р-К8К 1607-3274. Радюелектронжа, шформатика, управлiння. 2015. № 2 е-ЕЗБЫ 2313-688Х. Каёю Е1еойоп^, Сошриег Баепое, Сопйо1. 2015. № 2
УДК 681.3.012:621.1
Швачич Г. Г.1, Соболенко О. В.2
1Д-р техн. наук, професор, завiдувач кафедри прикладноТ математики та обчислювальноТ технки Дшпропетровсько'Т
металургшноТ академп УкраТни, Днiпропеmровськ, УкраТна 2Канд. техн. наук, доцент, доцент кафедри прикладноТ математики та обчислювальноТ технки ДшпропетровськоТ
металургшноТ академп УкраТни, Днiпропетровськ, УкраТна
МОДЕЛЮВАННЯ ШВИДК1СНИХ РЕЖИМ1В ОБРОБКИ МЕТАЛУ НА ОСНОВ1 ВИКОРИСТАННЯ ВИСОКОПРОДУКТИВНИХ БАГАТОПРОЦЕСОРНИХ ОБЧИСЛЮВАЛЬНИХ СИСТЕМ
Розглянут особливост розробки 1 використання багатопроцесорно! обчислювально! системи з II математичним 1 програмним забезпеченням для моделювання режим!в терм!чно! обробки металевих заго^вок. Мета роботи полягае в розробщ модел! для терм!чно! обробки довгсишрного сталевого виробу, яка може бути використана для рекристал!заци та сферо!диз1вного вщпалювання кал!бровано! стал!. Запропоновано застосування сучасних багатопроцесорних обчислювальних комп 'ютерних технологш для збшьшенш швидкоди та продуктивност обчислень, що дае змогу ефективно керувати технолопчними процесами. За допомогою спещального програмного забезпечення багатопроцесорна система здатна задавати й контролювати необхщш температурш режими на всш площиш перер!зу зразка при нагр!ванш й витримщ металу, а при необхщност може контролювати тепловий режим обробки стал! в штервал! температур вщпалювання. Багатопроцесорна обчислювальна система !з спещальним програмним забезпеченням мютить математичш модел! у вигляд! р!вняння теплопровщност!. Так! р!вняння розв'язуються !з застосуванням метсдов розщеплення. Завдяки цьому шдходу розв'язок двохвим!рювального р!вняння зводиться до послщовност штегрування одновим!рних р!внянь простшо! структури. Застосування числово-анал!тичного методу забезпечуе використання економ!чних 1 стшких алгоритм!в розв'язування задач даного типу. Проведено експерименти з дослщження властивостей сталево! загсшвки. Результати експерименпв дозволяють рекомендувати запропонований пщхщ до моделювання швидюсних режим!в обробки метала для розробки нових технолопчних процешв.
Ключовi слова: математична модель, багатопроцесорна обчислювальна система, шформацшний двоспрямований штерфейс, контроль температурного режиму металу.
НОМЕНКЛАТУРА
БПОС - багатопроцесорна обчислювальна система;
БК - блок керування;
ВМ ПМ - виконавчий мехатзм протяжного мехатзму;
ВМ Б1ВТ - виконавчий мехашзм блока 1зотерм1чно! витримки температури;
ВМ БП - виконавчий мехатзм блока тдстуджування;
ВМ БН - виконавчий мехашзм блока нагр1вання;
ОЗТ - обернена задача теплопровщностц
ХОШ - холодне об'емне штампування;
ТО - терм1чна обробка;
Ас1 - температура фазового перетворення металу;
ТН - температура нагр1вання поверхш зразка;
ТК - контрольована температура зразка;
Т(г, /) - температура зразка на його площ1 поперечного перер1зу;
Ж - питома потужшсть;
т - критерш Фур'е;
Э - дшсне значення шуканого кореня.
ВСТУП
На сьогодш у свт спостер1гаеться стр1мке зростання кшькост БПОС та !х сумарно! продуктивности Це викли-кано тим, що таю системи стали загальнодоступними [ дешевими апаратними платформами для високопродук-тивних обчислень. При цьому р1зко зр1с штерес до проблематики обчислювальних мереж [ широко поширюеть-ся розумшня того, що впровадження таких мереж мати-ме величезний вплив на розвиток людського сустльства, пор1вняний 1з впливом на нього появи на початку сто-
лггтя единих електричних мереж. У зв'язку з цим, розгля-даючи проблеми освоення багатопроцесорних систем, слщ брати до уваги [ те, що вони е першою сходинкою у створенш таких обчислювальних мереж.
Кр1м того, сьогодш практика висувае перед учени-ми-прикладниками р1зного роду проблеми, повне вирь шення яких в бшьшост випадюв можливе лише за раху-нок застосування багатопроцесорних обчислювальних комплекшв. Так, наприклад, у металургшному вироб-нищга вщбуваеться багато найр1зномаштшших [ взаемо-пов'язаних процешв. У першу чергу, це технологи вип-лавки й розливання зал1зовуглецевих сплав1в, нагр1ван-ня, прокатки й терм1чно! обробки металопродукцп та ш. Виробнична практика св1дчить, що т штенсифжащя про-цес1в металургшного виробництва, ш конструктивне вдосконалення р1зномаштного металургшного устатку-вання неможлив1 без вивчення й анал1зу явищ тепло- та масообм1ну. В той же час, розв'язування зазначених задач за допомогою в1домих стандартних тдход1в являе собою складну проблему, подолання яко! можливе тшьки за рахунок застосування сучасних багатопроцесорних обчислювальних комп'ютерних технологш. При цьому одна з основних особливостей застосування таких техно-логш полягае у збшьшенш швидкоди та продуктивноста обчислень. Висока продуктившсть обчислень дозволяе розв'язувати багатовишрш задачу а також задачу яю ви-магають велико! кшькост процесорного часу Швидко-д1я дае змогу або ефективно керувати технолопчними процесами, або взагал1 створити передумови для розробки нових перспективных технолопчних процемв.
