УДК 629.735
П. А. Моссаковский1, Ф. К. Антонов1, М. Е. Колотников2, Л. А. Костырева3
1НИИмеханики МГУ им. М.В. Ломоносова, Москва, Россия
2 ООО «ДжиИ РУС», Москва, Россия 3ФГУП «НПЦ газотурбостроения «Салют», Москва, Россия
ОБ ИССЛЕДОВАНИИ НЕПРОБИВАЕМОСТИ ЛЕГКИХ КОМПОЗИЦИОННЫХ КОРПУСОВ
Настоящая статья посвящена разработке методологии расчета пробиваемости легких корпусов с дополнительной защитой из многослойного тканого композита на основе ара-мидных волокон Русар. Применительно к исследованию пробиваемости тканых композитов предложена расчетная методика, которая состоит в использовании двухуровневой математической модели пробивания тканого композита и включает в себя редуцированную модель с упрощенной геометрией — для проведения расчетов на непробиваемость корпусов ТТД, и полномасштабную модель с детализаций геометрии с точностью до отдельного волокна, служащей для определения и уточнения эффективных (осредненных) характеристик редуцированной модели.
Ключевые слова: тканые композиты, пробивание, обрыв лопатки, моделирование.
Введение
Создание корпусов современных ГТД, обеспечивающих непробиваемость при обрыве лопатки, невозможно без применения новейших, в том числе композиционных, материалов. Выбор материалов должен основываться на детальном изучении их механических свойств, в том числе, проявляющихся при ударных взаимодействиях и в условиях повышенных температур. Одним из важнейших этапов при проектировании корпусов является разработка математических моделей применяемых материалов и моделирование самого процесса взаимодействия фрагментов ротора с корпусом при обрыве лопатки.
Настоящая статья посвящена разработке методологии расчета пробиваемости легких корпусов с дополнительной защитой из многослойного тканого композита на основе арамидных волокон Русар. Применительно к исследованию пробиваемости тканых композитов предложенная авторами ранее для оценки пробиваемости металлических корпусов расчетная методика[1] претерпела существенные изменения. Главное отличие состоит в использовании двухуровневой математической модели пробивания тканого композита, а именно, редуцированной модели с упрощенной геометрией — для проведения расчетов на непробиваемость корпусов ГТД, — и полномасштабной модели с детализацией геометрии с точностью до отдельного волокна, служащей для определения и уточнения эффективных (осредненных) характеристик редуцированной модели.
Применение такого подхода позволило, с одной стороны, использовать эффективную расчетную
процедуру оценки пробиваемости металло-компо-зиционных корпусов, а с другой — детально изучить механизм разрушения тканого композита при взаимодействии с ударником и более точно определить модельные параметры редуцированной расчетной схемы. В частности, было обосновано существенное влияние начальной геометрии волокон на значения осредненных параметров анизотропии в редуцированной модели, значительное влияние на величину запреградной скорости ударника трения между ударником и волокнами, и, наоборот, малое влияние межволоконного трения.
1. Основные подходы к моделированию тканых композитов
Особенностью математического моделирования большинства композитов является необходимость использования двух геометрических масштабов. На первом уровне представления, назовем его условно полномасштабным или мезоу-ровнем, используется максимально детализированное геометрическое представление композита с точностью до его наименьшего структурного размера [2]. На этом уровне геометрическое моделирование требует значительных вычислительные ресурсов, но при этом, как правило, существенно упрощено задание материальных свойств. Это связано с тем, что характер упругой анизотропии и нелинейные свойства тканого композита, определяются в основном упругими и предельными характеристиками самих волокон, их геометрией, а также количеством и способом укладки слоев. При этом можно считать волокна Русар трансверсально-изотропными и линейно-
© П. А. Моссаковский, Ф. К. Антонов, М. Е. Колотников, Л. А. Костырева, 2012 - 180 -
упругими вплоть до самого разрушения. На другом уровне, назовем его редуцированным или макроуровнем геометрического представления композита, приходится оперировать с осреднен-ными (эффективными) геометрическими и материальными характеристиками композита[3]. Такой подход требует значительно меньших
вычислительных ресурсов, но задача адекватного определения материальных свойств, и особенно критерия разрушения становится сложной. На рисунке1 показаны полномасштабная геометрическая модель тканого композита из арамидных волокон Русар, характер укладки слоев и КЭ представление ячейки полотна ткани.
