Научная статья на тему 'О сходимости обобщенного приведенного метода Ньютона'

О сходимости обобщенного приведенного метода Ньютона Текст научной статьи по специальности «Математика»

CC BY
209
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЗАДАЧИ НЕЛИНЕЙНОЙ ОПТИМИЗАЦИИ / PROBLEMS OF NONLINEAR OPTIMIZATION / МЕТОД ЛИНЕАРИЗАЦИИ / LINEARIZATION METHOD / ЛИНЕЙНЫЕ ОГРАНИЧЕНИЯ / LINEAR RESTRICTIONS / МЕТОД ПРИВЕДЕННОГО ГРАДИЕНТА / A METHOD OF THE RESULTED GRADIENT / ЛИНЕЙНАЯ СХОДИМОСТЬ / LINEAR CONVERGENCE

Аннотация научной статьи по математике, автор научной работы — Панфёров С. В.

Предлагается подход к решению задачи оптимизации с ограничениями. Описывается алгоритм, использующий синтез таких методов, как разделение переменных, редукцию размерности, сведение основной задачи к вспомогательной. Формулируются условия применимости алгоритма и теорема о сходимости.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ABOUT CONVERGENCE GENERALIZATION NEWTON’S RESULTED METHOD

The approach to the decision of a problem of optimization with restrictions is offered. It is described the algorithm using synthesis of such methods as division of variables, a dimension reduction, primary goal data to the auxiliary. Conditions of applicability of algorithm and the theorem of convergence are formulated.

Текст научной работы на тему «О сходимости обобщенного приведенного метода Ньютона»

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

УДК 519.6

С.В. Панфёров

канд. физ.-мат. наук, доцент, кафедра высшей математики, ГБОУ ВПО Московской области «Международный Университет природы,

общества и человека «Дубна»

О СХОДИМОСТИ ОБОБЩЕННОГО ПРИВЕДЕННОГО МЕТОДА НЬЮТОНА

Аннотация. Предлагается подход к решению задачи оптимизации с ограничениями. Описывается алгоритм, использующий синтез таких методов, как разделение переменных, редукцию размерности, сведение основной задачи к вспомогательной. Формулируются условия применимости алгоритма и теорема о сходимости.

Ключевые слова: задачи нелинейной оптимизации, метод линеаризации, линейные ограничения, метод приведенного градиента, линейная сходимость

S.V. Panferov, International University of the nature, society and the person "Dubna"

ABOUT CONVERGENCE GENERALIZATION NEWTON'S RESULTED METHOD

Abstract. The approach to the decision of a problem of optimization with restrictions is offered. It is described the algorithm using synthesis of such methods as division of variables, a dimension reduction, primary goal data to the auxiliary. Conditions of applicability of algorithm and the theorem of convergence are formulated.

Keywords: problems of nonlinear optimization, a linearization method, linear restrictions, a method of the resulted gradient, linear convergence.

Необходимость решения задач глобальной оптимизации находит широкое применение в различных областях человеческой деятельности. Задачи проектирования, распределения ресурсов, расчета траектории движения встречаются в ряде прикладных областей, в которых необходимо получить наилучший результат целевой функции на множестве некоторых ограничений. Сложность решения задач глобальной оптимизации связана, вообще говоря, с невозможностью гарантировано получить решение за конечное число шагов. Первым вопросом, возникающим при исследовании оптимизационного алгоритма, является вопрос о его сходимости. 1. Постановка задачи Рассмотрим задачу f (x) ^ min

(1)

x е Q = [x e Rn: gi (x) = 0,i = 1,2,...,m}.

Будем считать, что функции f (x) и g, (x) (i = 1,2,...,m) дважды непрерывно дифференцируемы на множестве X, удовлетворяют условию Липшица и для всех x е X векторы Vg: (x) (i = 1,2,...,m) линейно независимы.

В работе предлагается метод сведения задачи (1) к задаче безусловной опти-

Введение

мизации

F (z min (2)

z е Rn-m.

2. Описание алгоритма обобщенного приведенного метода Ньютона

Суть алгоритма обобщенного приведенного метода Ньютона состоит в следующем.

На первом этапе строится касательное подпространство N (xk) размерности

n - m к множеству ограничений и выбирается координатное подпространство E (/) той же размерности n - m.

Через E (/обозначим ортогональное дополнение к E (/). Аналогично алгоритмам с исключением переменных координат, происходит разбиение переменной xk на пару переменных (yk, zk) следующим образом:

xk = yk + zk, yk е E (/)x, zk е E(/).

