Таким образом, выполненная работа позволяет моделировать процесс промышленной ректификации смеси Ф-М-В, осложненный химическими взаимодействиями между компонентами, адекват-
но оценивать целесообразность использования тех или иных типов контактных устройств, оптимизировать технологический режим работы колонны.
СПИСОК ЛИТЕРАТУРЫ
1. Огородников С.К. Формальдегид. - Л.: Химия, 1984. - 280 с.
2. Коган Л.В. Изучение состояния водно-метанольных растворов формальдегида методом ЯМР // Журнал прикладной химии. -1979. - Т. 52. - № 12. - С. 2725-2729.
3. Косинцев В.И., Самборская М.А., Лактионова Е.А. Моделирование компонентного состава растворов с химическими реакциями // Компьютерное и математическое моделирование в естественных и технических науках: Матер. I Всеросс. научной МегМ-конф. (январь-февраль 2001 г.). - Тамбов, 2001. -Вып. 1. - С. 89-92.
4. Блажин Ю.М., Коган Л.В., Вагина Л.К. и др. Равновесие жидкость - пар в системе формальдегид - метанол - вода при атмосферном и пониженном давлении // Журнал прикладной химии. - 1976. - Т. 49. - № 1. - С. 174-178.
5. Коган Л.В. Математическое описание фазового поведения систем, компоненты которых вступают в реакции полимериза-
ции // Журнал прикладной химии. - 1971. - Т. 44. - № 9. -С. 2149-2151.
6. Косинцев В.И., Самборская М.А., Лактионова Е.А. Определение термодинамических свойств для моделирования массооб-менных процессов получения товарного формалина // Известия Томского политехнического университета. - 2004. -Т. 307. - № 2. - С. 38-40.
7. Коган Л.В., Огородников С.К. Равновесие между жидкостью и паром в системе формальдегид - метанол - вода // Журнал прикладной химии. - 1980. - Т. 53. - № 1. - С. 119-124.
8. Уокер Дж. Формальдегид. - М.: Госхимиздат, 1957. - 608 с.
9. Миронов В.М., Беляев В.М. Основы автоматизированного проектирования химических производств. - Томск: Изд-во ТПУ, 2001. - 167 с.
10. Ахназарова С.Л., Кафаров В.В. Оптимизация эксперимента в химии и химической технологии: учебное пособие для химико-технологических вузов. - М.: Высшая школа, 1978. - 319 с.
УДК 543.253
О РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ МЕТОДА ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ
НА РТУТНОМ КАПЕЛЬНОМ ЭЛЕКТРОДЕ ЗА СЧЕТ ОБЪЕМНЫХ ПОСЛЕДУЮЩИХ ХИМИЧЕСКИХ РЕАКЦИЙ
Ю.А. Карбаинов, Т.М. Гиндуллина, Г.Б. Слепченко, Е.Г. Черемпей, Д.С. Стукалов
Томский политехнический университет E-mail: [email protected]
На основе закономерностей влияния последующей химической реакции на обратимые анодные пики на стационарном ртутном капельном электроде в методе инверсионной вольтамперометрии предложен новый способ разделения обратимо- и необратимо окисляющихся металлов с близкими значениями потенциалов их анодных пиков и количественный критерий оценки относительной погрешности в определении искомого металла в присутствии мешающего.
Рассмотренные ранее закономерности влияния последующей химической реакции на обратимые анодные пики на ртутном пленочном электроде (РПЭ) с качественной точки зрения остаются справедливыми и в случае стационарного ртутного капельного электрода (СРКЭ) [1-3], рис. 1, 2.
На этих рисунках к/ - приведенная константа скорости последующей химической реакции, с-1; Щ'=кг• СЦ, Сх - концентрация лиганда, п - координационное число; Кр'=Кр-СП - константа равновесия последующей химической реакции
Red \
ztüx + n X ;
±Y,
где k* - коэффициент обратимого анодного пика, А-см-г-ат-1, в уравнении для силы тока анодного окисления Red
Ia = k* SC°
S - поверхность СРКЭ, см2; CR - исходная концентрация Red, г-ат-см-3; q - поток диффузии Red у поверхности электрода, моль-см-2-с-1, величина, пропорциональная силе тока анодного окисления Red; r0 - радиус СРКЭ, см; a - скорость изменения потенциала, В-с-1.
