ОБЗОР ЛИТЕРА ТУРЫ МОЛЕКУЛЯРНЫЕ МИШЕНИ... 81
ОБЗОР ЛИТЕРАТУРЫ
УДК 616-006-085.277.3:615.016.44
Д.Ю. Блохин, Е.Ф. Чмутин, П.К. Иванов
МОЛЕКУЛЯРНЫЕ МИШЕНИ ДЛЯ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ:
ПУТИ ПЕРЕДАЧИ СИГНАЛА И ЭПИГЕНЕТИЧЕСКИЕ МОДУЛЯТОРЫ
РОНЦ им. Н.Н. Блохина РАМН, Москва
Контактная информация
Блохин Дмитрий Юрьевич, д-р медицинских наук, заведующий лабораторией фармакоцитокинетики НИИ ЭДиТО Aдрес: 115478, Москва, Каширское ш., д. 24; тел. +7(495)324-22-64; факс +7(495)323-53-33 E-mail: [email protected]
Статья поступила: 25.11.2010, принята к печати
Резюме
Обзор дает общее представление о новых молекулярных мишенях для противоопухолевой терапии, включая компоненты внутриклеточных путей передачи сигналов и факторы, регулирующие экспрессию генов и их белковых продуктов. В частности рассматриваются сигнальные пути Ras/Raf/MEK/Erk/MAPK и PI3K/Akt/mTOR, киназы Bcr/Abl и Src, гистоновая деацетилаза, ДНК-метилтрансфераза и PARP, белок теплового шока HSP90, система убик-витин-протеасома, а также митотические белки/ферменты. Приводятся воздействующие на эти факторы препараты, разрешенные к применению или находящиеся на разных стадиях клинических испытаний.
Ключевые слова: пути передачи сигнала, эпигенетические модуляторы, противоопухолевая терапия.
D.Yu. Blokhin, E.F. Chmutin, P.K. Ivanov
MOLECULAR TARGETS FOR ANTICANCER THERAPY:
SIGNALING PATHWAYS AND EPIGENETIC MODULATORS
N.N. Blokhin Russian Cancer Research Centre of RAMS, Moscow
Abstract
The review provides a general outook of the new promising molecular targets for anticancer therapy including the components of signaling pathways and transcription/translation modifiers. Particularly, the following factors are discussed: Ras/Raf/MEK/Erk/MAPK h PI3K/Akt/mTOR signaling pathways, kinases Bcr/Abl and Src, histone deacety-lase, DNA methyltransferase, PARP, heat shock protein HSP90, ubiquitin-proteasome system, and mitotic proteins/enzymes. A brief description of agents targeting these factors is given with particular emphasis on those approved for clinical use or undergoing at different stages of clinical trials.
Key words: signaling pathways, epigenetic modulators, anticancer therapy.
Введение
Большинство классических противоопухолевых лекарственных средств, разработанных во второй половине прошедшего века и составляющих базу для современной ХТ, действуют путем нарушения процесса репликации ДНК, затруднения восстановления повреждений ДНК или блокады митоза опухолевых клеток. Однако с середины 1990-х гг., по мере накопления знаний о механизмах возникновения и развития опухолей, в дополнение к уже использующимся химиотерапевтическим препаратам бурно разрабатывается новое поколение противоопухолевых средств, получивших наименование «тар-гетных» (от англ. їаг[еТ - мишень). Такое наименование говорит о молекулярной нацеленности подобных лекарств, что, на наш взгляд, некорректно умаляет такую же нацеленность ряда средств «классической» ХТ: антиметаболитов (фторпиримидинов, метотрексата), алкалоидов Винка, таксанов, эпиподофиллотоксинов, антагонистов гормонов тамоксифена и гозерелина, имеющих вполне определенные молекулярные мишени. Однако термин прочно укрепился и широко используется для обозначения химических и биотехнологических веществ, прицельно воздействующих на компоненты путей передачи внутриклеточных сигналов, что в итоге приводит к их
цитостатическому и циторедуктивному эффектам в отношении клеток опухоли. Примечательно, что первый лекарственный препарат иматиниб (Гливек1), с появлением которого связывают наступление новой, «таргет-ной» эры в лекарственном лечении опухолевых заболеваний, разрабатывался под названием STI-571 (Signal Transduction Inhibitor). Клинический успех первых «таргетных» лекарственных средств свидетельствовал о правильно выбранном направлении в развитии ХТ и способствовал массовому созданию новых лекарств с молекулярной направленностью действия. Сегодня на мировой фармацевтический рынок выведены полтора десятка противоопухолевых препаратов нового поколения, а еще несколько десятков подобных веществ проходят различные стадии доклинического и клинического изучения. В настоящем обзоре представлена информация о некоторых перспективных молекулярных мишенях для противоопухолевой терапии - компонентах внутриклеточных путей передачи сигналов и факторов, регулирующих экспрессию генов и их белковых продуктов.
хЗдесь и далее по тексту: международное непатентованное наименование препарата выделено полужирным шрифтом, в скобках приведено торговое название (или шифр при испытаниях - выделено полужирным курсивом).
Рассматриваются митогенные сигнальные пути PI3K/Akt/mTOR и Ras/Raf/MEK/Erk/MAPK, гис-тоновая деацетилаза (ГДА), ДНК-метилтранс-фераза (ДМТ) и PARP, белок теплового шока HSP90, система убиквитин-протеасома, а также митотические белки/ферменты. Кратко описываются воздействующие на эти факторы противоопухолевые препараты, разрешенные к применению или находящие на поздних фазах клинических испытаний. Список таких препаратов суммирован в таблице.
