Научная статья на тему 'Нагрузочное устройство рекуперационного типа с улучшенными динамическими характеристиками'

Нагрузочное устройство рекуперационного типа с улучшенными динамическими характеристиками Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
184
60
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НАГРУЗОЧНОЕ УСТРОЙСТВО / ЭНЕРГОСБЕРЕЖЕНИЕ / РЕКУПЕРАЦИЯ / ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ / LOADING DEVICE / ENERGY-EFFICIENCY / RECUPERATION / DYNAMIC CHARACTERISTICS

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Мизрах Е. А., Лобанов Д. К.

Разработана имитационная модель нагрузочного устройства рекуперационного типа с улучшенными динамическими характеристиками. Проведено исследование характеристик нагрузочного устройства рекуперационного типа с каскадным включением импульсного и непрерывного стабилизаторов тока.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Мизрах Е. А., Лобанов Д. К.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

LOADING DEVICE OF RECUPERATION TYPE WITH IMPROVED DYNAMIC CHARACTERISTICS

Simulation model of loading device of recuperation type with improved dynamic characteristics for Micro-CAP program has been developed. Research of characteristics of loading device of recuperation type with cascade connection of impulse and continuous current regulators is performed and described in the article.

Текст научной работы на тему «Нагрузочное устройство рекуперационного типа с улучшенными динамическими характеристиками»

УДК 629.7.064.52

Е. А. Мизрах, Д. К. Лобанов

НАГРУЗОЧНОЕ УСТРОЙСТВО РЕКУПЕРАЦИОННОГО ТИПА С УЛУЧШЕННЫМИ ДИНАМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ*

Разработана имитационная модель нагрузочного устройства рекуперационного типа с улучшенными динамическими характеристиками. Проведено исследование характеристик нагрузочного устройства рекуперационного типа с каскадным включением импульсного и непрерывного стабилизаторов тока.

Ключевые слова: нагрузочное устройство, энергосбережение, рекуперация, динамические характеристики.

Нагрузочное устройство рекуперационного типа (НУРТ) используется в составе энергосберегающего испытательного комплекса (ЭИК), предназначенного для наземных испытаний мощных вторичных источников электропитания космических аппаратов [1]. Этот комплекс также включает в себя стабилизирующий выпрямитель, имитатор первичного источника электропитания, испытываемый источник вторичного электропитания (ИВЭП).

Топология нагрузочного устройства определяет коэффициент полезного использования электроэнергии всего энергосберегающего испытательного комплекса. Применение НУРТ, осуществляющего частичный возврат электроэнергии в сеть постоянного тока, питающую испытательный комплекс, позволяет значительно улучшить энергетические характеристики ЭИК по сравнению с нагрузочным устройством со сбросом энергии в окружающую среду в виде тепла.

В [2] рассмотрен НУРТ с импульсным регулирующим элементом. В результате моделирования и экспериментальных исследований были выявлены такие его недостатки, как небольшая скорость нарастания входного тока НУРТ при имитации ступенчатой коммутации нагрузки и узкая полоса частот воспроизведения гармонических помех. Для улучшения динамических характеристик НУРТ авторами предложено использовать каскадное включение двух стабилизаторов тока: непрерывного (НСТ) и импульсного (ИСТ).

Исследование характеристик нагрузочного устройства рекуперационного типа с улучшенными динамическими характеристиками выполнялось с помощью пакета схемотехнического моделирования Місго-САР.

Имитационная модель НУРТ (рис. 1) состоит из ИВЭП, первичного источника электроэнергии (ПИЭ), питающего ИВЭП, и НУРТ, являющегося нагрузкой для ИВЭП. НУРТ содержит включенные каскадно НСТ и ИСТ, причем НСТ стабилизирует входной ток НУРТ, а ИСТ - ток, протекающий через НСТ, что ограничивает мощность, выделяемую на транзисторах НСТ. Выход ИСТ подключен параллельно через развязывающие диоды к выходу ПИЭ, что позволяет рекуперировать электроэнергию в сеть постоянного тока электропитания ЭИК. Такая структура объединяет в себе высокое быстродействие устройств, работаю-

щих в непрерывном режиме, и высокий КПД устройств, функционирующих в импульсном режиме.

В непрерывный стабилизатор тока входят шесть параллельно включенных МДП-транзисторов УТ1-УТ6 по схеме «общий исток» и операционный усилитель (ОУ) БАЗ, вырабатывающий сигнал ошибки, пропорциональный отклонению входного тока НУРТ от требуемого значения выходного тока ИВЭП.

