 6. The amplitude-frequency characteristics of accelerations of container type «small»
^Устрета с о4>однг<? \ -<—
\ //
Н-90 кх \ 1 =йО«ж /
V.JI 1 V . У ' /' Зоня упшгкет ■fr. 5
Г 1 \ 11=120 лот
У J
Рис. 7. АЧХ ускорений контейнера типа «great»
Fig. 7. The amplitude-frequency characteristics of accelerations of container type « great «
Рис. 8. АЧХ ускорений контейнера типа «small» с различной загрузкой песка
Fig. 8. The amplitude-frequency characteristics of accelerations of container type «small» with different load of sand
Рис. 9. АЧХ ускорений контейнера типа «great» с различной загрузкой песка
Fig. 9. The amplitude-frequency characteristics of accelerations of container type «great» with different load of sand
Динамика вертикальных колебаний при разгоне. Колебания стола с контейнером при разгоне (торможении) с постоянным угловым ускорением описывается дифференциальным уравнением
my + 2ßy + 2c y =
2 2 , ч2 . st st
(к>0 +st) sin—-scos—
где в - коэффициент вязкого трения; ю0 - начальная угловая скорость вибратора; е - угловое ускорение вибратора; t - текущее время.
Уравнение было решено численным методом с помощью компьютера для рассмотренных типов контейнеров с разной загрузкой песком, с разными угловыми ускорениями и высотой амортизатора Н=90 мм (1,583 МН/м). Анализ результатов расчета ускорений малого контейнера (рис. 10) подтверждает правильный выбор жесткости амортизатора формовочного стола - ускорения вертикальных колебаний не превышают рекомендованного диапазона ускорений, а амплитуды колебаний примерно в два раза меньше, чем амплитуды колебаний при стационарном режиме работы вибраторов. Выбег вибраторов происходит с меньшим ускорением, чем при его разгоне, и этот недостаток может привести к росту значений виброускорений при прохождении собственных частот формовочного стола, сопровождающийся разуплотнением песка в контейнере. С целью ис-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2016, № 6 (66)
ключения этого вредного явления желательно осуществлять динамическое торможение вибраторов.
Рис. 10. Динамика ускорений малого контейнера при разгоне
Fig. 10. Acceleration dynamics of small container at acceleration
Таблица 4
Частотные диапазоны эффективного уплотнения песка в малом контейнере
Table 4
Frequency ranges of efficient sand compaction in the small container
Диапазон Загруженность контейнера песком, %
«Постель» 25 50 75 100
Начало 25,8 30 33,2 36,1 38,7
Конец 28,4 32,6 36 39,1 41,9
Верхние и нижние пределы этих частотных диапазонов отличаются незначительно -в зависимости от загрузки песком, всего на 2,6-3,0 Гц. Для надежного управления частотой работы вибраторов в таких узких диапазонах предпочтительно управление их инверторов проводить с помощью контроллера с интерфейсам КБ-485.
Результаты
По результатам расчетов АЧХ виброускорений определены частотные диапазоны работы вибраторов для эффективного уплотнения песка двух типов, рассматриваемых в статье контейнеров (табл. 3, 4). Амплитуды ускорений контейнеров в переходных режимах в диапазоне низшей собственной частоты формовочного стола примерно в два раза меньше амплитуд ускорений контейнеров при установившихся режимах работы инерционных вибраторов. Поэтому, если значения ускорений разгона и торможения вибраторов будут близки, то разуплотнения песка после его уплотнения не произойдет.
Таблица 3
Частотные диапазоны эффективного уплотнения песка в контейнере типа «small»
Table 3
Frequency ranges of efficient sand compaction in the container type «small»
Диапазон Загруженность контейнера песком, %
«Постель» 25 50 75 100
Начало 23,51 27,0 29,7 32,0 34,1
Конец 26,18 29,6 32,3 34,7 36,9
Научная новизна и практическая значимость
Предложена методика определения диапазонов частотной настройки инерционных вибраторов стола, позволяющая получить качественное уплотнение сухого формовочного песка в форме.