Внутриклеточные пути передачи сигналов
Многие биологически активные вещества, включая гормоны, цитокины, нейромедиаторы, молекулы адгезии и межклеточного взаимодействия, влияющие на метаболизм, рост, подвижность, пролиферацию и дифференцировку клеток, следует рассматривать как первичные химические сигналы, которые взаимодействуют с поверхностными рецепторами клеток, вызывая активацию последних. Вторичный сигнал формируется активированным рецептором и передается на эффекторные структуры внутри клетки по каскадной цепочке реакций, включающей последовательную активацию различных промежуточных компонентов. Эти цепочки реакций в совокупности составляют пути передачи сигналов. Существует несколько магистральных сигнальных путей, которые взаимодействуют друг с другом через общие компоненты по принципу положительных и отрицательных обратных связей. Сигналы от разных рецепторов могут передаваться по разным путям, но могут использовать общие компоненты; сигналы от одного рецептора могут вариантно передаваться по разным сигнальным путям, вызывая разные по характеру (часто - противоположные) эффекты. Одни сигналы могут усиливать другие и ослаблять (и даже блокировать) третьи. Поскольку живая клетка постоянно получает значительное количество разнонаправленных внешних первичных сигналов, каждый из них в отдельности не подлежит немедленному исполнению: результирующий эффект зависит от совокупности, последовательности, силы и длительности всех сигналов, что часто именуют «клеточным контекстом». Уместна аналогия с музыкой, в которой совокупность звуков (сигналов), их сила, последовательность и долгота звучания складываются в мелодию. Пауза (отсутствие сигнала) тоже рассматривается как сигнал. Так, дефицит ростовых факторов снижает скорость фосфорилирования рецепторными тирозинкиназами цитозольного белка Bad (из семейства Вах-подобных активаторов апоп-тоза), что приводит к его спонтанному дефосфори-лированию с приобретением апоптогенной активности - запускается митохондриальный путь индукции апоптоза.
Таким образом, множество сигнальных путей формирует сеть, в которой магистральные пути сообщаются через многочисленные разветвления, ответвления, перекрестки и коллатерали. Для практической онкологии наибольший интерес представляют магистральные пути передачи сигнала PI3R/Akt/mTOR и Ras/Raf/MEK/Erk/MAPK.
PI3K/Akt/mTOR
Путь передачи сигнала через фосфоинози-тид-3-киназу (PI3K), киназу Akt и мишень рапами-цина в клетках млекопитающих (mTOR - mammalian target of rapamycin) проводит сигналы различных факторов роста и рецепторных киназ, регулируя многие аспекты роста и метаболизма клеток.
Хотя этот путь обычно описывается в виде линейной цепочки, он подвергается сложной регуляции, включающей внутренние механизмы обратной связи, и “горизонтально” связан с другими путями передачи сигналов, в том числе через митоген-активируемые протеинкиназы (МАРК).
PI3K - это мембраносвязанная киназа, которая при активации рецепторными киназами фосфо-рилирует фосфоинозитол до 3-фосфоинозитида, который, в свою очередь, трансактивирует ряд ферментов, в том числе протеинкиназу В (РКВ, иначе называемую Akt). Активация Akt происходит опосредованно через фосфорилирование промежуточных протеинкиназ (например, PDK-1), субстратами которых являются «нижестоящие» протеинкиназы (Akt, PKC), в связи с чем эти промежуточные белки именуют киназами киназ. Активированный Akt тормозит функции белкового комплекса TSC-2, который в норме подавляет вызываемую mTOR активацию регуляторов процессов транскрипции и трансляции p70s6k и 4EBP1.
Направленное воздействие на путь передачи сигнала Pl3K/Akt/mTOR представляется перспективной стратегией противоопухолевой терапии, поскольку участвующие в этом пути киназы постоянно активированы при нескольких типах рака, и эта активация сопряжена с негативным прогнозом течения и резистентностью опухолей к химиотерапии [13]. В числе прочего, активация пути PI3K/Akt/mTOR приводит к стимуляции экспрессии индуцируемого гипоксией фактора 1а (HIF-1a), который является важным регулятором ангиогенеза. Экспрессия HIF-1 а усилена в характерных для опухолей условиях гипоксии и приводит к стимуляции секреции опухолевыми клетками эндотелиального фактора роста сосудов VEGF и тромбоцитарного фактора роста PDGF. Основные усилия исследователей направлены на разработку низкомолекулярных ингибиторов PI3K, Akt и mTOR. Активная работа в этой области привела к тому, что первые препараты группы уже разрешены к применению.
Наибольшие успехи достигнуты в создании ингибиторов mTOR благодаря длительной истории изучения этого фактора. mTOR - цитозольная се-рин/треониновая киназа, которая обнаружена в 1990-е гг. при изучении макролидного антибиотика рапамицина (Сиролимуса) [27]. Рапамицин является иммуносупрессором и применяется для предотвращения отторжения трансплантатов, а в рамках I/II фаз клинических испытаний изучалась возможность его применения при некоторых формах солидных опухолей, в частности, при раке поджелудочной железы [17]. Более успешным оказался водорастворимый эфир Сиролимуса темсиролимус (Торисел), который, по сравнению с интерфероном, увеличивает медиану общего срока выживания и выживаемость без прогрессирования ранее не леченных больных с поздними стадиями рака почки, имеющих негативный прогноз [16]. Основываясь на этих данных, препарат был разрешен для применения у данной категории больных [28]. В настоящее время также проводятся исследования применения темсиролимуса в режиме монотерапии или в комбинации с цитостатиками для лечения меланомы, множественной миеломы и опухолей репродуктивных органов [51].
Другой пероральный ингибитор mTOR эве-ролимус (Афинитор, СвгйеаП) разрешен для лечения метастатического рака почки у больных, имевших прогрессирование на фоне лечения сунитини-бом и/или сорафенибом.
