Научная статья на тему 'Мультиномиальный логит-анализ и конкурентное поведение на рынке'

Мультиномиальный логит-анализ и конкурентное поведение на рынке Текст научной статьи по специальности «Экономика и бизнес»

CC BY
2137
186
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МУЛЬТИНОМИАЛЬНЫЙ ЛОГИТ-АНАЛИЗ / ДУОПОЛИЯ ХОТЕЛЛИНГА НА ПЛОСКОСТИ / РАВНОВЕСИЕ ПО НЭШУ / HOTELLING'S DUOPOLY ON THE PLANE / MULTINOMIAL LOGIT ANALYSIS / NASH EQUILIBRIUM

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Щипцова Анна Владимировна

В статье рассматривается применение мультиномиального логит-анализа для моделирования спроса на рынке одного товара, зависящего от цены и расстояния от потребителя до участника рынка. Исследуется конкурентное поведение игроков на рынке с помощью понятия равновесия по Нэшу. Представлены результаты численного моделирования.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MULTINOMIAL LOGIT ANALYSIS AND COMPETITIVE BEHAVIOUR IN THE MARKET

The paper considers application of the multinomial logit model for estimation of the customer demand for a product in the market. Customer demand depends on the price and distance from a customer to a market actor. We examine the players' competitive behaviour in the market using Nash equilibrium. Computational modeling with multinomial logit analysis is presented.

Текст научной работы на тему «Мультиномиальный логит-анализ и конкурентное поведение на рынке»

Труды Карельского научного центра РАН № 5. 2011. С. 120-124

УДК 519.7

МУЛЬТИНОМИАЛЬНЫЙ ЛОГИТ-АНАЛИЗ И КОНКУРЕНТНОЕ ПОВЕДЕНИЕ НА РЫНКЕ

А. В. Щипцова

Институт прикладных математических исследовании Карельского научного центра РАН

В статье рассматривается применение мультиномиального логит-анализа для моделирования спроса на рынке одного товара, зависящего от цены и расстояния от потребителя до участника рынка. Исследуется конкурентное поведение игроков на рынке с помощью понятия равновесия по Нэшу. Представлены результаты численного моделирования.

Ключевые слова: мультиномиальный логит-анализ, дуополия Хотеллинга на плоскости, равновесие по Нэшу.

A. V. Shchiptsova. MULTINOMIAL LOGIT ANALYSIS AND COMPETITIVE BEHAVIOUR IN THE MARKET

The paper considers application of the multinomial logit model for estimation of the customer demand for a product in the market. Customer demand depends on the price and distance from a customer to a market actor. We examine the players’ competitive behaviour in the market using Nash equilibrium. Computational modeling with multinomial logit analysis is presented.

Key words: multinomial logit analysis, Hotelling’s duopoly on the plane, Nash equilibrium.

Введение

Дуополия Хотеллинга [Hotelling, 1929] описывает поведение участников рынка - продавцов одного товара. В модели предполагается, что на величину потребительского спроса влияют установленная игроком цена и транспортные расходы потребителя, равные расстоянию от него до игрока. Хотеллинг нашел равновесные цены на линейном рынке и поставил задачу о размещении игроков на рынке. В дальнейшем было доказано [d’Aspremont et al., 1979], что в такой постановке равновесие в задаче о размещении не существует.

Салоп [Salop, 1979] распространил дуополию Хотеллинга на модель «кругового» города, где участники рынка располагаются вдоль окружности на одинаковом расстоянии друг от друга. В работе [Mazalov, Sakaguchi, 2003] показано, что решение задачи о размещении существует на плоском рынке с квадратичными транспортными расходами.

В работах [Щипцова, 2009; Мазалов и др., 2010] исследовалась модель дуополии Хотел-линга на плоскости. Ценовое равновесие и решение задачи о размещении были построены для случая рыночной конкуренции между двумя участниками рынка. Увеличение числа игроков в модели Хотеллинга ведет к существенному усложнению задачи.

Данная статья посвящена задаче поиска ценового равновесия для п игроков в рамках мультиномиальной логит-модели, предложенной МакФадденом [МеРаёёеп, 1973]. Товар, предлагаемый участником рынка, является одной из потребительских альтернатив. Как и в дуополии Хотеллинга, будем считать, что выбор потребителя зависит от цены и расстояния между ним и участником рынка.

Мультиномиальная логит-модЕль

Пусть на рынке есть т потребителей из множества I = {1 ...т}. Каждый потребитель делает выбор из конечного множества альтернатив .] = {1 ...п}. Альтернатива для потребителя состоит в приобретении товара у 2-го участника рынка. Выбор г-го потребителя опишем с помощью решающей функции ^(г) : I ^ ■].

Будем считать, что г-й потребитель стремится максимизировать полезность игу, которую он получает от приобретения товара у 2-го участника рынка. Функция полезности игу имеет вид

+ егу ,

где Ру - детерминированная составляющая, зависящая от свойств самой альтернативы и предпочтений потребителя, еу - стохастическая.