В процессе формовки по технологии литья по газифицируемым моделям из-за послойной засыпки модели формовочным песком масса формы возрастает. Изменение массовой характеристики формы требует оперативного изменения кинематической характеристики вибростола - вибрационного ускорения. Предложенная математическая модель позволяет определить диапазоны настройки частотных параметров инерционных вибраторов формовочного стола на всех этапах формовки.
Результаты исследований являются исходными данными для разработки алгоритмов работы контроллера, управляющего инверторами (частотными преобразователями) вибраторов формовочного стола в процессе послойного уплотнения формовочного песка в литейных контейнерах.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зал!зничного транспорту, 2016, № 6 (66)
Выводы
1. Построена математическая модель колебаний вибростола с двумя типами контейнеров, позволяющая определить рациональные настройки его характеристик для режимов «псевдотечения» и уплотнения формовочного песка.
2. Исследовано влияние упруго-массовых характеристик вибростола на собственные частоты колебаний.
3. Построены амплитудно-частотные характеристики виброускорений стола с двумя типами контейнеров.
4. Подготовлены таблицы частотной настройки вибраторов стола для эффективного уплотнения формовочного песка.
5. Изучена динамика разгона вибраторов стола с постоянным угловым ускорением.
6. Диапазоны рекомендуемых частот достаточно узкие, поэтому рекомендуется обеспечивать автоматическую поддержку заданной частоты с помощью контроллера.
7. Результаты исследований являются исходными данными для разработки алгоритмов работы контроллера, управляющего частотой вращения инерционных вибраторов формовочного стола.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Вибрации в технике : справочник в 6 т. / под. ред. В. В. Болотина. - Москва : Машиностроение, 1978. - Т. 1 : Колебания линейных систем. - 352 с.
2. Гончаревич, И. Ф. Теория вибрационной техники и технологии / И. Ф. Гончаревич, К. В. Фролов. - Москва : Наука, 1981. - 320 с.
3. Гуляев, Б. Б. Формовочные процессы / Б. Б. Гуляев, О. А. Горнюшкин. - Львов : Машиностроение, 1987. - 264 с.
4. Дорошенко, В. С. Газодинамическое оплот-нение сухих формовочных наполнителей / В. С. Дорошенко // Литье и металлургия. -2013. - № 2. - С. 15-22.
5. Дорошенко, В. С. Газодинамическое уплотнение сыпучих песчаных смесей / В. С. Дорошенко // Литье Украины : информ.-техн. бюл. -Киев, 2016. - № 2 (186). - С. 13-19.
6. Дьяконов, В. Mathcad 2000 / В. Дьяконов. -Санкт-Петербург : Питер, 2001. - 592 с.
7. Литье по газифицируемым моделям / под ред. Ю. А. Степанова. - Москва : Машиностроение, 1976. - 224 с.
8. Лойцянский, Л. Г. Курс теоретической механики / Л. Г. Лойцянский, А. Е. Лурье. - Москва : Наука. 1983. - Т. 2. - 640 с.
9. Пановко, Г. Я. Введение в теорию механических колебаний / Г. Я. Пановко. - Москва : Наука, 1980. - 272 с.
10. Русаков, П. В. Модель ЛТС с синхронизированными по частоте вибрационными машинами / П. В. Русаков, О. И. Шинский, В. В. Здох-ненко // Процессы литья. - 2010. - № 3 (81). -С. 36-45.
11. Рыбаков, С. А. Инновационные возможности литья по газифицируемым моделям, состояние и перспективы этого метода в России / С. А. Рыбаков // Литейщик России. - 2009. -№ 4. - С. 44-45.
12. Шаталова, И. Г. Физико-химические основы вибрационного уплотнения порошковых материалов / И. Г. Шаталова, Н. С. Горбунов,
B. И. Лихтман. - Москва : Наука, 1965. - 165 с.
13. Шинский, О. И. Литье в оболочковые формы, полученные пропиткой сухого песка связующим / О. И. Шинский, В. С. Дорошенко // Металл и литье Украины. - 2009. - № 7-8. -
C. 16-22.
14. Шуляк, В. С. Литьё по газифицируемым моделям / В. С. Шуляк. - Санкт-Петербург : НПО «Профессионал», 2007. - 408 с.