© Швачич Г. Г., Соболенко О. В., 2015 Б01 10.15588/1607-3274-2015-2-3
У зв'язку з цим розробка й використання багатопро-цесорних обчислювальних комплексiв з !х математичним та програмним забезпеченням е актуальною проблемою, що дозволяе значно скоротити кшьюсть експерименталь-них дослiджень i час, потрiбний на !х проведення, а це дозволяе одержати необхщну iнформацiю для створення та впровадження рiзних технолопчних нововведень.
1 ПОСТАНОВКА ПРОБЛЕМИ
В данш роботi розглядаеться проблема впровадження нових технологiчних процесiв термiчноl обробки металу. Для цього необидно створити модель ТО металу, яку ви-користовують при виготовленнi високомiцних кршильних виробiв методом ХОШ без завершально! термiчноl обробки. Така модель мае на мета полшшити технолопчш властивостi металопрокату за рахунок забезпечення ви-соко! дисперсностi й однорвдноста структури зразка на всiй площиш його перерiзу До того ж технолопчний процес термiчноl обробки сталi повинен набувати таких переваг, як висока продуктившсть, знижене енергоспоживання, полшшення експлуатацiйних характеристик. Цього мож-на досягти завдяки застосуванню багатопроцесорно! об-числювально! системи, виконано! у виглядi окремого модуля. За допомогою спещального програмного забез-печення багатопроцесорна система здатна задавати й кон-тролювати необхiднi температурш режими на всiй пло-щит перерiзу зразка при нагрiваннi й витримщ металу, а при необхщноста може контролювати тепловий режим обробки стат в iнтервалi температур вщпалювання.
Використання багатопроцесорно! обчислювально! системи з !! програмним забезпеченням дозволить на ос-новi математично! моделi процесу нагрiвання зразка вже у виробничних умовах контролювати на^вання дроту до моменту його переходу в аустештний стан та настання температури фазово! перекристалiзацil на всш площинi перерiзу довгомiрного сталевого виробу, а потам здшсню-вати контроль необхщного режиму iзотермiчноl витрим-ки в iнтервалi температур вiдпалювання теж на всш площиш перерiзу зразка.
Застосування установки, що забезпечуе реалiзацiю режиму сфероlдизiвного вiдпалювання, зумовлюе рiвно-мiрний розподiл глобул цементиту у феритнш матрицi, а це створюе необхщт механiчнi властивостi металу, пшрбт для подальшого виконання холодно! деформацп. Разом з тим багатопроцесорна обчислювальна система iз спец-iальним програмним забезпеченням як едина база повинна включати математичнi моделi у виглядi рiвняння тепло-проввдноста, тобто
дТ=д2т+д2т+1 дТ+Ш
дт дг2 дг2 г дг '
(1)
при цьому критерiй Фур'е т=—— , якщо т > 0; Ш- пито-
Я 2
ма потужшсть джерела тепла, Вт/м2.
Крайовi умови ще! задачi мають такий вигляд:
Т (0, г, г) = / (г, т); Т (т,1, г) = уаг; дТ (т,0,г) = 0.
дг
Т (т,0,2) Ф 0.
Рiвняння (1) необхiдно розв'язувати iз застосуванням методiв розщеплення, суть яких полягае в редукцп складного оператора (1) до простих. Завдяки цьому шдходу необхщно звести розв'язок даного рiвняння до послщов-ност iнтегрування одновимiрних рiвнянь просташо! структури. Застосування числово-анал^ичного методу повинно забезпечити використання екожмчних i стiйких алгорштшв розв'язування задач даного типу.
Отже, основна мета дано! роботи полягае в розробщ моделi ТО довгашрного сталевого виробу, яка може бути використана для рекристалiзацп та сфероlдизiвного вщпа-лювання калiброваноl сталi на осжда використання ба-гатопроцесорних обчислювальних комплекмв. В основу моделi було вирiшено покласти спосiб ТО заготовки з низько- й середньовуглецевих сталей, призначених для холодно! висадки [1].
2 ОГЛЯД ЛГГЕРАТУРИ
Традицiйна технолопя сфероlдизiвного вщпалюван-ня сталi передбачае використання садчикових печей (ков -пакових або шахтового типу). Недолжи традицiйних спо-собiв пiдготовки заготовок до холодно! висадки з подро-бицями викладенi в вiдомiй робота Долженкова I. С. [2, 3] i глибоко проаналiзованi в робота [4].
Альтернативою способу ТО з на^ванням виробiв у печi служить електротермiчний спосiб, який характери-зуеться високою швидюстю нагрiвання унаслiдок впли-ву явищ електромагштно! шдукцп (шдукцшне на^ван-ня) або електроопору (електроконтактне нагрiвання) [5]. Запровадження iндукцiйного на^вання у технологiчнiй лшп для ТО дроту вже вщоме у виробничнш практицi [6, 7]. Для реалiзацil тако! технологи розроблено установку для виготовлення високомiцних крiпильних виробiв без завершального термозмiцнення. Але в даному ви-падку, пiд час проведення ТО заготовки не здшснюеться контроль температурних режимiв нагрiвання, витримки й охолодження у зв'язку з вщсутшстю засобiв вимiру i контролю температури металу.