ОБЗОР ЛИТЕРА ТУРЫ МОЛЕКУЛЯРНЫЕ МИШЕНИ... 83
Таблица
Противоопухолевые препараты, разрешенные для клинического применения или проходящие поздние стадии клинических испытаний
Препарат Мишень Показания к применению
Разрешены к применению:
Цетуксимаб (Эрбитукс) EGFR1 КРР (без мутации K-RAS), рак органов головы и шеи
Панитумумаб (Вектибикс) EGFR1 КРР (без мутации K-RAS)
Сорафениб (Нексавар) VEGFR/PDGFR/Raf Рак почки, рак печени
Темсиролимус (Іоризел) mTOR Рак почки
Эверолимус (Афинитор)
Иматиниб (Гливек) Brc/Abl, c-Kit РЬ+-ОЛЛ, РЬ+-ХМЛ (без мутации Т3151), GIST, дерматофибросаркома, системный мастоцитоз (без мутации D816V)
Нилотиниб (Тасигна) Brc/Abl РГ-ОЛЛ, РГ-ХМЛ
Дазатиниб (Спрайсел) Brc/Abl, Src РГ-ОЛЛ, РГ-ХМЛ
Вориностат (Zolinza) ГДА Кожная Т-клеточная лимфома
5-азацитидин (Вайдаза) ДМТ МДС
Децитабин (Дакоген)
Бортезомиб (Велкейд) Протеасома ММ, мантийноклеточная лимфома
III фаза испытаний:
Перифосин (NSC 639966, KRX-0401) Akt КРР
Типифарниб (Zarnestra) ФТ Лейкозы
Вориностат (Zolinza) ГДА НМРЛ, мезотелиома
CI-994 ГДА НМРЛ
Танеспимицин (KOS-953) HSP90 РМЖ, ММ
Серым фоном обозначены препараты терапевтических МКА, белым - низкомолекулярные ингибиторы ферментов.
Препарат увеличивает срок выживания без прогрессирования более чем в 2 раза [31]. Кроме того, в рамках II фазы изучается возможность применения препарата при других типах солидных опухолей и гемобластозов [51]. II фазу клинических испытаний прошел ингибитор mTOR дефоролимус (АР-23,573), применявшийся для лечения рецидивирующих или резистентных гемобластозов [39].
Akt, также называемая протеинкиназой В, это серин/треониновая киназа, участвующая в регуляции прохождения клеточного цикла, процессов трансляции, транскрипции, метаболизма и апоптоза.
Благодаря разнообразным клеточным функциям, киназа Akt вовлечена в процессы развития и прогрессирования опухолей [35] и является столь же, если не более, привлекательной мишенью для терапевтического воздействия, как и mTOR.
Однако до настоящего времени попытки создания терапевтических ингибиторов Akt давали противоречивые результаты. Наиболее продвинутый неселективный липидный ингибитор Akt перифосин (NSC 639966, KRX-0401), который изменяет структуру клеточной мембраны и блокирует транслокацию в нее Akt, в доклинических исследованиях проявлял многообещающую активность в отношении нескольких линий опухолевых клеток человека [23]. Но в клинических исследованиях по I фазе монотерапия перифосином вызывала серьезные побочные эффекты и была в целом малоэффективна [49].
Тем не менее, продолжается II фаза его клинических испытаний для лечения рекуррентной мультиформной глиобластомы, и проходит III фаза в комбинации с капецитабином для лечения распространенного КРР [11].
Известным ингибитором PDK-1 (фермента активации киназы Akt) является индолокарбазол стауроспорин [35]. Его 7-гидроксипроизводное UCN-01 в настоящее время проходит II фазу клинических испытаний для лечения гемобластозов
[44]. Однако UCN-01 является неселективным ингибитором многих протеинкиназ, в частности -
семейства протеинкиназ С и циклинзависимых киназ, в связи с чем роль пути PI3K/Akt/mTOR в реализации противоопухолевого действия этого препарата остается неясной.
Ras/Raf/MEK/Erk/MAPK
Ras/Raf/MEK/Erk/MAPK является наиболее важным путем передачи сигналов внешних стимулов, в том числе факторов роста и цитокинов, к клеточным эффекторным элементам.
Этот путь участвует в регуляции пролиферации и адгезии клеток, клеточной подвижности и дифференцировки. Этот же путь во многом определяет опухолевый фенотип клетки в процессе злокачественной трансформации [43].
В норме Ras - это мембраносвязанная ГТФаза, которая передает активирующий сигнал на се-рин/треонинкиназу Raf, а затем на киназу МЕК. Последняя фосфорилирует и активирует киназу, регулируемую внеклеточным сигналом, ЕЛ (extracellular signal-regulated kinase), входящую в семейство мито-ген-активируемых протеин киназ (МАРК).
Однако в опухолевой ткани достаточно часто (30-90 % опухолей различной локализации) обнаруживается постоянно активная форма этого фермента
- результат активирующей мутации K-Ras, которая позволяет белку Ras самостоятельно генерировать псевдосигналы и имитировать активацию трансмембранных рецепторов (EGFR, PDGFR, c-Kit и др.).
Очевидно, в такой ситуации подавление активности вышестоящих рецепторов выглядит бесперспективной задачей: мутации K-Ras вызывают резистентность опухолей к блокаторам рецептора эпидермального фактора роста EGFR1 цетуксимабу (Эрбитуксу) и панипумумабу (Вектибиксу) и являются противопоказанием к их назначению.
Прерывания патологического сигнала можно пытаться достичь иным путем: либо подавлением активности самого «мутантного» белка, либо ингибированием нижестоящих компонентов сигнального пути.
Поскольку Ras функционирует только как мембраносвязанный белок, а для его транслокации в клеточную мембрану требуется посттрансляционная модификация его молекулы путем фарнезилирова-ния ферментом фарнезил-трансферазой (ФТ), блокада активности ФТ может рассматриваться как способ подавления функций Ras, и ингибиторы ФТ являются одними из наиболее изученных потенциальных противоопухолевых средств этой группы.
Ингибитор ФТ типифарниб (Zarnestra) проявил противоопухолевую активность в экспериментах на животных [52], однако в начальных клинических исследованиях эффект препарата при опухолях с мутацией K-Ras оказался слабым [48]. Предполагается, что для торможения активности Ras при наличии такой мутации требуются более высокие дозы ингибитора, и, кроме того, опухоль может избегать эффекта типифарниба за счет передачи митогенного сигнала по альтернативным путям [7]. II фазу клинических испытаний проходят ингибиторы ФТ лонафарниб (Sanasar) - при раке молочной железы (РМЖ), раке органов головы и шеи, раке репродуктивных органов; и BMS-214662
- при лейкозах [51].