15. Шуляк, В. С. О состоянии и развитии производства отливок литьем по газифицируемым моделям в России / В. С. Шуляк // Литьё по газифицируемым моделям : сб. тр. 1-й Между -нар. науч.-практ. конф. - Санкт-Петербург, 2007. - С. 58.
16. Degarmo, E. P. Materials and Processes in Manufacturing / E. P. Degarmo, J. T. Black, K. Ronald. - New York : Wiley, 2003. - 1168 p.
17. Tilabov, B. К. Heat Treatment of Wear Resistant Hardalloyed Coating of the Details Obtained by Casting on Gasified Models / B. K. Tilabov // Mining Magazine. - 2009. - № 8. - P. 95-97.
18. Patent W02014101323 A1 China, Large-sized digital patternless casting forming machine / Zhongde Shan, Limin Liu, Feng Liu ; Advanced Manufacture Technology Center, China Academy Of Machinery Science & Technology. -№ PCT/CN2013/070448 ; stated 15.01.2013 ; published 03.07.2014, Patentscope. - 4 p.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2016, № 6 (66)
НЕТРАДИЦ1ЙН1 ВИДИ ТРАНСПОРТУ. МАШИНИ ТА МЕХАН1ЗМИ
п. г. анофрхев1*
1 Каф. «Прикладна механжа», Дншропетровський нацюнальний ушверситет зал1зничного транспорту 1мен1 академжа В. Лазаряна, вул. Лазаряна, 2, Днгпро, Украгна, 49010, тел. +38 (056) 373 15 18, ел. пошта [email protected], ORCID 0000-0001-7997-3523
ОБГРУНТУВАННЯ РАЦЮНАЛЬНИХ К1НЕМАТИЧНИХ ХАРАКТЕРИСТИК ФОРМУВАЛЬНОГО В1БРОСТОЛУ
Мета. Одним 1з ефективних способ1в отримання вилившв складно! форми е лиття по моделях, що гази-фшуються (ЛГМ), у вакуумуюч1 форми (контейнери). Шдвищення якосп цього способу лиття вимагае вдос-коналення методики формування. Формувальний процес передбачае пошарове в1брацшне ущ1льнення шску в контейнерах. Бшъштсть лшш дшянок ЛГМ оснащен в1бростолами з шерцшними в1браторами, з приводом ввд асинхронних електродвигушв, що працюють на номшальних частотах обертання. Перспективним на-прямком удосконалення методики формування е рацюнальна настройка таких параметр1в в1бростолу, як в1брац1йне перемщення, швидшсть i прискорення. Ц параметри визначаються пружно-масовими характеристиками системи <^бростш-форма» i збурювальними силами, що створюються шерцшними вiбраторами. Метою дослiдження е визначення рацюнальних дiапазонiв налаштування параметрiв вiбростолу, при яких вiдбуваеться яшсне пошарове ущiльнення формувального пiску в формг Методика. Критерiем ефективностi налаштування характеристик вiбростолу прийнятi значення усереднених прискорень 6,5-7,5 м/с2, вщповвд-ним до найб№шо! мiри ущiльнення сухого формувального шску та дiапазону значень прискорень 9-9,5 м/с2 для надання шску «псевдоплинносп». Для цiлей дослщження була розроблена математична модель коли-вань рухомо! частини вiбростолу з двома типами ливарних контейнерiв для сталих i перехiдних режимiв роботи. Результати. У процеа дослiджень коливань форми на математичнiй моделi виконаш розрахунки власних частот коливань при рiзних пружно-масових характеристиках системи. Побудоваш амплiтудно-частотнi характеристики (АЧХ) перемщень i прискорень рухомо! частини столу з контейнером, пошарово заповненим формувальним шском. Наукова новизна. Автором запропоновано методику визначення дiапа-зонiв частотного налаштування шерцшних вiбраторiв столу, що дозволяе отримати як1сне ущiльнення сухого формувального шску в формг Практична значимкть. У процесi формування, зпдно з технологiею лиття по моделях, що газифшуються, через пошарову засипку моделi формувальним шском маса форми зрос-тае. Змша масово! характеристики форми вимагае оперативно! змши к1нематично! характеристики вiбросто-лу - вiбрацiйного прискорення. Запропонована математична модель, що дозволяе визначити дiапазони настройки частотних параметрiв iнерцiйних вiбраторiв формувального стола на всiх етапах формування.