Рис. 1. Полномасштабная геометрическая и КЭ модель композита
В работе основной упор делался на разработку адекватной и надежной редуцированной макромодели тканого композита, позволяющей проводить оценки пробиваемости с использованием КЭС подхода.
При редуцированном моделировании композит представляется в виде однородной анизотропной сплошной среды, то есть, нелинейной, из-за эффектов, связанных с локальным разрушением и внутренним трением. Как правило, при численной реализации этого подхода применительно к многослойным композитам используются КЭ модели, представленные многослойными оболочечными или, реже, объемными элементами с дополнительными точками интегрирования по толщине тканого пакета, позволяющими задать характер укладки слоев.
Идентификация параметров предложенной модели производилась на основании сравнения результатов натурных и виртуальных верификационных тестов.
2. Построение математической модели и идентификация ее параметров
С целью идентификации параметров модели материалов и критерия разрушения тканого композита были проведены статические и динамические натурные эксперименты с образцами в виде отдельных нитей (по утку и основе), полосок ткани (по утку и основе) и многослойных тканых пакетов с различными типами укладки слоев: постоянная ориентация осей анизотропии и с поворотом на 90°.
Статические испытания включали в себя эксперименты на растяжение вплоть до разруше-
ния с регистрацией растягивающей силы и перемещений захватов. По результатам статических испытаний для образцов каждого типа определялись предельные осредненные (эффективные) характеристики деформаций и напряжений.
Набор динамических экспериментов состоял из баллистических ударных тестов и испытаний на динамическое сжатие многослойных тканых образцов разного типа, отличающихся характером укладки слоев и типом связующего, при различных скоростях деформаций.
Испытания на растяжение проводились на испытательной машине 2'тоск/Кое11 с предельной нагрузкой 1000 кг. В качестве образцов использовались отдельные нити, пакет из 20 отдельных нитей, полоска ткани из 20 нитей, пакет из 10 полосок ткани в 20 нитей, пакет из 20 полосок ткани в 20 нитей, пакет из 30 полосок ткани в 20 нитей. Динамические эксперименты проводились с мишенями, содержащими от 1 до 100 слоев ткани. В экспериментальных исследованиях определялся достаточно узкий диапазон скоростей, в котором лежит У50.
Для проведения виртуальных испытаний была создана конечно-элементная модель, отражающая геометрию нитей утка и основы ткани. Каждая нить рассматривается как ортотропное тело, материальная ось с которого направлена вдоль оси нити, а оси а и Ь лежат в ее поперечном сечении. Предполагается, что нить сопротивляется только продольному растяжению. Поэтому все упругие модули малы по сравнению с продольным. Кроме того, принимается гипотеза практически несжимаемого сечения нити.
ISSN1727-0219 Вестник двигателестроения № 2/2012
- 181 -
Были проведены виртуальные тесты по растяжению кусочков ткани по основе и утку и серия баллистических тестов с различными типами образцов, содержащих от 1 до 100 слоев, с чередованием укладки соседних слоев.
Наиболее реалистичное описание тканого композита при динамическом нагружении осуществляется путем полномасштабного моделирования материала с детализацией отдельных нитей основы и утка (рисунок 2). В этом случае каждая нить представляет собой ортотропное тело, начальная геометрия, упругие модули и параметры разрушения которого определяются из статических испытаний. Однако такой подход возможен только тогда, когда размеры образца ткани малы. Так, например, расчетная модель баллистического теста для однослойного образца размером 50x50 мм уже составляет примерно 1млн. элементов. Поэтому, даже при современных мощностях, расчет реального эксперимента по обрыву лопатки компрессора с использованием полномасштабного моделирования не представляется возможным.
Рис. 2. Баллистическое испытание с 20-слойным образцом (удар под углом 45°)
В настоящей работе однослойный тканый композит представляется также ортотропным телом с выделенными материальными осями а и Ь, направленными, соответственно, вдоль утка и основы, и осью с, перпендикулярной плоскости ткани.