Raf - это серин/треониновая киназа, активирующая мутация гена которой, как и в случае Ras, приводит к формированию злокачественного фенотипа клеток. Такие мутации обнаруживаются почти в 70% случаев меланомы и часто выявляются в солидных опухолях, например, колоректальном раке (КРР) и раке яичника [6]. Ингибитор Raf сорафениб (Нексавар), который также блокирует рецепторы эндотелиального фактора роста сосудов (VEGF-R), -первый препарат этой группы, который уже разрешен для клинического применения. Показания: поздние стадии рака почки и неоперабельный рак печени. Разрешение выдано по результатам клинических исследований III фазы, в которых сорафениб (Нексавар) по сравнению с плацебо несколько удлинял общий срок выживания и выживаемость без прогрессирования больных с поздними стадиями рака почки [9] и рака печени [25].
МЕК - это киназа, фосфорилирующая остатки тирозина и серина/треонина и специфичная для активации Erk из семейства MAPK [32]. Активация МЕК выявлена в клетках широкого спектра опухолей человека, и создание селективных ингибиторов МЕК представляется перспективным направлением разработки противоопухолевых средств. В настоящее время на II фазе клинических испытаний находятся ингибиторы МЕК PD0325901 (для лечения РМЖ, КРР, рака легкого, меланомы) и AZD-6244 (для лечения КРР, рака печени, легкого, яичника, поджелудочной железы) [51].
Генераторы псевдомитогенных сигналов В норме протеинкиназы приобретают ферментативную активность и трансактивируют «нижестоящие» белки после получения ими «вышестоящего» сигнала: связывания с лигандом (рецепторные) или фосфорилирования их молекулы «вышестоящими» киназами (нерецепторные протеинкиназы). Этим обеспечивается каскадный механизм передачи сигнала: последовательное фосфорилирование цепочки киназ проводит импульс активности, а их последующее дефосфорилирование под действием про-теинфосфатаз инактивирует киназы, что абсолютно необходимо для их участия в передаче следующего сигнала. Если же такой инактивации не происходит, активная протеинкиназа перманентно посылает «нижестоящим» киназам один и тот же сигнал,
блокируя передачу других сигналов. Ситуация подобна «зависшему» на перекрестке светофору: движение открыто лишь по одной магистрали, а на примыкающих и пересекающих ее путях разрастаются безнадежные заторы. Выше описаны активирующие мутации генов Ras и Raf в результате которых соответствующие белковые продукты из трансдукторов сигнала превращаются в его постоянно действующие генераторы. Аналогичная ситуация может произойти, если патологической активации подвергается киназа, в норме не участвующая в проведении сигнала. Практический интерес для онкологии представляют по крайней мере две таких киназы.
Bcr/Abl
В результате реципрокной транслокации t(9,22), известной как филадельфийская (Ph) хромосома (укорочение длинного плеча 22-й хромосомы), участок прото-онкогена Abl (Abelson) переносится с 9-й хромосомы на 22-ю, в локус и под промотор гена Bcr (breakpoint cluster région). Образовавшийся слитый ген Brc/Abl продуцирует постоянно активную химерную тирозинкиназу с тем же названием, которая вне зависимости от наличия факторов роста стимулирует внутриклеточные пути передачи митогенных сигналов и вызывает избыточную пролиферацию клеток. Транслокация t(9,22) характерна для ХМЛ и наблюдается в ряде случаев ОЛЛ. Торможение активности Bcr/Abl подавляет пролиферацию и вызывает апоптоз Ph+-клеток при ОлЛ и ХМЛ [46].
Ингибитор тирозинкиназы Brc/Abl имати-ниб (Гливек) был одним из первых ингибиторов протеинкиназ, внедренных в клиническую практику. Хотя препарат исходно разрабатывался как ингибитор киназы Brc/Abl, он оказался активным в отношении других киназ, в частности - рецептора тромбоцитарного фактора роста PDGFR-a и рецептора фактора стволовых клеток c-Kit, и в настоящее время он разрешен для применения по целому ряду показаний, включая различные гемобластозы, GIST’s и дерматофибросаркому. К сожалению, опыт практического использования иматиниба (Гливека) не только расширил область его применения, но и выявил достаточно быстро развивающуюся лекарственную резистентность к этому препарату. Среди причин развития резистентности ведущая принадлежит точечным мутациям, приводящим к аминокислотным заменам в белковой молекуле фермента. Так, мутация химерного гена Bcr/Abl Т3151 (одиночная замена Ц на Т в молекуле ДНК), в результате которой происходит замена треонина на изолейцин в положении 315 активного центра фермента Bcr/Abl, сопровождается его полной резистентностью к иматинибу. Аналогично, точечная мутация в 17 экзоне гена c-KIT приводит к аминокислотной замене D8I6V с формированием резистентности с-Kit к иматинибу. Наличие каждой из этих мутаций является абсолютным противопоказанием для назначения иматиниба при ХМЛ и Ph+ЮЛЛ, и GIST соответственно.
В попытках обойти резистентность к Гливе-ку создано его производное нилотиниб (Тасигна), а также отличный по структуре неспецифический ингибитор протеинкиназ дазатиниб (Спрайсел), которые оказались многократно активнее имати-ниба как ингибитора Bcr/Abl, однако мутация T3I5I вызывает резистентность клеток и к этим ингибиторам. Оба препарата разрешены для лечения Ph+ ОЛЛ и ХМЛ.
Src
Src - семейство свободных (не связанных с рецептором) цитозольных тирозинкиназ. Ген Src был первым из обнаруженных протоонкогенов. Накапливается все больше данных о роли Src в регуляции пролиферации и метастазирования опухолевых клеток [10]. Src опосредует передачу сигнала от рецепторов факторов роста к киназе фокальной адгезии FAK, киназам MAPK и PI3K/Akt/mTOR. Нарушение регуляции активности Src обнаружено в клетках ряда опухолей человека, в том числе РМЖ, КРР, НМРЛ, рака яичника и гемобластозов. Соответственно разработка средств, влияющих на активность Src, как противоопухолевых лекарств представляет большой интерес и ведется достаточно активно.