Вероятность выбора г-м потребителем альтернативы 2 равна вероятности того, что полезность игу наибольшая из возможных. Таким образом,

р (^(г) = 2)

= Р (игу ^ Щг, Ут е {1 . . . п} : Г = 2)

= Р ( иу = тах игг ) .

\ г€(1...га} у

МакФадден [МеРаёёеп, 1973] предложил мультиномиальную логит-модель, в которой стохастические составляющие функции полезности еу есть независимые случайные величины, распределенные по закону Гумбеля (экстремальное распределение 1-го типа) с соответствующими функциями распределения и плотности

^(е) = е-е-в(Е-а),в> о,

0( \ —е-в(е —а)

/ (е) = ве-в(£-“)е .

Тогда в предположении о независимости еу вероятность выбора альтернативы 2 представима в явном виде

(У—

р №) = 2) = -4—. (1)

Е е^

г=1

Формула вероятности выбора делает мультиномиальную логит-модель привлекательной для практического применения. Увеличение числа альтернатив не ведет к усложнению модели.

Ценовое равновесие в мультиномиальной логит-модели

Пусть рынок потребительских услуг представлен кругом радиуса единица с равномерным распределением населения. Плотность населения равна единице. Каждый из участников рынка в точке (жу, уу) (2 = 1 ...п) предлагает потребителям один и тот же товар по цене ру и стремится получить наибольшую прибыль от продажи. Спрос является абсолютно неэластичным. Без потери общности будем считать, что себестоимость товара для участников рынка равна нулю.

Как и в дуополии Хотеллинга, будем предполагать, что кроме цены за приобретение товара потребитель также уплачивает транспортные расходы за его доставку. Таким образом, полезность приобретенного товара у 2-го участника рынка представима в виде

иу (ру ,х, у) = -в1 Рз - в2Рз (х, у) + еу ,2 = 1... п,

где в1,в2 ^ 0 - некоторые константы,

Ру(х,у) = л/(х — ху)2 + (у — уу)2 - расстояние от потребителя до продавца и еу - стохастическая составляющая полезности, одинаковая для всех потребителей. Будем предполагать, что еу - независимые случайные величины, распределенные по закону Гумбеля.

Каждый потребитель стремится получить максимальную полезность при выборе 2-го участника рынка.

Таким образом, из (1) вероятность приобретения товара у 2-го участника при установленных ценах Р1,.. .рп для потребителя в точке (ж, у) составит

е-А Р— -^2.(х-х— )2+(у-у—)2

р (ж,у) = ~п------------. Г,

^2 е-в!Р*-в2\/(х-Х€)2 + (у-у€)2

2 = 1 ...п — 1, (2)

п-1

Рп(ж,у) = 1 — ^ Рг(ж,у).

г=1

0

Доля потребителей, выбирающих товар 2-го игрока, будет равна

і VI —у2

Р] (ж, У

-1 -VI-у2

2 = 1 . ..п - 1,

(3)

п—1

і=1

Мы определили бескоалиционную игру

г = ^{1... п}, {ру е [0, +го), 2 = 1... п},

{Я] = Р]5], 2 = 1... га - 1,

п—1

Яп = П - £ 5 Л.

(4)

і=1

Из вида (2) получаем, что дР] (ж, у)

дР]

= -в1 р] (ж,у)(1 - р] (ж,у)).

Точка равновесия по Нэшу (р1,.. . ,рП) в игре (4) удовлетворяет системе уравнений:

^ + РЯ5І = ^ І = 1...п - 1

Ц* = П - £ 5* + Рп £ || = 0.

і=1 і=1

(5)

Из (2), (3) и (5) получаем, что равновесие на рынке потребительских услуг, территория которого представлена единичным кругом, отвечает условиям

'ди 1 ^1—У2 / ,

дії = / / Рз (ж,У М1 - в Р] I1

5 —1 -71—У2 4

-Р](ж, у)) Ыж^у = 0, 2 = 1.. .п - 1,

дип

дрп

П

1 л/1—У2 п—1 /

- / / Рі(х у) Ц

-1 _л/^іу2 і=1 4

двух типах рынков: рынке по предоставлению парикмахерских услуг (цена на мужскую модельную стрижку) и рынке услуг АЗС (цена на дизельное топливо). Расстояние между потребителем и поставщиком услуги рассчитывалось в евклидовой метрике.

Рынок парикмахерских услуг рассматривался в рамках одного городского микрорайона (мкр. Древлянка г. Петрозаводска) с количеством игроков п = 4. Территория микрорайона была смоделирована кругом радиуса единица (рис. 1).

(2) +

(3) +

(4)+/

—V1—у2

+в1 Рп (1 - Е Рі (ж, У))) ^у = 0.

і=1 7

Моделирование

Мультиномиальная логит-модель использовалась при проведении численного моделирования конкурентного поведения игроков на

Рис. 1. Расположение игроков на рынке парикмахерских услуг (п = 4)

Конкурентное поведение игроков на рынке услуг АЗС (п = 16) исследовалось в пределах г. Петрозаводска (исключая мкр.-ны Соломенное, Сулажгора и Птицефабрика), модель города была представлена полукругом радиуса единица (рис. 2).