1ншим пiдходом до реалiзацil електротермiчного способу обробки калiброваноl сталi е установка [8], в якш передбачена термокамера i терморегульовальний екран. Але процес ТО характеризуеться значною тривал^тю режиму вщпалювання, тому що iзотермiчна витримка й створення необхiдного режиму охолодження проводиться у термокамерi i потребуе довгий час. За даними ав-торiв тривалiсть вщпалювання дорiвнюе вiд 30 до 90 хви-лин, що не дозволяе синхрошзувати замкнутий цикл виготовлення тритльних виробiв.
3 МАТЕР1АЛИ ТА МЕТОДИ
Щоб вирiшити окресленi вище проблеми, було розроблено установку для термiчноl обробки довгомiрного сталевого виробу [4] з застосуванням БПОС [9]. Використання БПОС з !! програмним забезпеченням дозволяе на основi математично! моделi процесу на^вання зразка вже у виробничних умовах контролювати нагрiвання дроту до переходу в аустештну область до температури фазово! перекристатзацй на всш площин перерiзу довгашр-ного сталевого виробу, а потам, розв'язавши ОЗТ, здшсню-вати контроль необидного режиму iзотермiчноl витримки в терват температур вiдпалювання на всш площиш пе-рерiзу зразка.
р-К8К 1607-3274. Радюелектронжа, шформатика, управлiння. 2015. № 2 е-ЕЗБЫ 2313-688Х. Каёю ЕкСгопга, Сошриег Баепсе, Сопйо1. 2015. № 2
На рис. 1 зображено проектну схему установки для ТО довгом1рного сталевого виробу, де 1 - розмотуваль-ний пристрш; 2 - правильно-тяговий пристрш, обладна-ний виконавчим мехашзмом 3; 4 - шдуктор нагр1вально-го пристрою; 5 - генератор з виконавчим мехашзмом; 6 - трометр; 7 - камера 1зотерм1чно! витримки з виконавчим мехашзмом 8; 9 - трометр; 10 - камера регла-ментованого тдстуджування дроту з виконавчим мехашзмом 11 для регулювання подач1 водоповпряно! сушшц 12 - трометр; 13 - камера 1зотерм1чно! витримки з виконавчим мехашзмом 14; 15 - трометр; 16 - пристрш для штенсивно! сферо!дизаци з виконавчим мехашзмом 17; 18 - трометр; 19 - пристрш подач1 дроту на подальший технолопчний цикл; 20 - шформацшний двоспрямова-ний штерфейс збору даних з пристро!в 3, 7, 9, 12, 15, 18, приеднаний до блока керування 21 [ до виконавчих ме-хашзм1в (3, 5, 8, 11, 14, 17) ввдповвдних пристро!в; 22 -шформацшний двоспрямований штерфейс зв'язку блока керування БПОС 23.
Установка для ТО довгом1рного сталевого виробу працюе в описанш нижче послвдовноста. З розмотуваль-ного пристрою 1 через правильно-тяговий пристрш 2 дргг подаеться в шдуктор нагр1вального пристрою 4, де нагр1ваеться до переходу в аустештну стад1ю, набуваю-чи температури фазово! перекристал1заци.
Температура нагр1вання контролюеться трометром 7. Шдтримання температурного режиму здшснюеться за допомогою блока керування 21 [ БПОС 23. Сигнал з трометра 6 через шформацшний двоспрямований штерфейс 20 надходить у блок керування 21, а потам через шформацшний двоспрямований штерфейс 22 - у БПОС 23, де зпдно з результатом розв'язку математично! мо-дел1 прямо! задач1 теплопроввдноста, вщбуваеться регулювання потужноста генератора 5.
Потам роз1гр1тий дргт потрапляе в камеру 1зотерм1ч-но! витримки 7, температура в якш регулюеться виконавчим мехашзмом 8. При цьому сигнал з трометра 9 через шформацшний двоспрямований штерфейс 20 надходить у блок керування 21, а дал1 через шформацшний двоспрямований штерфейс 22 у БПОС 23, де ввдповвдно до результатав розв'язку математично! модел1 1зотерм1ч-но! витримки, здшснюеться регулювання температурного режиму за допомогою виконавчого меха-шзму 8.
Дал1 др1т переходить у камеру регламентованого тдстуджування 10. Залежно ввд режиму ТО, марки стал1 й д1аметра дроту задаеться необхвдна швидюсть тдстуджування в штервал1 температур ввд 750 до 700 °С.
У цьому температурному штервал1 аустешт безперер-вно втрачае вуглець 1, досягши необхвдно! концентраци останнього, зазнае жшморфних перетворень, перетворившись на ферит, таким чином ввдбуваеться розпад аустен-пу за анормальним мехашзмом. Температура тдстуджування контролюеться блоком керування 21 [ БПОС 23, де з урахуванням температури, зафжсовано! трометром 12, [ вщповщно до результату розв'язку математично! модел1 ОЗТ, виконавчий мехатзм 11 подае водоповпряну сумш, зб1льшуючи або зменшуючи !! юльюсть, залежно в1д зада-ного температурного режиму тдстуджування.