В настоящее время разрешен для клинического применения упомянутый выше дазатиниб (Спрайсел), являющийся неспецифическим ингибитором Src, Bcr/Abl, c-Kit и других протеинкиназ, что послужило основанием для исследований по применению препарата при солидных опухолях [20]. Аналогичный ингибитор босутиниб (SKI-606) проходит II фазу клинических испытаний при РМЖ и ХМЛ, и ряд препаратов перешли от доклинических исследований к I фазе клинических испытаний [51].
Митотические киназы
Клинический успех препаратов, разрушающих тубулиновые микротрубочки (алкалоиды Винка) или, напротив, вызывающих стабилизацию их динамичной структуры (таксаны), подтвердил пригодность стратегии противоопухолевой терапии, направленной на нарушение процесса митоза. Новый подход к продолжению этой стратегии связан с применением ингибиторов ферментов, регулирующих процесс митоза, и блокаторов транспортных белков, осуществляющих расхождение клеточных органелл в процессе клеточного деления.
Среди ферментов, регулирующих процесс митоза, особое внимание привлекает семейство митотических киназ Aurora, включающее три се-рин/треониновые киназы (Aurora -А, -В и -С), которые имеют разную внутриклеточную локализацию и функции. В регуляции расхождения хромосом участвуют киназы -А и -В [3]. Для разработки противоопухолевых средств наиболее перспективной мишенью представляется киназа Aurora-A, экспрессия которой усилена во многих типах опухолей [50]. Нокаут или мутация гена этой киназы приводит к остановке митоза и развитию апоптоза, в то время как торможение активности киназы Aurora B приводит к формированию полиплоидных, многоядерных, аномально крупных клеток.
В настоящее время на II фазе клинических испытаний находятся неселективный ингибитор проте-инкиназ семейства Aurora данусертиб (PHA-739358) [12] и высокоактивный селективный ингибитор киназы Aurora-B - производное пиразолохиназолина AZD-1152 [34]. Данусертиб также подавляет активность Bcr/Abl-киназы, причем эффективен при наличии мутации T315I, и проявляет синергизм с иматинибом (см. выше). Оба препарата предполагается использовать для лечения лейкозов, в том числе резистентных к другим типам ингибиторов киназ.
В качестве перспективной мишени для противоопухолевой терапии представляет интерес кинетический белок веретена деления KSP - член семейства белков-кинезинов, нарушение функций которого приводит к остановке митоза и апоптозу [4]. Селективный ингибитор KSP испинесиб (SB-715992) в комбинации с доцетакселом в настоящее
время проходит II фазу клинических испытаний для лечения меланомы и сквамозноклеточного рака органов головы и шеи [51].
Эпигенетические регуляторы
экспрессии генов
Экспрессия многих генов регулируется на эпигенетическом уровне за счет обратимых процессов ацетилирования/деацетилирования ядерных белков - гистонов, а также метилирования цитозиновых остатков молекулы ДНК. В этой связи представляют интерес вещества, способные модифицировать или как-то влиять на эти регуляторные процессы.
Гистоны - это группа основных белков хроматина, образующих с молекулой ДНК пространственные комплексы (нуклеосомы), плотность упаковки которых определяется количеством ацетильных групп в гистоне: при малом содержании таких групп комплекс гистон-ДНК упакован плотно и считывание генов затруднено - экспрессия генов подавлена; при добавлении ацетильных групп связь гистона с ДНК становится менее плотной, что позволяет факторам транскрипции связаться с регуляторной областью молекулы ДНК и запустить транскрипцию - гены экспрессируются. Разнонаправленные процессы аце-тилирования/деацетилирования осуществляются парой ферментов: гистоновой ацетилтрансферазой и гистоновой деацетилазой (ГДА), баланс активностей которых обеспечивает ремоделирование хроматина и управляемость каскадами генной экспрессии.
Метилирование цитозиновых остатков в последовательностях ЦфГ (Цитидил-фосфат-Гуано-зин) осуществляет фермент ДНК-метилтрансфераза (ДМТ). Островки ЦфГ часто расположены внутри или вблизи последовательностей промоторов, их метилирование приводит к необратимой блокаде экспрессии соответствующих генов.
Таким образом, деацетилирование гистонов и метилирование цитозинов ДНК подавляет активность генов, а ответственные за эти процессы ферменты ГДА и ДМТ могут оказаться эффективными мишенями для противоопухолевой терапии. Кроме того, установлено, что ДМТ и ГДА, помимо их указанных функций, могут прямо взаимодействовать друг с другом, образуя тетрамерный комплекс с транскрипционными факторами Rb и E2F1, что подавляет транскрипцию E2F-респонсивных генов [40].
Среди лекарственных препаратов, которые следует рассматривать как регуляторы экспрессии генов, изучены и продвинуты в клиническую практику ингибиторы ГДА, которые химически относятся к разным группам, но имеют общее свойство
- способность связываться с цинксодержащим каталитическим доменом фермента. Их действие приводит к активации ряда генов, белковые продукты которых являются ингибиторами прогрессии клеточного цикла (р21WAF-1, pl6 K-4a, pl4A ), лигандами смерти и их рецепторами (FasL, TRAIL, CD95, DR4, DR5), активаторами апоптоза (Bax, Bak, Bim); а так же приводит к репрессии генов, кодирующих циклины (Dl, A, TS), антиапоптогенные белки (Bcl-2, Bcl-XL) и цитокины (HIF-la, VEGF, PDGF, IL2, IL10). Обнаружено повышение уровня экспрессии ингибиторов ангиогенеза (активин А, нейрофибро-мин 2, тромбоспондин 1) и подавление экспрессии рецепторных (EGFR1, ErbB2) и нерецепторных (Abl, Akt, Raf) протеинкиназ [21; 24]. Результатом действия ингибиторов ГДА является остановка клеточного цикла, активация программы клеточной гибели, а в некоторых случаях происходит диффе-ренцировка клеток.