Модули Юнга и коэффициенты Пуассона получены из статических экспериментов на растяжение отдельных нитей и тканых пакетов, а также из экспериментов на динамическое сжатие образцов по методу Кольского[4]. Модули сдвига считаются малыми (на два-три порядка ниже) по сравнению с модулями Юнга, поскольку тканый слой слабо сопротивляется изгибным деформациям.
Локальное разрушение в слое наступает при одновременном выполнении деформационного и силового критерия:
е = 0,08, ст1 = 0,7 ГПа
Величина деформации соответствует предельной деформации разрушения поперечных нитей ткани с учетом их распрямления при растяжении. Второе условие носит характер «переключателя», который отделяет колоссальные сдвиговые деформации, на практике не приводящие к разрушению, от деформаций растяжения нитей, носящих первостепенный характер. Такой подход уже дает значительную экономию вычислительных ресурсов: однослойный образец размером 50x50 мм содержит примерно 10000 элементов. Однако реальные конструкции все еще насчитывают десятки миллионов элементов. Поэтому было предложено моделировать многослойный тканый пакет специальными оболочечными элементами, уже содержащими внутри себя несколько тканых слоев с чередованием укладки. Отдельный слой является ортотропным телом, описанным выше. Поэтому при моделировании используются лишь два материала, отличающиеся направлением материальных осей а и Ь. Сравнительные результаты баллистических тестов изображены на рисунках 4-5.
Рис. 3. Четырехслойный образец. Начальная скорость ударника 266 м/с
Рис. 4. 40-слойный образец. Начальная скорость ударника 380 м /с
3. Испытание по обрыву рабочей лопатки вентилятора
Оценка пробиваемости корпуса КНД производилась по результатам прямого компьютерного моделирования с использованием нелинейного расчетного кода ЬБ-ОУКЛ Моделировался обрыв лопатки по корневому сечению при максимально возможной частоте вращения ротора НД.
В исследовании геометрическая модель включает в себя сектор 180° металлического корпуса и шесть последовательно расположенных лопаток. В качестве усиления рассматривается композиционная намотка на основе тканого композита из арамидных волокон. Композиционная защита состоит из 100 слоев ткани, уложенных таким образом, что направления продольных нитей двух соседних слоев повернуты друг относительно друга на 90°.
Материал корпуса (ВТ20) описывался в рамках упругопластической модели, со сложным критерием локального разрушения, зависящим от вида напряженно-деформированного состояния [5].
3.1. Результаты расчета
До момента касания корпуса при 1 = 0,810-4 с оборвавшаяся лопатка движется свободно, без взаимодействия с корпусом. При этом лопатка вращается вокруг своего центра масс с угловой =2020с-1,
скоростью ротора ю
а сам центр масс
движется плоскопараллельно с направлением вектора скорости, соответствующим моменту обрыва. Хотя значение результирующего контактного усилия на корпусе (рисунок10) при первом ударе значительно (около 8,5 т), он не является опасным с точки зрения пробиваемости, вследствие малости угла атаки (7°) между вектором скорости центра масс лопатки и касательной плоскостью к корпусу в месте соударения. Второй удар, сопровождающийся первой фрагментацией лопатки происходит в момент времени 1 = 2,6-10-4 с. Значение результирующего контактного усилия на корпусе при втором ударе составляет 6,7 тонн, примерный угол атаки — 31°. В момент времени 1 = 4,110-4с происходит третий удар лопатки о корпус с ее последующей фрагментацией, при этом контактное усилие достигает максимального значения в 11,2 тонны Далее в момент времени 1 = 5,1 10-4 с происходит взаимодействие оборвавшейся и следующей за ней набегающей лопаткой, что приводит к фрагментации последней. В то же время корпус и прилежащие слои бро-незащиты начинают локально разрушаться. При этом удар по корпусу наносится двумя фрагментами одновременно. В результате чего величина результирующего контактного усилия на корпусе несколько выше чем при первых двух ударах и составляет 11,8 тонн при угле атаки 39°. Критическим является следующий удар (рисунок 5) при 1 = 0,0009 с.
Рис. 5. Четвертый удар лопатки о корпус 1 = 0,0009 с
Контактные усилия при нем достигают величины 20 тонн. Повреждается до 80 слоев броне-защиты. В дальнейшем все фрагменты, образовавшиеся при разрушении, удерживаются на периферии и больше не взаимодействуют с ротором.