Потам дргт потрапляе в камеру 1зотерм1чно! витримки 13, температура в якш регулюеться виконавчим мехашзмом 14. Шд час 1зотерм1чно! витримки завершуеться ут-ворення кваз1евтекто!ду (перллу), що включае зони з тдви-щеною концентращею вуглецю [ з готовими цементитни-ми частинками. Сигнал 1з трометра 15 через шформацшний двоспрямований штерфейс 20 надходить у блок автоматичного керування 21, а дал1 через шформацшний двоспрямований штерфейс 22 - у БПОС 23, де на шдстав1 результата розв'язку математично! модет 1зотер-м1чно! витримки через блок керування 21 здшснюеться регулювання температурного режиму в камер1 13.
Шсля цього дргт подаеться в пристрш 1нтенсивно! сфе-ро!дизаци 17, де здшснюеться змша температурного режиму 1з швидюстю ввд 15 до 20 °С/хв з досягненням тдкри-тично! температури Ас1 (у цш температурнш зош вщбу-ваеться штенсивна сферо!дизащя цементитних частинок). Сигнал 1з трометра 18 через шформащйний двоспрямований штерфейс 20 надходить у блок автоматичного керування 21, а потам через шформацшний двоспрямований штерфейс 22 - у БПОС 23, де з урахуванням результата розв'язку математично! модел1 прямо! задач1 теплопровщ-носта ввдбуваеться регулювання температурного режиму в пристро! штенсивно! сферо!дизаци 16. Дат через пристрш подач1 19 дргт переходить до наступного технолопчного циклу його обробки.
На рис. 2 подано блок-схему контур1в системи керування установкою терм1чно! обробки довгом1рного ста-левого виробу. Така система керування мае у своему розпорядженш блоки, яю дозволяють отримати шфор-мащю про поточш параметри керованих процеЫв. Особ-ливкть !! полягае в тому, що на кожному з п'яти етатв технолопчно! обробки зразка розв'язуеться двовим1рна задача теплопровщноста. При цьому програмш засоби БПОС дозволяють контролювати температурш режими, як на всш площиш перер1зу зразка, так [ по його довжиш. Контроль таких температурних режим1в здшснюеться в центр1 площини перер1зу зразка.
Генератор СВЧ
ВМ Б1ВТ (1 + 2)
Рисунок 1 - Схема установки терм1чно! обробки сталевого виробу
Прометри (П 1 + П 5)
1
¿г
Рисунок 2 - Блок-схема контур1в системи керування установкою терм1чно! обробки довгом1рного сталевого виробу
ВМ ПМ
ВМ БП
ВМ БН
БПОС iз спецiальним програмним забезпеченням як едина база метить математичнi моделi у виглядi рiвнян-ня теплопровiдностi (1). При цьому за координатою г гра-ничнi умови, залежно в^ особливостей розв'язувано! задач^ можуть бути першого, другого або третього роду. Розв'язують задачу (1) iз застосуванням методiв розщеп-лювання, суть яких полягае в редукцп складного оператора (1) до простих. Цей шдхщ дозволяе проiнтегрувати дане рiвняння як послiдовнiсть iнтегрування одновишр-них рiвнянь простшо! структури. З огляду на суттеву складнiсть математично1 моделi (1), великого значення набувае розробка екожмчних алгорштшв для розрахун-ку ефекпв керування функцiями запропоновано1 установки. Процес створення зазначених алгорштшв висвгт-люеться в роботах [10, 11].
Зауважимо, що тут саме задача керування (як i задача синтезу) в 11 точнш постановщ вiдноситься до класу обер-нених, оскiльки вона передбачае визначення керуючих функцiональних параметрiв на основi заздалепдь задано-го, необхiдного результату (обернена задача керування).
Алгоритмом розв'язування обернених задач слугуе метод «вилки» з попередшм визначенням деякого по-чаткового вiдрiзка. Розв'язок задачi реалiзуеться в два етапи.
На першому етапi реалiзуеться вiдокремлення мiнiмуму нев'язки, на другому - визначаеться мшмум шукано1 функцп керування з вiдокремленого iнтервалу Зазначена процедура реалiзуеться стандартно. 1накше кажучи, якщо 9 являе собою деяке дшсне значення шука-ного кореня, тобто, коли а<9<Ь, а /(9) = 0, то можна обчислити число w таким, що задовольняе умовi: а<9<Ь та |9 — w| <е, тобто меншим вiд будь-якого наперед зада-ного малого числа е. Подiбна схема включена до складу математичного апарату керування БПОС. На вах циклах ТО металу використовуеться математична модель (1), тому результати моделювання будуть стосуватись циклу первинного на^вання металу.
Проблема моделювання полягае в тому, що для за-безпечення необх^но! точност й стiйкостi обчислень доводиться брати розрахункову сiтку з чималою кiлькiстю вузлiв i виконувати безлiч iтерацiй. Унаслiдок цього число арифметичних операцiй, що необхiднi для розрахун-ку температурних полiв, перебувае в межах 107 -Н08 вузлiв, а коли крок за часовою ознакою становить 10-2 с, то загальна кшьюсть вузлiв для обчислень може досягти 1020 i бшьше. Однопроцесорнi обчислювальнi системи не можуть впоратись з таким навантаженням тд час моделювання в реальному масштабi часу, тому найбiльш виправданим буде застосування багатопроцесорних систем, що й було здiйснено з метою удосконалення технологи ТО довгашрного сталевого виробу. 4ЕКСПЕРИМЕНТИ
Для випробування функцiй запропоновано! установки було проведено кшька експериментiв, коли дргг дiа-метром 20 мм iз сталi 20Г2Р пiддавався ТО. Розглянемо один з характерних дослщв.