Для количественной оценки степени разделения обратимо и необратимо окисляющихся металлов с близкими значениями потенциалов их предельных токов на СРКЭ были использованы в качестве исходных данные, представленные в [1, 2].
На их основе были рассчитаны величины:
I*. b1/2 AE*.
v _ n,i v _ 1/2,«: v _ n ,
X 1 —-, Л 2 — —;-, X 3 — -—,
1 I b1/2 AE0
n 1/2,g n
где I'ni - высота анодного пика обратимо окисляющегося металла (величина предельного тока) при /-ой концентрации лиганда в растворе; Ь\/2к - ши-
Технические науки
рина кинетическои ветви полупика при заданной концентрации лиганда, мВ; ДЕ„*;=Е„*;-Е„° - сдвиг потенциала обратимого анодного пика при /-ой концентрации лиганда относительно потенциала обратимого анодного пика при Ся=0.
350
300
250
ь =io8
\ Мо6
кр =10^
/
кр =ю2
10 IgkJ
Рис. 1. Влияние последующей химической реакции на коэффициент предельного анодного тока. 1=1Сг4 см, а=1,4-10-4В/с
В таблице представлены некоторые расчетные данные для Кр0=106 и различных значений безразмерного параметра
- 1 2л.
где Л=8,314 Дж/К^моль-экв-1 - универсальная газовая постоянная; /=96500 А^моль-экв-1 - постоянная Фарадея; Бк - коэффициент диффузии
восстановленной формы Red, смЧ-1; z - число электронов, принимающих участие в электрохимической стадии.
Таблица. Влияние гомогенной (объемной) последующей химической реакции на характеристики обратимых анодных пиков на СРКЭ
Параметры ®=510-3 В/c, ®=510-3 В/c,
анодного пика Го' =0,02 см, y=0,099 Го =0,04 см, y=0,025
kf 1СГ2 102 106 1010 10-2 102 106 1010
kf/ka 1,0 1,15 1,60 1,77 1,0 1,14 1,44 1,53
b1/2,i/b1/2,k 1,С 1,14 2,66 8,00 1,0 1,25 3,33 5,00
АЕ/Е,0 0 0,29 0,83 0,89 0 0,29 0,90 0,94
мВ 125 89,18 10,82 2,71 135 95,53 13,95 8,68
ae;„ мВ 0 35,82 114,18 122,29 0 39,47 121,05 126,32
Полученные данные свидетельствуют в целом о том, что на СРКЭ влияние последующих химических реакций на анодные пики обратимо окисляющихся металлов проявляется несколько слабее, чем на РПЭ. Действительно, например, при ю=1,410-2 Вс1 и /=Н0-4 см изменение ширины полупика кинетической ветви обратимого анодного пика при к/°=1010 с-1 и К0=106 составляет ¿1/2к/Ь*1/2к=5,67 раза, тогда как на СРКЭ при ю=Н0-2 В.с-1, г0=0,04 см и тех же параметрах химической реакции это изменение составляет только 4 раза; изменение коэффициента обратимого анодного пика в рассматриваемых условиях, соответственно, равно 2,37 и 1,43 раза. Аналогично обстоит дело и при других параметрах электродного процесса. В результате интерполяции расчетных данных, полученных на основе [1,2], можно записать:
Г(х, + х2 + х)~1 _
«=а8 187 ][0-01+Х]коо%,
где a
нысх ,1( Е, 2)
I,
- отношение величины тока нис-
ходящей ветви пика первого, более отрицательного и обратимо окисляющегося металла при потенциа-
1.5
1.0
0.5
kj=10 с
Рис. 2. Влияние последующей химической реакции на величину и форму обратимого анодного пика на СРКЭ. гС=0,04 см, т=5-10г3 В/с, К°=Ю6
ле пика второго необратимо окисляющегося металла к предельному току второго пика.