Функция yk = p( zk) определяется как решение системы нелинейных уравнений

gi (yk,zk) = 0,i = 1,2,..,m.

В условиях теоремы о неявных функциях в окрестности точки zk определена приведенная целевая функция F (z ) = f (p( z), z) [1, с. 280].

Таким образом, задача (1) сводится к задаче безусловной оптимизации (2). На втором этапе происходит сдвиг по методу Ньютона в координатном подпространстве E(/): zk+1 = zk -(F"(zk)) 1F"(zk). При этом проверяется условие релаксации: F (zk+1 )< F (zk).

Далее, решая уравнение yk+1 = p( zk+1), например, модифицированным методом

Ньютона, получаем следующую допустимую точку xk+1 = yk+1 + zk+1.

Обоснование замены касательной плоскости координатной плоскостью той же размерности, т.е. возможность разбиения пространства Rn, обеспечивает нетривиальная нижняя оценка [2, с. 384] угла p = ang (N( xk), E(/)) между касательной плоскостью N (xk) и координатной E(/) в случае dim N (xk ) = dim E(/):

1

cos ang (N(xk), E(/)) > =.

v ' у¡m(n - m) +1

1 + '

Отметим, что эта оценка является общей характеристикой евклидова пространства, и зависит только от размерностей задачи, и служит хорошей числовой характеристикой качества разделения переменных.

С её помощью также получаем равномерные оценки норм градиента и гессиана приведенной целевой функции, необходимые для доказательства сходимости метода

VF (z* )|| < ^ ||Vf (х)||, V2F (z* )|| Ртах^(Ж,Л} ,

^ cns^^^ V /II cos2 <ppmmV2L (х,Х)

cos p

где pmin и pmax наибольшее и наименьшее сингулярные числа матрицы вторых

производных функции Лагранжа задачи (1).

Используя эти оценки, получаем доказательство сходимости обобщённого приведённого метода Ньютона.

Теорема 1. Если последовательность {х* } определяется алгоритмом обобщённого приведённого метода Ньютона и каждая стационарная точка функции Лагранжа Морс-регулярна, то найдется X* е R такое, что последовательность {х* } сходится к точке х*, в которой VL(х*,А*) = 0 и найдётся q е (0,1) такое, что

f (х*+1) - f( хs) < q(f (х*) - f( х *)).

3. Приведенный метод линеаризации для решения задач нелинейной оптимизации

Рассмотрим задачу, которая характеризуется тем, что допустимое множество представлено в виде пересечения двух множеств, одно из которых задано системой нелинейных уравнений, а другое системой линейных ограничений (для простоты будем считать, что в формировании допустимого множества участвуют только линейные ограничения-неравенства).

f (х) ^ min

х е X, X = X1 п X2,

X ={х е Rn: gi (х) = 0,i = 1,2,...,m}, (3)

X2 = {х е Rn : Ах < b}, A = a^ е R*xn, b = fy е R*x1, m < n, * < n.

Так же, как и в задаче (1), будем считать, что функции f(х) и д. (х) (i = 1,2,...,m) дважды непрерывно дифференцируемы на множестве X, удовлетворяют условию Липшица и для всех х е X векторы Vg, (х) (i = 1,2,..., m) линейно независимы.

Аналогично тому, как это сделано в работе [3], строится эффективный вычислительный алгоритм, использующий обобщенный приведенный метод Ньютона для отыскания стационарных точек рассмотренного класса задач нелинейной оптимизации.

В дополнение к условиям гладкости мы потребуем от нашей задачи классических условий регулярности [4]:

Предположение 1. Для всех v > fopt существуют * > 0 и г > 0 такие, что

р(х, X)< *||х - жx (х -Vf (х))|| ;

Ух е X : f (х) < и ; ||х - лх (х - Vf (х))|| < г

Предположение 2. Для всех v > fopt следующее множество является конечным:

f ({х е Xa | f (X)< v})с R1.

На основе схемы, предложенной в работе [3], строится алгоритм «последовательных приближений», генерирующий очередную (k + 1)-ю итерацию как оптимальное решение вспомогательной задачи, являющейся аппроксимацией исходной, и доказывается теорема о линейной сходимости метода [5].

Теорема 2. Пусть выполнены Предположения 1 и 2, тогда каждая бесконечная последовательность итераций алгоритма сходится к точке х* е Xstat.