За початкову було взято феритно-перл^ну структуру заготiвки. Процес ТО матерiалу здiйснювався шляхом на^вання заготiвки в межах мiжкритичноl зони температур. Для заданого матерiалу встановлено таю значення критичних точок: Ас1 = 725 °С; Ас3 = 795 °С.
На^вання вiдбувалось до такого значення: Ас1 + (10-30 °С). Протягом наступного етапу обробки мате-рiалу було реалiзовано процес iзотермiчноl витримки протягом 45 с. Далi тривало охолодження виробу зi швидюстю 20-30 °С/с до температури 620 °С з подальшою iзотермiч-ною витримкою протягом 45 с. Нарештi, на останньому етапi обробки матерiалу зразок назвали зi швидкiстю 1525 °С/с до пiдкритичних температур. Гра^чну штерпрета-щю режиму ТО металу ввдображено на рис. 3.
Мехашчш характеристики визначалися за результатами замiрiв твердостi зразкiв. Випробування на розтягу-вання проведено на машиш РШ0000е7. Дослiдження мiкроструктури металу проводилося на св^ловому ме-талографiчному мжроскот №орЬо^2 з використанням структурного аналiзатора «Epiquant», додатково облад-наного пристроем «Anasonic» для цифрово! реестрацп зображення.
5 РЕЗУЛЬТАТИ
За результатами експериментiв одержат кривi роз-подiлу температури зразка на площиш його перерiзу (рис. 4), де Тн - температура нагрiвання поверхнi зразка, Т
1 * и
V
0 6.0 120 час.с Рисунок 3 - Графж режиму терм1чно! обробки стал1 20Г2Р
Т(г,1) Т
и
г
Рисунок 4 - Крив1 розпод1лу температури зразка на площиш його перер1зу
р-К8К 1607-3274. Радюелектронжа, шформатика, управлiння. 2015. № 2 е-ЕЗБЫ 2313-688Х. Каёю Е1еойоп^, Сошриег Баепое, Сопйо1. 2015. № 2
Тк - контрольована засобами БПОС температура фазового перетворення металу (Ас1) на площиш перер1зу зраз-ка. Моделювання таких температурних пол1в здшснюеть-ся з урахуванням змши теплоф1зичних властивостей ма-тер1алу тд час його нагр1вання.
Крив1 розподшу температури зразка по довжиш в процес його нагр1вання зображено на рис. 5, де цифрою 1 позначено температуру поверхт (Тн), а цифрою 2 - температуру в центр1 площини перер1зу. Тут зона I ввдобра-жае процес нагр1вання зразка до задано! температури на його поверхт, а зона II демонструе вихвд на заданий тем-пературний режим у центр1 площини перер1зу зразка.
На рис. 6а,б зображено мшроструктуру зразюв до [ тсля сферо!дизацп, при цьому твердеть зразюв тсля ТО набула значень 150-169 НВ.
т
I, с
Рисунок 5 - Графжи розпод1лу температури зразка по його довжиш в процес нагр1вання
б
Рисунок 6 - Мжроструктура стал1 20Г2Р: а - початкова феритно-перлггна структура, х 500; б - структура шсля вщпалювання - перлгт зернистий (бал 5), х500
6 ОБГОВОРЕННЯ
Виконана сферо!дизащя карбщно! фази металу в умо-вах вщповщних режишв ТО заготавок забезпечуе надан-ня матер1алу структури зернистого перл1ту. Причому швидюсна сферо!дизащя зумовлюе бшьш р1вном1рний розподш глобул цементиту у феритнш матриц (рис. 6б). Зразки 1з стал1 майже однаково! твердоста тсля ТО набу-ли др1бнодисперсно! структури, що забезпечуе бшьш високий р1вень пластичноста металу. Унаслщок швидко-го нагр1вання зразка й неповно! аустештизацп стал1 вщбу-ваються певш змши в морфологи карбщно! фази вщ пла-стинчасто! до др1бнодисперсно! глобулярно!.
Техшчний результат, що досягаеться при запровад-женш запропоновано! системи, полягае в тому, що за-безпечуеться висока дисперсшсть й однорщшсть структури зразка на всш площиш його перер1зу, при цьому технолопчний процес ТО стал1 характеризуеться висо-кою продуктившстю, малим енергоспоживанням, пол-шшеними експлуатацшними характеристиками. Засто-сування установки для реал1зацп режиму сферо!диз1в-ного в1дпалювання зумовлюе р1вном1рний розподш глобул цементиту у феритнш матрищ, а значить забезпечуе необхщт мехатчт властивоста металу для його по-дальшо! холодно! деформацп.
В1дзначимо, що розв'язування задач, визначених в данш робота, зазвичай, вщбуваеться на основ1 застосуван-ня апарату р1зницевих р1внянь, який передбачае обов'яз-кову зам1ну помдних р1зницевими сшвв1дношеннями.