Первый противоопухолевый препарат группы производных гидроксаминовой кислоты - вориностат (Zolinza) - разрешен для лечения первичной кожной Т-клеточной лимфомы [29], а в рамках III фазы клинических испытаний исследуется его применение в комбинации с карбоплатином и паклитакселом при поздних стадиях НМРЛ и в монорежиме во 2-й линии терапии мезотелиомы. В рамках II фазы исследуется возможность его применения при других солидных опухолях и гемобла-стозах [47]. На II фазе клинических испытаний находится ряд препаратов этой группы - белиностат (PXD10I), панобиностат (LBH589) и другие, которые изучаются как потенциальные средства лечения солидных опухолей различных локализаций и гемобластозов [33].
Среди ингибиторов ГДА других химических групп наиболее продвинуты производные бензами-дов, один из которых (CI-994) перешел на III фазу клинических испытаний для лечения НМРЛ, а в рамках II фазы изучается его применение при раке поджелудочной железы и множественной миеломе [14]. II фазу клинических испытаний проходит еще один препарат этой группы, (MS-275), на этой же стадии разработки находится ряд препаратов других химических групп, в том числе короткоцепочечные жирные кислоты: фенилбутират (Bufenil) -для лечения КРР, лейкозов, миелодиспластического синдрома (МДС) и опухолей мозга, и вальпроевая кислота (Depakote) - для лечения солидных опухолей различных локализаций, а также циклический тетрапептид депсипептид (Romidepsin) - по тем же показаниям и для лечения гемобластозов [47].
Ингибиторы ДМТ 5-азацитидин (Вайдаза) и его дезоксипроизводное 5-аза-2’-дезоксицитидин (децитабин; Дакоген) разрешены для лечения МДС. Интересно, что первоначально эти препараты разрабатывались как классические цитостатики группы антиметаболитов, которые предполагалось применять в значительно более высоких дозах для лечения лейкозов. Эти аналоги цитозина встраиваются в ДНК (а 5-азацитидин - и в РНК) вместо цитозина при репликации (и транскрипции), в результате чего нарушается структура и функции нуклеиновых кислот. В таком качестве оба препарата проходят II фазу клинических испытаний. В ключевом исследовании, на результатах которого основывалось разрешение на применение 5-азацитидина при МДС, препарат в сравнении с наилучшей поддерживающей терапией удлинял медиану общего срока выживания и улучшал качество жизни больных при частоте гематологического эффекта 23 %
[45]. Аналогичные эффекты достигнуты в исследовании децитабина [19]. Основные направления дальнейших исследований в этой области связаны с разработкой химически более стабильных препаратов, пригодных для перорального применения [30], а также с разработкой ненуклеозидных ингибиторов ДМТ, обладающих меньшей токсичностью, чем 5-азацитидин [15].
Репарация повреждений ДНК
Поли(АДф-рибоза)полимераза - PARP - фермент репарации, распознающий и восстанавливающий участки повреждения ДНК [38]. Повышенная активность PARP сопровождается резистентностью опухолей к факторам, повреждающим ДНК, в том числе - к препаратам платины, алкилирующим агентам, ингибиторам топоизомеразы и ионизирующему излучению. Ингибиторы PARP являются радиосенсибилизаторами и усиливают противоопухолевый эф-
фект химиотерапевтических препаратов in vitro и in vivo. Активность PARP проявляется только в присутствии кофактора - никотинамидадениндинуклеотида (НАД+), поэтому основное внимание при разработке ингибиторов PARP уделяется веществам, конкурирующим с НАД+ за связывание с PARP. Первым препаратом этой группы был конкурентный ингибитор связывания НАД+ AG-014699 [2]. В рамках II фазы клинических испытаний этот препарат в комбинации с темозоломидом применялся для лечения метастатической меланомы, и у 18 % больных достигнут частичный эффект, что, однако, сопровождалось резким усилением вызванной темозоломидом токсичности [36]. Все же способность ингибиторов PARP усиливать эффекты темозоломида и преодолевать резистентность к этому препарату вызывает интерес, поэтому в настоящее время проводятся исследования применения AG-014699 и другого ингибитора PARP -BSI-201 в комбинации с темозоломидом во 2-й линии терапии опухолей, резистентных к темозоломиду, в том числе - при нейробластоме, глиобластоме и других опухолях мозга [5]. Полагают, что наибольшая эффективность ингибиторов PARP может быть достигнута у больных с наследственными формами рака, сопряженными с мутациями генов BRCA1/2, а также при применении их в комбинации с другими препаратами, повреждающими ДНК [26]. Так, препарат ола-париб (piaparíti) успешно прошел II фазу клинических испытаний, показав активность при наследственных формах РМЖ и рака яичника.
Регуляторы экспрессии и активности белков
Белок теплового шока HSP90
HSP90 - это сервисный белок, способствующий формированию корректной трехмерной структуры и адекватному функционированию клеточных белков, в том числе рецепторов факторов роста, нерецепторных протеинкиназ Raf и Akt, а также регуляторного белка HIF-1a [37]. Вне клеточного стресса HSP90 присутствует в клетке на некотором базальном уровне, достаточном для выполнения его функций (фолдинг вновь синтезированных белков, их трансмембранный перенос). Под влиянием внешних факторов (тепла, гипоксии, окислительного стресса, облучения, воздействия свободных радикалов и солей тяжелых металлов), при которых ожидается массовое появления поврежденных белковых молекул, активируются гены теплового шока и тиражируются их белковые продукты, в том числе -HSP90, предназначенные для восстановления конформации поврежденных белков путем АТФ-зависимой денатурации/ренатурации (рефолдинга) их третичной структуры.
Экспрессия HSP90 повышена во многих опухолях, с чем связана селективность накопления ингибиторов HSP90 в опухолевой ткани [22]. Подавление экспрессии и/или снижение функциональной активности HSP90 сопровождается накоплением в клетке поврежденных, частично денатурированных белков с измененными биологическими функциями. Предполагается, что, подобно ингибиторам PARP, ингибиторы HSP90 как противоопухолевые средства могут быть наиболее эффективны в комбинации с цитостатиками для усиления их эффекта или преодоления лекарственной резистентности. В настоящее время комбинация ингибитора HSP-90 танес-пимицина (KOS-953) с трастузумабом проходит III фазу клинических испытаний для лечения резистентного к трастузумабу РМЖ, а в рамках II фазы клинических испытаний изучается возможность применения комбинации препарата с бортезомибом (см. ниже) при множественной миеломе [8].