Более того, для всех v > fopt существуют q1, q2 (0 < q1, q2 < 1) такие, что для любой

бесконечной последовательности {xk},f (х1 )< v справедливы следующие оценки:

f (xk+1) - f (х *)

limsup———Ц-^ < q,, k^ f (xk) - f (x) 1

limsup q2kp(xk, Xstat) <да.

k ^да

При этом каждая конечная последовательность итераций алгоритма останавливается в стационарной точке xkstop е Xstat.

Результаты, изложенные в статье, докладывались автором на научных семинарах кафедр оптимального управления и исследования операций факультета ВМК МГУ им. М.В.Ломоносова, а также на Международной конференции «Дифференциальные уравнения и топология», посвященной 100-летию со дня рождения Л. С. Понтрягина.

Автор благодарит руководителей указанных семинаров профессоров Ф.П. Васильева и Н.М. Новикову за полезные обсуждения.

Список литературы:

1. Васильев Ф.П. Методы оптимизации-М.: Факториал Пресс, 2002.

2. Панфёров С.В. Оценка качества разделения переменных в обобщенном приведенном методе Ньютона // Международная конференция «Дифференциальные уравнения и топология», посвященная 100-летию со дня рождения Л. С. Понтрягина (1908-1988). Тезисы докладов. Москва 17-22 июня 2008 г. - М.: МАКС Пресс, 2008. С.383-384.

3. Ferris M.C., Zavriev, S.K. The Linear Convergence of a Successive Linear Programming Algorithm // Computer Scienses Department, University of Wisconsin, Madison, WI 53706, Mathematical Programming Technical Report 96-112, December 1996.

4. Bertsecas D.P. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 1995.

5. Панфёров С.В. Приведенный метод линеаризации для решения задач нелинейной оптимизации // Вычислительные методы и программирование. 2012. Раздел 1. C. 137-142. - URL: http://num-meth.srcc.msu.ru/.

List of references:

1. Vasilev F.P. Method of optimization. M.: Factorial the Press, 2002.

2. Panferov S. V. Estimation of quality of division of variables in the generalized Newton's resulted method // The International conference «the Differential equations and topology» devoted to the 100 anniversary from the date of L.S.Pontrjagin's birth (1908-1988). Theses of reports. Moscow on June, 17-

22th, 2008 - M.MAX the Press, 2008, pp. 383-384.

3. Ferris M.C., Zavriev S.K. The Linear Convergence of a Successive Linear Programming Algorithm // Computer Sciences Department, University of Wisconsin, Madison, WI 53706, Mathematical Programming Technical Report 96-112, December 1996.

4. Bertsecas D.P. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts. 1995.

5. Panferov S.V. The resulted method of a linearization for the decision of problems nonlinear optimization // Numerical Methods and Programming. 2012. Section 1. pp. 137-142. (http://num-meth.srcc.msu.ru/).

УДК 513.88

В.И. Филиппенко

канд. физ.-мат. наук, доцент, кафедра «Математика», ФГБОУ ВПО «Южно-Российский государственный университет экономики и сервиса»

РЕЗОЛЬВЕНТЫ И СПЕКТРАЛЬНАЯ ФУНКЦИЯ СИММЕТРИЧЕСКОГО КВАЗИДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ L2 (H, (a, b))

Аннотация. Пусть L0- минимальный оператор в пространстве L2 (H, (a,b)) для формально самосопряженного квазидифференциального оператора n - го порядка. В данной работе описываются обобщенные спектральные функции, соответствующие обобщенной резольвенте оператора L0.

Ключевые слова: обобщенные резольвенты, спектральная функция, минимальный оператор.

V.I. Filippenko, South-Russian State University of Economics and Service

RESOLVENTS AND SPECTRAL FAMILY SYMMETRIC QUASI-DIFFERENTIAL OPERATOR IN HILBERT SPASE L2 (H, (a,b))

Abstract. Let L0 be a minimal operator in L2 (H, (a, b)) for the formally self-adjoint quasi-differential

operator of ordern . In this paper, we describe the generalized spectral family corresponding to a generalized resolvents for operator L0.

Keywords: generalized resolvents, spectral family, minimal operator.

Актуальность спектрального анализа квазидифференциальных операторов обусловлена возможностью исследования природы спектра операторов, более общих по сравнению с классическими операторами.

1. Пусть H - сепарабельное гильбертово пространство со скалярным произведением (,) и нормой II, а L2 (H, (a, b)) - гильбертово пространство всех измеримых на

интервале (a,b) вектор-функций со значениями из пространства H и с суммируемым

квадратом нормы. Скалярное произведение в L2 (H,(a,b)) определяется формулой

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.