Виконаш в данш робота досл1дження показують, що методи розв' язування задач даного класу мають бути не тшьки р1зномаштними, але й поеднувати оцшювання кшьюсних показниюв 1з можливостями яюсного анал1зу. На сьогодш нампилися певш тенденцп в розробщ чис-лово-аналпжчних метод1в 1з складною лопчною структурою, але вони мають пор1вняно з кусково-р1зницевими методами вищий порядок точноста й можлив1сть побу-дови алгорштшв, адаптованих за порядками апроксимацп. З обчислювально! точки зору такий шдхщ вщр1зняеться певною гром1здюстю, але вш дае своерщний еталон для пор1вняння з шшими практичними методами. Але, зва-жаючи на переваги проведення обчислювального екс-перименту засобами багатопроцесорно! системи, мож-на стверджувати, що обставина, яка стримувала розви-ток числово-анал1тичного тдходу, на сьогодш втрачае свою актуальшсть. У зв'язку з цим, для розв'язування модел1 (1), у данш робота набула подальшого розвитку 1дея розробки схем тдвищеного порядку точноста на основ1 числово-аналггичного тдходу до розв'язування багатьох дослщжуваних задач. ВИСНОВКИ
Удосконалення наявних й створення нових технолоп-чних процемв ТО металу вимагають значних витрат, по-в'язаних 1з проведенням велико! кшькоста натурних екс-периментав на лабораторному, досл1дно-промисловому устаткуванш, а також у виробничних умовах. Скорочен-ня к1лькост1 експериментальних досл1джень та часу на !х проведення з одержанням необх1дно! 1нформац1! для по-будови й упровадження технолог1чних розробок можна здшснити шляхом застосування багатопроцесорних об-
числювальних комплекив. У статл розв'язана актуальна задача контролю температурних режимiв процесу рек-ристалiзацiï та сфероïдизiвного вщпалювання калiброва-ноï сталi шляхом застосування багатопроцесорноï системи, що дозволяе узгоджувати часовi iнтервали техно-лопчного процесу вiдпалювання.
Наукова новизна проведених дослщжень полягае в тому, що уперше на основi багатопроцесорноï обчис-лювальноï системи створено модель швидюсжи ТО дов-гомiрного сталевого виробу в реальному чаш з метою рекристалiзацiï та сфероïдизiвного вiдпалювання калiб-рованоï сталi й виготовлення високомщних крiпильних виробiв методом ХОШ без завершальноï ТО. Запропо-нований тдхщ дае можливiсть контролю вати технологiчнi параметри в режимах ТО металу, зокрема температуру в ^mpi перерiзу металевого виробу, що забезпечуе на-дання матерiалу необх^них властивостей, причому на всiй площиш перерiзу i по довжинi зразка. Цього вдало-ся досягти за рахунок застосування багатопроцесорноï обчислювальноï системи, що мае вигляд окремого модуля, а за допомогою спещального програмного забез-печення вона здатна задавати й контролювати необхiднi температурш режими на всiй площинi перерiзу зразка при нагрiваннi й витримщ металу. Порiвняно з традицш-ними пiдходами, було реалiзовано можливiсть полшши-ти технологiчнi властивостi металопрокату за рахунок забезпечення високоï дисперсностi й однорщност струк-тури зразка на всш площинi його перерiзу.
Практична щнтсть отриманих результатiв полягае в тому, що вдалося удосконалити технолопчний процес ТО металу за рахунок використання вiдповiдних математичних моделей та комплексу програм. Застосування математич-них моделей, яю обробляються на багатопроцесорнiй об-числювальнiй системi дозволяе контролювати температур-не поле металу в процеа його нагрiвання, витримки та охо-лодження i забезпечуе, тим самим, швидку адаптацiю виробництва металопродукцiï до вимог споживача.
Втiлення розробленого тдходу для ТО металу на ос-новi запровадження багатопроцесорноï обчислювальноï системи створюе проблему узгодження можливостей процесорiв i мережного iнтерфейсу багатопроцесорноï системи. Отже, перспективними подальшими дослщжен-нями е шляхи вирiшення зазначеноï проблеми на при-кладi застосування багатопроцесорних систем, що скла-даються iз рiзних типiв процесорiв. За таких умов необх-iдно вивести аналггичш спiввiдношення для встановлення оптимального числа вузлiв багатопроцесорноï системи з урахуванням обчислювальних можливостей певних процесорiв.
ПОДЯКИ
Роботу виконано вiдповiдно з тематичними планами наукових дослiджень Нацiональноï металургшжй академiï Украïни. Дослiдження проведет в рамках бюджетних i госпдоговiрних робiт:
Швачич Г. Г.1, Соболенко А. В.2
- «Розробка теоретичних основ фiзико-технiчних про-цесiв обробки маловуглицевих економно легованих сталей з бейштною структурою», номер державно! реест-рацп № ДР 0106Ш02210;
- «Математичне моделювання режимiв термiчноl обробки при швидкiсному циклiчному нагрiвi i охолод-женнi довгомiрного виробу», номер державно! реест-рацп № ДР 0107И002839.
СПИСОК Л1ТЕРАТУРИ
1. Пат. Укра!ни № 36892, МПК С 21Э 1/2б С21Э 1/78. Спос1б терм1чно! обробки прокату з низько- 1 сердньовуглецевих сталей для холодного висадження / В. П. Ковпак, А. М. Лещенко, М. О. Соболенко, Г. В. Кокашинська ; власник : Нацюнальна металургшна академ1я Укра!ни. - № 200807153; заявл. 23.05.2008; опул. 10.11.2008, Бюл. № 21.
2. Долженков И. Е. Термическая и деформационно-термическая обработка металлопроката / И. Е. Долженков // Теория и практика металлургии. - 2002. - № 3. - С. 30 -36.