Величина этого отношения, выраженная в процентах, представляет собой относительную погрешность в определении необратимо окисляющегося металла в присутствии обратимо окисляющегося металла. Численная оценка этого отношения показывает, что в рабочих условиях инверсионной вольтам-перометрии (г0<0,04 см, о<10-2 Вс1) разделение двух таких пиков с близкими значениями их потенциалов является достаточно эффективным. Так, увеличение kf от 10-2 до 1010 с-1 при К0=106 позволяет разделять пики с погрешностью 1,9 %, а при г0=0,04 см и о=0,1.1 В-с-1 при тех же параметрах химической реакции величина а уже значительно выше и составляет около 30 %. Связано это с тем, что с увеличением r0 и а, т.е. по мере изменения характера диффузии восстановленной формы Red от ограниченной к по-
лубесконечной, существенно ослабевает эффект влияния последующих химических реакций на пики обратимо окисляющихся металлов [1].
Выводы
1. На основе закономерностей влияния последующей химической реакции на пики обратимо окисляющихся металлов рассмотрена возможность разделения пиков обратимо- и необратимо окисляющихся металлов с близкими значениями потенциалов их предельных токов на стационарном ртутном капельном электроде в инверсионной вольтамперометрии.
2. Получена интерполяционная формула, позволяющая оценивать относительную погрешность в определении искомого металла в присутствии мешающего.
СПИСОК ЛИТЕРАТУРЫ
1. Карбаинов Ю.А., Резникова С.С., Стромберг А.Г. Влияние последующей химической реакции комплексообразования на обратимые анодные пики в методе амальгамной полярографии с накоплением на стационарном ртутном капельном электроде // Электрохимия. - 1973. - Т. 9. - № 9. - С. 1351-1353.
2. Карбаинов Ю.А., Резникова С.С., Стромберг А.Г. Зависимость коэффициента обратимого анодного пика от параметров по-
следующей химической реакции комплексообразования в методе амальгамной полярографии с накоплением на стационарном ртутном капельном электроде // Электрохимия. - 1974. -Т. 10. - № 7. - С. 1156-1159.
3. СтромбергА.Г., Каплин А.А., Карбаинов ЮА., Назаров Б.Ф., Кол-пакова Н.А., Слепченко ГБ., Иванов ЮА. Инверсионная вольтам-перометрия в работах Томской научной школы // Известия вузов. Химия и хим. технология. - 2000. - Т. 43. - № 3. - С. 8-33.
УДК 547.443
^НТЕЗ 1,2-ДИКЕТОНОВ НА ОСНОВЕ АЦЕНАФТЕНА
В.К. Чайковский, М.С. Юсубов*, В.Д. Филимонов
Томский политехнический университет E-mail: [email protected] *Сибирский государственный медицинский университет
Разработан подход к синтезу 3,5-ди(фенилглиоксалоил)аценафтена через ряд промежуточных стадий, включающий ацилиро-вание 5-иодаценафтена фенилуксусной кислотой, окисление 5-иод-3-фенацетилаценафтена системой диметилсульфоксид -HBr до 3-фенилглиоксалоил-5-иодаценафтена, конденсацию полученного иоддикетона с фенилацетиленом и последующее окисление 3-фенилглиоксалоил-5-фенилэтинилаценафтена системой диметилсульфоксид - PdCl2.
1,2-Дикарбонильные соединения находят разностороннее применение в органическом синтезе. Они служат полупродуктами для получения гетероциклических соединений, лекарственных препаратов [1], высокотермостойких полимеров - полихи-ноксалинов [2] и других веществ. Однако доступность исходных 1,2-дикетонов зачастую бывает ограничена, т.к. их синтез не всегда заканчивается успешно.
Ранее в работе [3] было описано получение бис-1,2-дикетона окислением 3,5-бис(фенилэти-нил)аценафтена (1) раствором перманганата калия в ацетоне. Однако, как в последствии было установлено, в продукте реакции окисленной оказалась только одна тройная связь. Предположительно в положении 5 (Схема 1).
Наши исследования показали, что окисления второй фенилацетиленовой группы в предполагаемом 5-фенилглиоксалоил-3-фенилэтинилаце-нафтене (2) не происходит даже при избытке окислителя.
Строение дикетона 2 было подтверждено нами окислением иодацетиленового соединения - 3-иод-5-фенилэтинилаценафтена (3), полученного по методике [3] до 3-иод-5-фенилглиоксалоилаценафте-на (4) и затем конденсацией иоддикетона 4 с фени-
Ph