Импульсный стабилизатор тока выполнен в виде мостового импульсного преобразователя (ИП) с фазовым управлением с гальванической развязкой на повышающем трансформаторе. Силовая часть образована мостом УТ7-УТ10, повышающим трансформатором Т1, выпрямителями УБ7, УБ6, УБ11, УБ12, выходным фильтром Ь6С19. Система управления ИП содержит ОУ БА4, вырабатывающий сигнал ошибки, пропорциональный отклонению тока, протекающего через НСТ, от требуемого значения. Элементы ББ1-ББ19, Я32-Я35, С12-С15 образуют фазоимпульсный модулятор, управляющий ключами ИП УТ7-УТ10. Параметры схемы моделирования ИСТ уточнены на основании экспериментальных исследований макета ИСТ.

С помощью разработанной модели были проведены вычислительные эксперименты, в ходе которых получены энергетические и динамические характеристики НУРТ.

Об эффективности НУРТ можно судить по коэффициенту рекуперации - отношению рекуперируемой мощности к мощности, потребляемой НУРТ (рис. 2). Результаты моделирования показывают, что из-за введения НСТ коэффициент рекуперации НУРТ с улучшенными динамическими характеристиками ниже, чем коэффициент рекуперации НУРТ с ИСТ. С ростом мощности, потребляемой НУРТ с каскадным включением НСТ и ИСТ, коэффициент рекуперации растет, что обусловлено увеличением рекуперируемой мощности по отношению к мощности, потребляемой НСТ, которая практически постоянна.

Анализ переходных процессов при ступенчатом на-бросе и сбросе входного тока НУРТ (рис. 3) позволяет сделать вывод о том, что НСТ в момент сброса выходит из активного режима (транзисторы НСТ полностью закрыты), в результате чего происходит затягивание фронта спада тока. Скорость нарастания входного тока НУРТ равна 30 А/мкс, скорость спада - 0,1 А/мкс.

*Работа выполнена при финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг.

Блок управления импульсным стабилизатором тока! Рис. 1. Имитационная модель НУРТ, выполненная в пакете Мгсго-САР

І нурт- А

І нет' А а

б

Рис. 3. Переходные процессы при ступенчатом набросе и сбросе входного тока НУРТ с постоянной установкой тока НСТ

18.000

15.000

12.000 8.000 6.000 3 000 0 000

Iнурт■А

мс

2.000

I НСТ- а

6.000

а

б

Рис. 4. Переходные процессы при ступенчатом набросе и сбросе входного тока НУРТ с изменяемой установкой тока НСТ

Увеличить скорость спада входного тока НУРТ можно за счет предварительного увеличения тока НСТ (рис. 4), когда ступенчатый сброс осуществляется за счет ступенчатого уменьшения тока НСТ, при этом скорость спада входного тока НУРТ составляет 26 А/мкс.

Рекуперация электроэнергии в сеть постоянного тока снижает мощность, потребляемую от ПИЭ. В установившемся режиме электроэнергия используется только для компенсации потерь в ИВЭП и НУРТ (рис. 5). Так, при входной мощности НУРТ в 1 500 Вт от ПИЭ потребляется мощность 550 Вт.

При длительных испытаниях ИВЭП нередки отключения сети переменного тока, приводящие к работе в аварийном режиме. Для исключения такого режима в состав испытательного комплекса вводится

источник бесперебойного питания. В этом случае рекуперация в сеть постоянного тока позволяет либо уменьшить емкость аккумуляторных батарей, либо увеличить время работы комплекса в аварийном режиме.

Реальные потребители электроэнергии на борту космического аппарата, как правило, имеют в своем составе импульсные преобразователи напряжения, являющиеся источниками импульсных и гармонических помех. Поэтому для проведения испытаний ИВЭП нагрузочное устройство должно иметь возможность наведения помех. Исследуемое НУРТ позволяет наводить синусоидальные помехи частотой до 100 кГц (рис. 6) и импульсные помехи частотой до 10 кГц (рис. 7). Максимальная амплитуда помех определяется величиной тока, стабилизируемого на

НСТ. Во избежание выхода НСТ из активного режима стабилизируемого на НСТ, вызывает необходимость

и искажения формы наводимого на входной ток проектирования НСТ на большую мощность, что

НУРТ сигнала амплитуда гармонического или им- ухудшает его динамические характеристики, умень-

пульсного тока ограничена величиной тока, стабили- шает коэффициент полезного использования энергии

зируемого на НСТ. В частности, увеличение тока, и увеличивает массу и габариты всего устройства.