3. Долженков И. Е. Влияние пластической деформации и других предобработок на сфероидизацию карбидов в сталях / И. Е. Долженков // Теория и практика металлургии. - 2007. -№ 1. - С. 66 -68.
4. Пат. 61944 Укра!на, МПК С21Э 1/26 (2006.01), 006Р 15/16 (2006.01). Установка для терм1чно! обробки довгом1рного сталевого виробу / В. П. 1ващенко, С. О. Башков, Г. Г. Швачич, М. О. Ткач, М. О. Соболенко ; власники : Нацюнальна металургшна академ1я Укра!ни, Донецький нацюнальний техшч-ний ушверситет. - № и 201014225; заявл. 29.11.2010; опубл. 10.08.2011, Бюл. № 15.
5. Электротермическая обработка и теплое волочение стали / [Г. А. Хасин, А. И. Дианов, Т. Н. Попова, Л. П. Кукарцева]. -М. : Металлургия, 1984. - 152 с.
6. Бобылев М. В. Подготовка структуры при электротермообработке сталей, применяемых для высадки высокопрочных крепежных изделий / М. В. Бобылев, В. Е. Гринберг, Д. М. Заки-ров, Ю. А. Лавриненко // Сталь. - 1996. - № 11. - С. 54-60.
7. Бобылев М. В. Оптимизация режимов отжига с индукционным нагревом сталей 20Г2Р и 38ХГНМ / М. В. Бобылев, Д. М. Закиров, Ю. А. Лавриненко // Сталь. - 1999. - № 4. - С. 6770.
8. Патент РФ 2137847, кл. С 21 Э 1/32, С 21 Э 9/60, С 21 Э 11/ 00. Установка для термообработки калиброванной стали / Д. М. Закиров, М. В. Бобылев, Ю. А. Лавриненко, Л. П. Лебедев, В. И. Сюльдин ; Патентообладатель: Открытое акционерное общество «Автонормаль». - № 98117255/02; заявл. 16.09.1998; опубл. 20.09.1999.
9. Пат. 57663 Укра!на, МПК 006Р 15/16 (2011.01). Модуль висо-коефективно! багатопроцесорно! системи шдвищено! готовности / В. П. 1ващенко, С. О. Башков , Г. Г. Швачич, М. О.Ткач ; власники : Нацюнальна металургшна академ1я Укра!ни, Донецький нацюнальний техшчний ушверситет. - № и 2010 09341; заявл. 26.07.2010; опубл. 10.03.2011, Бюл. № 5.
10. Швачич Г. Г. Об алгебраическом подходе в концепции распределенного моделирования многомерных систем / Г. Г. Швачич // Теория и практика металлургии. - 2007. - № 6(61). - С. 73-78.
11. Швачич Г. Г. Математическое моделирование одного класса задач металлургической теплофизики на основе многопроцессорных параллельных вычислительных систем / Г. Г. Швачич // Математичне моделювання. - 2008. - № 1 (18). - С. 60-65.
Стаття надшшла до редакци 25.11.2014.
Шсля доробки 19.12.2014.
1Д-р техн. наук, профессор, заведующий кафедры прикладной математики и вычислительной техники Днепропетровской металлургической академии Украины, Днепропетровск, Украина
2Канд. техн. наук, доцент, доцент кафедры прикладной математики и вычислительной техники Днепропетровской металлургической академии Украины, Днепропетровск, Украина
p-ISSN 1607-3274. Радюелектронжа, шформатика, управлiння. 2015. № 2 e-ISSN 2313-688X. Radio Electronics, Computer Science, Control. 2015. № 2
МОДЕЛИРОВАНИЕ СКОРОСТНЫХ РЕЖИМОВ ОБРАБОТКИ МЕТАЛЛА НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ МНОГОПРОЦЕССОРНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
В работе рассмотрены особенности разработки и использования многопроцессорной вычислительной системы с ee математическим и программным обеспечением для моделирования режимов термической обработки стальных заготовок. Цель работы: разработка модели режима термической обработки длинномерного стального изделия, которая может быть использована для рекристаллизации и сфероидизирующего отжига калиброванной стали. Предложено использование современных многопроцессорных вычислительных компьютерных технологий для увеличения скорости и продуктивности вычислений, что обеспечивает эффективное управление технологическим процессом. При помощи специального программного обеспечения многопроцессорная система способна задавать и контролировать необходимые температурные режимы на всей плоскости поперечного сечения образца при нагреве и выдержке металла, а при необходимости может контролировать тепловой режим обработки стали в интервале температур отжига. Многопроцессорная вычислительная система со специальным программным обеспечением включает математические модели в виде уравнения теплопроводности. Такие уравнения решаются с применением методов расщепления. Благодаря этому подходу решение двумерного уравнения сводится к последовательности интегрирования одномерных уравнений более простой структуры. Применение численно-аналитического метода обеспечивает использование экономических и устойчивых алгоритмов решения задач данного типа. Проведены эксперименты с исследованием свойств стальной заготовки. Результаты экспериментов позволяют рекомендовать предлагаемый подход к созданию моделей скоростных режимов обработки металла для разработки новых технологических процессов.
Ключевые слова: математическая модель, многопроцессорная вычислительная система, информационный двунаправленный интерфейс, контроль температурного режима металла.