Также на II фазе клинических испытаний находится ингибитор HSP-90 ретаспимицин (IPI-504), который применяется в комбинации с цитостатиками для лечения различных солидных опухолей и гемобластозов [51].
Система убиквитин -протеасома
Протеасома - не зависимая от лизосом клеточная органелла, в которой осуществляется фрагментация клеточных белков, конъюгированных с убикви-тином. Последний представляет собой низкомолекулярный белок, играющий роль своеобразной «черной метки», которой метятся белки, предназначенные для расщепления в протеасоме [1].
Система убиквитин-протеасома играет важную роль в контроле внутриклеточного содержания белков, расщепляя как поврежденные белки, так и те нативные и вполне работоспособные белковые молекулы, сиюминутная необходимость в которых отпала, в том числе участвующие в регуляции циклических процессов клеточного деления, передачи сигналов, дифференцировки и восстановления ДНК. Именно протеасома расщепляет утилизируемые ею внутриклеточные белки до антигенных пептидов, которые впоследствии экспонируются на клеточной поверхности и распознаются главным комплексом гистосовместимости иммунокомпетентных клеток в качестве сигнала «свой - чужой».
Поскольку система убиквитин-протеасома, как и белок HSP90, контролирует многие регуляторные процессы, подавление ее активности приводит к накоплению в клетке поврежденных белков, нарушению передачи сигналов по различным сигнальным путям, подавлению репарации ДНК, замедлению пролиферации клеток, апоптозу.
Первым и пока единственным ингибитором протеасом, достигшим клинического применения, является бортезомиб (Велкейд).
Литература
1
Это производное борной кислоты тормозит расщепление в протеасомах ряда белков, в том числе 1кВ - ингибитора антиапоптогенного транскрипционного фактора ЫР-кВ, что приводит к остановке пролиферации и активации апоптоза. Эффект бортезомиба проявляется независимо от резистентности клеток к цитостатикам [41]. Бортезомиб (Велкейд) разрешен для применения во 2-й линии терапии у больных ММ и мантийноклеточной лимфомой [18], а также в 1-й линии лечения больных ММ в составе комбинированной терапии с мелфаланом и преднизолоном [42]. Другие ингибиторы протеасом пока находятся на ранних стадиях разработки.
Выводы
Таким образом, экспериментальные и клинические исследования последнего времени вывели в практику полтора десятка лекарственных препаратов нового поколения, которые принято именовать «тар-гетными», подчеркивая этим их молекулярную нацеленность. Значительно большее количество активных веществ с подобными механизмами действия находятся на разных стадиях разработки, в связи с чем в скором времени следует ожидать пополнения арсенала средств химиотерапии опухолей новыми препаратами. Эти лекарства не противопоставляются лекарственным средствам классической химиотерапии, а дополняют их, в ряде случаев повышая эффективность и снижая побочные эффекты последних. В то же время, исследования молекулярных механизмов действия этих соединений вскрывают «мультитаргет-ность» большинства из них, что дезавуирует их принадлежность к «таргетным». Видимо, истинно «тар-гетными» препаратами являются антигеннонацелен-ные моноклональные антитела и лекарственные средства, созданные на их основе.
2.
Burger A.M., Seth A.K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications // Eur J Cancer. - 2004. - 40. - P. 2217-29.
Calabrese C.R., Almassy R, Barton S. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADPribose) polymerase-1 inhibitor AG14361 // J Natl Cancer Inst. - 2004. - 96. - P. 56-67. Carvajal R.D, Tse A., Schwartz G.K. Aurora kinases: new targets for cancer therapy // Clin Cancer Res. -2006. - 12. - P. 6869-75.
Cox C.D, Breslin M.J., Mariano B.J. et al. Kinesin spindle protein (KSP) inhibitors. pt 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP // Bioorg Med Chem Lett. - 2005. - 15. - P. 2041-5.
Daniel R.A, Rozanska A.L., Thomas H.D. et al. Inhibition of poly(ADP-ribose) polymerase-1 enhances temo-zolomide and topotecan activity against childhood neuroblastoma// Clin Cancer Res. - 2009. - 15(4). - P. 1241-9. Davies H., Bignell G.R, Cox C. et al. Mutations of the BRAF gene in human cancer // Nature. - 2002. -417. - P. 949-54.
End D. W., Smets G., Todd A. V. et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro // Cancer Res. - 2001. - 61. - P. 131-7.
Erlichman C. Tanespimycin: the opportunities and challenges of targeting heat shock protein 90 // Expert Opin Investig Drugs - 2009. - 18(6). - P. 861-8.
Escudier B, Eisen T., Stadler W.M. et al. Sorafenib in advanced clear-cell renal-cell carcinoma // N Engl J Med. - 2007. - 356. - P. 125-34.
10. Frame M.C. Src in cancer: deregulation and consequences for cell behaviour // Biochim Biophys Acta -2002. - 1602. - P. 114-30.
Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor // Curr Oncol Rep. - 2009. - 11(2). - P. 102-10. GontarewiczA., BrbmmendorfT.H. Danusertib (formerly PHA-739358)--a novel combined pan-Aurora kinases and third generation Bcr-Abl tyrosine kinase inhibitor//Recent Results Cancer Res. - 2010. - 184. - P. 199-214. Granville C.A., Memmott RM, Gills J.J., Dennis P.A. Handicapping the race to develop inhibitors of the phosphoinosi-tide 3-kinase/Akt/mammalian target of rapamycin pathway//Clin Cancer Res. - 2006. - 12. - P. 679-89.
Gridelli C., Rossi A., Maione P. The potential role of histone deacetylase inhibitors in the treatment of nonsmall-cell lung cancer // Crit Rev Oncol Hematol. - 2008. - 68(1). - P. 29-36.
Hellebrekers D.M., Griffioen A.W., van Engeland M. Dual targeting of epigenetic therapy in cancer // Biochim Biophys Acta - 2007. - 1775. - P. 76-91.