Ценовое равновесие было найдено как решение системы (5) для соответствующей области. Оценка параметров мультиномиальной логит-модели получена с помощью метода максимального правдоподобия. В качестве единицы цены было взято среднее отклонение от минимальной цены из существующих реальных цен, предлагаемых участниками рынка. Себестоимость услуги была принята как минимальная реальная цена.

Результаты расчетов приведены в таблицах 1 и 2. Полученные данные показывают, что поведение игроков на рынке парикмахерских услуг близко к оптимальному. Участники рынка услуг АЗС отклоняются от равновесия по Нэшу в рамках мультиномиальной логит-модели.

Онежское озеро

Рис. 2. Расположение игроков на рынке услуг АЗС (п = 16)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Таблица 1. Ценовое равновесие на рынке парикмахерских услуг(п = 4, в1 = 292, 755, в2 = 292, 609)

Игрок Координаты Цена в равновесии Реальная цена (руб.) Модельная цена (руб.)

1 (0, 0,825) 0,449006 230 212,348

2 (-0,15, 0,275) 0,433218 250 211,913

3 (0,35, -0,325) 0,447982 230 212,32

4 (0,75, -0,525) 0,214147 200 205,89

Таблица 2. Ценовое равновесие на рынке услуг АЗС (п = 16, в1 = 702, 496, в2 = 702,405)

Игрок Координаты Цена в равновесии Реальная цена (дизель) (руб.) Модельная цена (руб.)

1 (0,48, 0,52) 0,158352 26,10 25,35

2 (0,35, 0,6) 0,0580351 26,95 25,25

3 (0,24, 0,66) 0,0452477 26,30 25,25

4 (0,25, 0,62) 0,0237764 26,00 25,20

5 (0,08, 0,68) 0,111941 26,10 25,30

6 (0,02, 0,59) 0,289 26,10 25,50

7 (0,02, 0,54) 0,125509 26,90 25,35

8 (0,17, 0,34) 0,0540679 26,00 25,25

9 (0,18, 0,19) 0,123205 25,60 25,35

10 (-0,28, 0,63) 0,20681 27,30 25,40

11 (-0,37, 0,29) 0,0804116 25,40 25,30

12 (-0,33, 0,25) 0,111806 26,30 25,30

13 (-0,28, 0,18) 0,0952577 26,25 25,30

14 (-0,55, 0,2) 0,0459539 26,00 25,25

15 (-0,63, 0,25) 0,0883109 25,20 25,30

16 (-0,12, 0,16) 0,142341 26,30 25,35

Заключение

В статье найдены условия, которым удовлетворяет оптимальное по Нэшу конкурентное поведение игроков на рынке одного товара. Применение мультиномиального логит-анализа для моделирования потребительского спроса позволило получить условия ценового равновесия для произвольной размерности задачи по количеству участников рынка (п ^ 2). Проведено численное моделирование для рынка потребительских услуг при п = 4 и п = 16.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (10-01-00089-а) и Отделения Математических наук РАН «Алгебраические и комбинаторные методы математической кибернетики и информационные системы нового поколения».

Литература

Мазалов В. В., Щипцова А. В., Токарева Ю. С. Дуополия Хотеллинга и задача о размещении на плоскости // Экономика и математические методы. 2010. Т. 46, вып. 4. С. 91-100.

СВЕДЕНИЯ ОБ АВТОРЕ:

Ш^ипцова Анна Владимировна

аспирантка

Институт прикладных математических исследований КарНЦ РАН

ул. Пушкинская, 11, Петрозаводск, Республика Карелия, Россия, 185910 эл. почта: [email protected] тел.: (8142) 766312

Шандор З. Мультиномиальные модели дискретного выбора // Квантиль. 2009. № 7. С. 9-19.

Щипцова А. В. Задача о размещении // Методы математического моделирования и информационные технологии. Труды ИПМИ КарНЦ РАН. 2009. Вып. 9. С. 53-69.

d’Aspremont C., Gabszewicz J., Thisse J. F. On Hotelling’s “Stability in competition” // Econometrica. 1979. Vol. 47, N. 5. P. 11451150.

Heiss F. Structural choice analysis with nested logit models // The Stata Journal. 2002. Vol. 2, N. 3. P. 227-252.

Hotelling H. Stability In Competition // The Economic Journal. 1929. Vol. 39. Issue 153. P. 41-57.

Mazalov V. V., Sakaguchi M. Location Game On The Plane // International Game Theory Review. 2003. Vol. 5, N. 1. P. 1-13.

McFadden D. Conditional logit analysis of qualitative choice behavior / Ed. P. Zarembka // Frontiers in econometrics. New York: Academic Press, 1973. P. 105-142.

Salop S. Monopolistic competition with outside goods // Bell journal of Economics. 1979. Vol. 10. P. 141-156.

Shchiptsova, Anna

Institute of Applied Mathematical Research, Karelian Research Centre, Russian Academy of Science

11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia

e-mail: [email protected] tel.: (8142) 766312

i Надоели баннеры? Вы всегда можете отключить рекламу.