г. А

Рис. 5. Графики мощностей:

-Рнурт - входная мощность НУРТ; Ррек - рекуперируемая мощность; -РпиЭ - мощность, потребляемая от ПИЭ

б

Рис. 6. Режим наведения синусоидальных помех

Iнурт.А

б

Рис. 7. Режим наведения импульсных помех

а

Динамические характеристики НУРТ

Параметр НУРТ с ИСТ НУРТ с каскадным включением НСТ и ИСТ Коэффициент улучшения (отношение параметров)

Длительность переходного процесса 285 мкс 22 мкс 13,0

Скорость нарастания входного тока НУРТ 0,04 А/мкс 30 А/мкс 750

Скорость спада входного тока НУРТ 0,05 А/мкс 26 А/мкс 520

Коэффициент рекуперации 85 % 72,2 % 0,85

Высокочастотные помехи (см. рис. 6) наводятся за счет изменения тока НСТ, и в этом случае динамические характеристики ИСТ таковы, что он практически не отрабатывает изменение тока НСТ. При наведении низкочастотных помех (см. рис. 7) ИСТ частично компенсирует изменение тока НСТ. Несимметричность графика тока НСТ (рис. 7, б) объясняется различием скорости нарастания и спада входного тока ИСТ.

Модель, разработанная в пакете Micro-CAP, позволяет сократить время на проектирование нагрузочных устройств рекуперационного типа и может быть использована для анализа динамических и энергетических характеристик НУРТ (см. таблицу).

Таким образом, каскадное включение регулирующих элементов существенно улучшает динамические характеристики НУРТ, но уменьшает коэффициент

полезного использования электроэнергии из-за потерь в НСТ. Этот недостаток особенно проявляется при относительно малых мощностях нагружения, соизмеримых с мощностью потребления НСТ (см. рис. 2).

Библиографические ссылки

1. Мизрах Е. А., Лобанов Д. К. Динамический синтез нагрузочных устройств с рекуперацией электроэнергии в сеть электропитания испытательного комплекса энергосистем космического аппарата // Вестник СибГАУ. 2011. Вып. 4 (37). С. 142-147.

2. Мизрах Е. А., Лобанов Д. К. Энергосберегающее нагрузочное устройство для испытаний систем электропитания постоянного тока // Вестник СибГАУ. 2010. Вып. 6 (32). С. 56-61.

E. A. Mizrakh, D. K. Lobanov

LOADING DEVICE OF RECUPERATION TYPE WITH IMPROVED DYNAMIC CHARACTERISTICS

Simulation model of loading device of recuperation type with improved dynamic characteristics for Micro-CAP program has been developed. Research of characteristics of loading device of recuperation type with cascade connection of impulse and continuous current regulators is performed and described in the article.

Keywords: loading device, energy-efficiency, recuperation, dynamic characteristics.

© Мизрах Е. А., Лобанов Д. К., 2012

УДК 621.01

Р. А. Мирзаев, Н. А. Смирнов

ИССЛЕДОВАНИЕ КИНЕМАТИКИ МАНИПУЛЯТОРА ПАРАЛЛЕЛЬНОЙ СТРУКТУРЫ (ДЕЛЬТА-МЕХАНИЗМА)

Рассмотрена кинематика манипулятора с параллельной структурой - дельта-механизма. Аналитически решена прямая задача кинематики манипулятора. Проведена проверка полученного решения с помощью трехмерного моделирования. Найдены крайние положения манипулятора и область рабочей зоны.

Ключевые слова: прямая задача кинематики, рабочая зона, дельта-механизм, устройства параллельной кинематики, манипуляторы.

В некоторых областях техники перспективным является применение роботов-манипуляторов на основе механизмов параллельной кинематики, используемых при механической обработке изделий сложной формы (например, штампов, пресс-форм, лопаток турбин и т. д.), когда требуется перемещение инструмента по пятишести координатам.

В отличие от традиционных манипуляторов, структуры с параллельной кинематикой содержат замкнутые кинематические цепи и воспринимают нагрузку как пространственные фермы [1], т. е. звенья этих механизмов работают на растяжение и сжатие, что обеспечивает жесткость всей конструкции и, как следствие, повышение точности позиционирования схвата [2].

i Надоели баннеры? Вы всегда можете отключить рекламу.