5.
6
7.
9
11.
12.
13.
14.
15.
16. Hudes G., Carducci M., Tomczak P. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma // N Engl J Med. - 2007. - 356. - P. 2271-81.
17. Jimeno A., Tan A.C., Coffa J. et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer//Cancer Res. - 2008. - 68. - P. 2841-9.
18. Kane R.C., Dagher R., Farrell A. et al. Bortezomib for the treatment of mantle cell lymphoma // Clin Cancer Res. - 2007. - 13. - P. 5291-4.
19. Kantarjian H., Issa J.P., Rosenfeld C.S. et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study // Cancer - 2006. - 106. - P. 1794-03.
20. Kim L.C., Rix U., HauraE.B. Dasatinib in solid tumors//Expert Opin Investig Drugs. - 2010. - 19(3). - P. 415-25.
21. Kim T.Y., Bang Y.J., Robertson K.D. Histone deacetylase inhibitors for cancer therapy // Epigenetics - 2006.
- 1. - P. 14-23.
22. Kitano H. Cancer robustness: tumour tactics // Nature. - 2003. - 426. - P. 125.
23. Kondapaka S.B., Singh S.S., Dasmahapatra G.P. et al. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation // Mol Cancer Ther. - 2003. -2. - P. 1093-103.
24. Liang D., KongX., Sang N. Effects of histone deacetylase inhibitors on HIF-1 // Cell Cycle. -2006. - 5. - P. 2430-5.
25. Llovet J.M., Ricci S., Mazzaferro V. et al. Sorafenib in advanced hepatocellular carcinoma // N Engl J Med.
- 2008. - 359. - P. 378-90.
26. Lord C.J., Garrett M.D., Ashworth A. Targeting the double-strand DNA break repair pathway as a therapeutic strategy // Clin Cancer Res. - 2006. - 12. - P. 4463-8.
27. Ma W.W., Hidalgo M. Exploiting novel molecular targets in gastrointestinal cancers // World J Gastroenterol. - 2007. - 13. - P. 5845-56.
28. Ma W. W., Jimeno A. Temsirolimus // Drugs Today (Barc). - 2007. - 43. - P. 659-69.
29. Mann B.S., Johnson J.R., Cohen M.H. et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma // Oncologist - 2007. - 12. - P. 1247-52.
30. Marquez V.E., Kelley J.A., Agbaria R. et al. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy // Ann N Y Acad Sci. - 2005. - 1058. - P. 246-54.
31. Motzer R.J., Escudier B., Oudard S. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial // Lancet - 2008. - 372. - P. 449-56.
32. Ohren J.F., Chen H., Pavlovsky A. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition // Nat Struct Mol Biol. - 2004. - 11. - P. 1192-7.
33. Piekarz R.L., Bates S.E. Epigenetic modifiers: basic understanding and clinical development // Clin Cancer Res. - 2009. - 15(12). - P. 3918-26.
34. Pinel S., Barbault-Foucher S., Lott-DesrochesM.C., Astier A. Inhibitors of aurora kinases // Ann Pharm Fr.
- 2009. - 67(2). - P. 69-77.
35. Plas D.R., Thompson C.B. Akt-dependent transformation: there is more to growth than just surviving // Oncogene - 2005. - 24. - P. 7435-42.
36. Plummer R., Lorigan P., Evans J. et al. First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM) [abstract] // J Clin Oncol. - 2006. - 18S(suppl). - P. 8013.
37. Queitsch C., Sangster T.A., et al. Hsp90 as a capacitor of phenotypic variation//Nature - 2002. - 417. - P. 618-24.
38. Ratnam K., Low J.A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology // Clin Cancer Res. - 2007. - 13. - P. 1383-8.
39. Rizzieri D.A., Feldman E., Dipersio J.F. et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies // Clin Cancer Res. - 2008. - 14(9). - P. 2756-62.
40. Robertson K.D., Ait-Si-Ali S., Yokochi T. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters // Nat Genet. - 2000. - 25. - P. 338-42.
41. Russo A., Fratto M.E., Bazan V. et al. Targeting apoptosis in solid tumors: the role of bortezomib from pre-clinical to clinical evidence // Expert Opin Ther Targets - 2007. - 11. - P. 1571-86.
42. San Miguel J.F., Schlag R., Khuageva N.K. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma // N Engl J Med. - 2008. - 359. - P. 906-17.
43. Sebolt-Leopold J.S., Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer // Nat Rev Cancer - 2004. - 4. - P. 937-47.
44. Senderowicz A.M. Inhibitors of cyclin-dependent kinase modulators for cancer therapy // Prog Drug Res. -2005. - 63. - P. 183-206.
45. Silverman L.R., Demakos E.P., Peterson B.L. et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B // J Clin Oncol. - 2002. -20. - P. 2429-40.
46. Stegmeier F., Warmuth M., Sellers W.R., Dorsch M. Targeted cancer therapies in the twenty-first century: lessons from imatinib // Clin Pharmacol Ther. - 2010. - 87(5). - P. 543-52.
47. Tan J., Cang S., Ma Y. et al. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents // J
Hematol Oncol. - 2010. - 3. - P. 5-10.
48. Van Cutsem E., van de Velde H., Karasek P. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer // J Clin Oncol. - 2004. - 22. - P. 1430-8.
49. Van Ummersen L., Binger K., Volkman J. et al. A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer // Clin Cancer Res. - 2004. - 10. - P. 7450-6.
50. Warner S.L., Gray P.J., Von Hoff D.D. Tubulin-associated drug targets: Aurora kinases, Polo-like kinases,
and others // Semin Oncol. - 2006. - 33. - P. 436-48.
51. Wen W. Ma et al. Novel Agents on the Horizon for Cancer Therapy//CA Cancer J Clin. - 2009. - 59. - P. 111-37.
52. Zhu K., Hamilton A.D., Sebti S.M. Farnesyltransferase inhibitors as anticancer agents: current status // Curr Opin Investig Drugs. - 2003. - 4. - P. 1428-35.