Заключение
В работе было проведено моделирование обрыва рабочей лопатки вентилятора ГТД по корневому сечению с использованием новейших экспериментально верифицированных моделей материалов, входящих в состав корпуса КНД. Расчет показал, что процесс взаимодействия лопат-
ки с корпусом укладывается в ранее исследуемую схему обрыва для чисто металлического корпуса: критическим, с точки зрения пробиваемости, является момент 3-4 ударов, тогда как первый удар практически не наносит никаких повреждений в силу малости угла атаки. Фрагментация оборвавшейся лопатки также происходит по стандартному сценарию. Такой результат позволяет говорить о значительном упрощении вычислительной процедуры оптимизации корпуса двигателя, поскольку в данном случае нет необходимости выполнять полный расчет каждой его модификации. Достаточно рассмотреть лишь фрагмент модели и реализовать конкретный экспе-
ISSN1727-0219 Вестник двигателестроения № 2/2012
— 183 —
римент с соответствующими начальными параметрами ударника, такими как его масса, скорость и угол атаки.
Стоит также отметить, что предложенная схема бронеусиления корпуса, представляющая собой 100-слойную непропитанную тканую намотку из ткани Русар на основе арамидных волокон, показала удовлетворительные результаты по обеспечению локализации фрагментов разрушившейся лопатки.
Литература
1. Моссаковский П.А. Новый подход к оценке непробиваемости корпусов ГТД элементами ротора. [Текст] / П.А. Моссаковский, М.Е. Колотников, О.Г. Дубянская //Новые технологические процессы и надежность ГТД. - М., 2008.- Вып. 8 - С. 143-147.
2. Rao M.P., Keefe M., Powers B.M., Bogetti T.A. A Simple Global /Local approach to Modeling Ballistic Impact onto Woven Fabrics, 10th International LS-DYNA Users Conference, p. 9-559-66, 2010.
3. Tabiei A. and I. Ivanov, «Computational micro-mechanical Model of Flexible Woven Fabric for Finite Element Impact Simulation», IJNME, 53, (6), 1259-1276, (2002).
4. Кольский Г. Исследования механических свойств материалов при больших скоростях на-гружения. Механика. - Вып. IV. - М.: ИЛ. 1950. -С. 108-119.
5. Carney K.S., DuBois P.A., Buyuk M., Kan S. Generalized, Three-Dimensional Definition, Description , and Derived Limits of the Triaxial Failure of Metals. J. Aerosp. Engrg. Vol. 22. Issue 3. P. 280-286. July 2009.
Поступила в редакцию 01.06.2012
П. A. Моссаковський, Ф. К. Антонов, М. Е. Колотншов, Л. А. Костирева. Про дослщження непробивност легких композицшних корпуав
Ця стаття присвячена розробщ методологи розрахунку пробивност1 легких корпусов з додатковим захистом з багатошарового тканого композиту на основ1 арам1дних волокон Русар. Стосовно до долдження пробивност1 тканих композитов запропонована розрахун-кова методика, яка полягае у використанш двор1внево1 математично1 модели пробивання тканого композиту i включае в себе редуковану модель з1 спрощеною геометр1ею - для проведеннярозрахун^в на непробившсть корпуав ВМД, i повномасштабну модель з детал-iзацieю геометри з точшстю до окремого волокна, що служить для визначення та уточ-нення ефективних (осреднених) характеристик скороченог модель
Ключов1 слова: ткаш композити, пробивання, обрив лопатки, моделювання.
P.A. Mossakovsky, F.K. Antonov, M.E. Kolotnikov, L.A. Kostyreva. On fan blade out event analysis of lightweight composite structures
The work focuses on the development of methodology of analysis of fan blade out event on lightweight fan cases with additional composite winding made of multilayered aramid fiber woven composite. Conformably to the investigation of penetration of woven composites the new calculation technique is proposed, which consists in using two level mathematical model of penetration of woven composite and includes reduced model with simplified geometry for fan blade our analysis and full-scale model with detailed geometry up to single yarn, which is used for determination and clarification of effective (medium) characteristics of reduced model.
Key words: woven composites, fan blade out, penetration, modeling.