Ключовi слова: вiбрацiйне ущшьнення; формування; вiбростiл; математична модель; власш частоти; ам-плiтудно-частотна характеристика
P. G. ANOFRIEV1*
1 Dep. «Applied Mechanics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 18, e. mail [email protected], ORCID 0000-0001-7997-3523
JUSTIFICATION OF RATIONAL KINEMATIC CHARACTERISTICS OF MOLDING VIBRATING TABLE
Purpose. One of the efficient ways to obtain castings of complex shape is lost foam casting (LFC) in the evacuated molds (containers). Upgrading the quality of this casting method requires improvement of molding techniques. The molding process involves layer-by-layer vibratory compaction of sand in the containers. Most of the lines of LFC sections are equipped with vibrating tables with inertia oscillators driven by induction motors, operating at nominal speed. A promising way of improving the molding technique is the rational setting of the following parameters of vibrating table: vibration displacement, velocity and acceleration. These parameters are determined by the elastic-mass characteristics of the system «vibrating table - mold» and perturbing forces created by inertia oscillators. The aim of the study is to determine the rational range of setting the parameters of oscillators at which the qualitative layer-by-layer compaction of the molding sand in the mold takes place. Methodology. The efficiency crite-
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зал!зничного транспорту, 2016, № 6 (66)
rion for setting characteristics of the vibrating table there were taken the values of averaged accelerations of 6.5 -7.5 m/s2 corresponding to maximum compaction degree of dry molding sand and the range of acceleration values 9 - 9.5 m/s2 for giving the sand «pseudo-yielding». For the study it was developed a mathematical model of oscillations of the movable part of vibrating table with two types of casting containers for steady and transient operation modes. Findings. In the process of research of the mold oscillations it was calculated the natural frequencies of oscillations at different elastic-mass characteristics of the system using a mathematical model. It was constructed the frequency response of displacements and accelerations of the moving part of the table with container filled with molding sand layer-by-layer. Originality. The author proposes a method of determining the range of frequency setting of inertial oscillators of table, which make it possible to obtain qualitative compaction of dry molding sand in the mold. Practical value. In the process of molding using the lost foam casting models the mold mass is increasing due to the layer-by-layer filling of the mold with molding sand. The change of mass characteristics of the mold requires operational change of the kinematic characteristics of the vibrating table - vibration acceleration. The proposed mathematical model allows determining the ranges of setting the frequency parameters of inertial oscillators of molding table at all stages of molding.
Keywords: vibratory compaction; molding; vibrating table; mathematical model; natural frequencies; frequency response
REFERENCES
1. Bolotin V.V. Vibratsii v tekhnike. Tom 1: «Kolebaniya lineynykh system» [Vibrations in engineering. Vol. 1: «Vibrations of linear systems»]. Moscow, Mashinostroyeniye Publ., 1978. 352 p.
2. Goncharevich I.F., Frolov K.V. Teoriya vibratsionnoy tekhniki i tekhnologii [The theory of vibration engineering and technology]. Moscow, Nauka Publ., 1981. 320 p.
3. Gulyayev B.B., Gornyushkin O.A. Formovochnyye protsessy [Forming processes]. Lvov, Mashinostroyeniye Publ., 1987. 264 p.
4. Doroshenko V.S. Gazodinamicheskoye uplotneniye sukhikh formovochnykh napolniteley [Gas seal of the dry molding fillers]. Litye i metallurgiya - Casting and Metallurgy, 2013, no. 2, pp. 15-22.