Shvachych G. G.1, Sobolenko O. V.2
1Dr. Sc., Professor, Chief of the Department of Applied Mathematics and Computer Science of the National Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine
2PhD, Associate Professor of the Department of Applied Mathematics and Computer Science of the National Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine
SIMULATION OF SPEED SCHEDULES FOR METAL ON THE BASIS OF USING THE HIGH-PERFORMANCE MULTIPROCESSOR COMPUTER SYSTEMS
The paper deals the features of the development and use of the multiprocessor computing system with mathematical and software of the latter for simulation of heat treatment of the steel billets. Objective of the work: developing the model of heat treatment of a long steel product, which can be used for recrystallization and spheroidizig annealing of calibrated steel. The use of the up-to-date multiprocessor computing technologies had been proposed for increasing speed and productivity of computations, what maintains the effective control of the technological process. Through the special software the multiprocessor system is able to set and control necessary temperature conditions on all plane of cross-sectional of standard at heating and self-control of metal, and if necessary maybe began to control the thermal mode of treatment in the interval of temperatures of annealing. The multiprocessor computer system with the special software includes mathematical models as equation of heat conductivity. Such equations decide with the use of methods of breaking up. Due to this approach the decision of two-dimensional equation is taken to the sequence of integration of one-dimensional equations of more simple structure. Application of numeral-analytical method provides the use of economic and steady algorithms of decision of problems of this type.
Experiments had been carried out with studying the properties of a steel billet. Results of the experiments allow recommending the proposed approach to creating models of high-speed schedules of metal treatment for development of new technological processes.
Keywords: mathematical model, multiprocessor computing system, information bidirectional interface, control of the temperature schedule of metal.
REFERENCES
1. Kovpak V. P., Leshtshenko A. M., Sobolenko M. O., Kokashinska G. V. Pat. Ukrainy № 36892, MPK C 21D 1/26 C21D 1/78. Sposib termichnoi obrobky prokatu z nyzko- i seredniovugletsevykh stalej dlya kholodnogo vysadzhenya ; vlasnyk : Natsionalna metalurgijna akademiya Ukrainy, №200807153; zayavl. 23.05.2008; opubl.10.11.2008, Bul. №21.
2. Dolzhenkov I. Ye. Termicheskaya i deformatsionno-termicheskaya obrabotka metalloprokata, Teoriya i praktika metallurgii, 2002, No. 3, pp. 30-36.
3. Dolzhenkov I. Ye. Vliyanie plasticheskoy dephormaziy I drugich predobrabotok na spheroidizaziyu karbidov v stalajch, Teoriya i praktika metallurgii, 2007, No. 1, pp. 66-68.
4. Ivashtshenko V P., Bashkov Ye. O., Shvachich G. G., Tkach M. O., Sobolenko M. O. Pat. 61944 Ukraina, MPK C21D 1/26 (2006.01), GO6F 15/16 (2006.01). Ustanovka dlya termichnoi obrobki dovgomirnogo stalevogo vyrobu ; vlasnyky, Natsionalna metalurgijna akademiya Ukrainy, Donetskyj natsionalnyj technichnyj universytet, № u 201014225; zayavl. 29.11.2010; opubl. 10.08.2011, Bul. №15.
5. Khasin G. A., Dianov A. I., Popova T. N., Kukartseva L. P. Elektrotermicheskaya obrabotka i typloye volocheniye stali. Moscow, Metallurgiya, 1984, 152 p.
6. Bobylev M. V., Grinberg V. Ye., Zakirov D. M., Lavrinenko Yu. A. Podgotovka stryktyry pri elektrotermoobrabotke stalej,
primenyayemykh dlya vysadki vysokoprochnykh krepyozhnykh izdelij, Stal, 1996, No. 11, pp. 54-60.
7. Bobylev M. V., Zakirov D. M., Lavrinenko Yu. A. Optimizatsija rejimiv otjiga s induktsionim nagrevom staltej, primenyaemich dlya visadki visokoprochnich krepejnich itsdeliyi, Stal, 1999, No. 4, pp. 67-70.
8. Zakirov D. M., Bobylev M. V., Lavrinenko Yu. A., Lebedev L. P., Syuldin V. I. Patent RF 2137847, kl. C 21 D 1/32, C 21 D 9/60, C 21 D 11/00. Ustanovka dlya termoobrabotki kalibrovannoj stali; Patentoobladatel: Otkrytoye aktsionernoye obshtshestvo «Avtonormal», №98117255/02; zayavl. 16.09.1998; opybl. 20.09.1999.
9. Ivashtshenko V. P., Bashkov Ye. O., Shvachych G. G., Tkach M. O. Pat.57663 Ukraina, MPK G06F 15/16 (2011.01). Modul vysokoefektyvnoi bagatoprotsesornoi systemy pidvyshtshenoi gotovnosti ; vlasnyky: Natsionalna metalurgijna akademiya Ukrainy, Donetskyj natsionalnyj tekhnicnyj universytet.№ u 2010 09341; zayavl. 26.07.2010; opubl. 10.03.2011, Bul.№5.
10. Shachich G. G. Ob algebraicheskom podkhodye v kontseptsii raspredelyonnongo modelirovaniya mnogomernykh sistem, Teoriya i praktika metallurgii, 2007, No.6(61), pp. 73-78.
11. Shvachich G. G. Matematicheskoye modelirovaniye odnogo klassa zadach metallurgicheskoj teplofiziki na osnovye mnogoprotsesornykh parallelnykh vychislitelnykh sistem, Matematychne modelyuvannya, 2008, No. 1(18), pp. 60-65.