5. Doroshenko V.S. Gazodinamicheskoye uplotneniye sypuchikh peschanykh smesey [Gas seal of loose sand mixtures]. ITB «Litye Ukrainy» - Information and Technical Bulletin «Casting of Ukraine», 2016, no. 2 (186), pp. 13-19.
6. Dyakonov V. Mathcad 2000. Saint-Petersburg, Piter Publ., 2001. 592 p.
7. Stepanov Yu.A. Lityepo gazifitsiruyemym modelyam [Lost foam casting]. Moscow, Mashinostroyeniye Publ., 1976. 224 p.
8. Loytsyanskiy L.G., Lurye A.Ye. Kurs teoreticheskoy mekhaniki. Tom 2 [Course of theoretical mechanics. Volume 2]. Moscow, Nauka Publ., 1983. 640 p.
9. Panovko G.Ya. Vvedeniye v teoriyu mekhanicheskikh kolebaniy [Introduction to the theory of mechanical oscillations]. Moscow, Nauka Publ., 1980. 272 p.
10. Rusakov P.V., Shinskiy O.I., Zdokhnenko V.V. Model LTS s sinkhronizirovannymi po chastote vibratsion-nymi mashinami [The model of casting-technological system with frequency synchronized vibrating machines]. Protsessy litya - Casting Processes, 2010, no. 3 (81), pp. 36-45.
11. Rybakov S.A. Innovatsionnyye vozmozhnosti litya po gazifitsiruyemym modelyam, sostoyaniye i perspektivy etogo metoda v Rossii [Innovative abilities of lost foam casting, the state and prospects of this method in Russia]. Liteyshchik Rossii - Russian Caster, 2009, no. 4, pp. 44-45.
12. Shatalova I.G., Gorbunov N.S., Likhtman V.I. Fiziko-khimicheskiye osnovy vibratsionnogo uplotneniya po-roshkovykh materialov [Physico-chemical bases of vibration compaction of powder materials]. Moscow, Nauka Publ., 1965. 165 p.
13. Shinskiy O.I., Doroshenko V.S. Litye v obolochkovyye formy, poluchennyye propitkoy sukhogo peska svya-zuyushchim [Casting in shell molds obtained by liquid molding of dry sand]. Metall i litye Ukrainy - Metal and Casting of Ukraine, 2009, no. 7-8, pp. 16-22.
14. Shulyak V.S. Litye po gazifitsiruyemym modelyam [Lost foam casting]. Saint-Petersburg, NPO «Professional» Publ., 2007. 408 p.
15. Shulyak V.S. O sostoyanii i razvitii proizvodstva otlivok lityem po gazifitsiruyemym modelyam v Rossii [About status and development of the production of castings by lost foam casting in Russia]. Sbornik trudov 1-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Litye po gazifitsiruyemym modelyam» [Proc. of Sci. and Practical Conf. «Lost Foam Casting»]. Saint-Petersburg, 2007. 58 p.
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2016, № 6 (66)
16. DeGarmo E. Paul, Black J. T., Ronald A. Kohser. Materials and Processes in Manufacturing. New York, Wiley Publ., 2003. 1168 p.
17. Tilabov B.K. Heat Treatment of Wear Resistant Hardalloyed Coating of the Details Obtained by Casting on Gasified Models. Mining Magazine, 2009, no. 8, pp. 95-97.
18. Zhongde Shan, Limin Liu, Feng Liu. Patent WO2014101323 A1 China, Large-sized digital pattern less casting forming machine. Advanced Manufacture Technology Center, China Academy Of Machinery Science & Technology. No. PCT/CN2013/070448; stated 15.01.2013; published 03.07.2014, Patentscope. 4 p.
Статья рекомендована к публикации д.т.н., проф. C. В. Ракшой (Украина); д.т.н., проф. С. В. Белодеденко (Украина)
Поступила в редколлегию: 01.09.2016 Принята к печати: 05.12.2016