Научная статья на тему 'Моделирование характеристик чувствительных элементов микромеханических датчиков давлений для эксплуатации в особо жестких условиях'

Моделирование характеристик чувствительных элементов микромеханических датчиков давлений для эксплуатации в особо жестких условиях Текст научной статьи по специальности «Технологии материалов»

CC BY
449
122
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЛЕНКА ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА / ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ / ДАТЧИК ДАВЛЕНИЯ / ЖЕСТКИЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ / POLYCRYSTALLINE DIAMOND FILM / SENSING ELEMENT / PRESSURE SENSOR / TOUGH OPERATING CONDITIONS

Аннотация научной статьи по технологиям материалов, автор научной работы — Цыпин Борис Вульфович, Арискина Екатерина Вячеславовна, Щипанов Владимир Дмитриевич, Ярославцева Дарья Александровна, Волков Вадим Сергеевич

Описано применение пленок поликристаллического алмаза для создания полупроводниковых датчиков давления для жестких условий эксплуатации. Проанализирован тензорезистивный эффект в поликристаллическом алмазе. Приведены результаты моделирования чувствительного элемента датчика в виде круглой плоской мембраны на основе структур поликремний–диэлектрик–кремний и поликристаллический алмаз–диэлектрик–алмаз для случая нелинейного изгиба под действием давления. Показаны преимущества поликристаллического алмаза для создания датчиков давления с улучшенными метрологическими харатеристиками.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Цыпин Борис Вульфович, Арискина Екатерина Вячеславовна, Щипанов Владимир Дмитриевич, Ярославцева Дарья Александровна, Волков Вадим Сергеевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Моделирование характеристик чувствительных элементов микромеханических датчиков давлений для эксплуатации в особо жестких условиях»

УДК 621.3.032

Б. В. Цыпин, Е. В. Арискина, В. Д. Щипанов, Д. А. Ярославцева, В. С. Волков, И. Н. Баринов

МОДЕЛИРОВАНИЕ ХАРАКТЕРИСТИК ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ МИКРОМЕХАНИЧЕСКИХ ДАТЧИКОВ ДАВЛЕНИЙ ДЛЯ ЭКСПЛУАТАЦИИ В ОСОБО ЖЕСТКИХ УСЛОВИЯХ1

B. V. Tsypin, E. V. Ariskina, V. D. Shchipanov, D. A. Yaroslavtseva, V. S. Volkov, I. N. Barinov

SIMULATION OF SENSING ELEMENT CHARACTERISTIC FOR MICROMECHANICAL PRESSURE SENSOR FOR USE FOR HEAVY DUTY

Аннотация. Описано применение пленок поликристаллического алмаза для создания полупроводниковых датчиков давления для жестких условий эксплуатации. Проанализирован тензорезистивный эффект в поликристаллическом алмазе. Приведены результаты моделирования чувствительного элемента датчика в виде круглой плоской мембраны на основе структур поликремний-диэлектрик-кремний и поликристаллический алмаз-диэлектрик-алмаз для случая нелинейного изгиба под действием давления. Показаны преимущества поликристаллического алмаза для создания датчиков давления с улучшенными метрологическими харатеристиками.

Abstract. Application of polycrystalline diamond films for semiconductor pressure sensors for use for heavy duty is described. Tensoresistive effect in polycrystalline diamond films is analyzed. Simulation results of the sensor in the form of a circular flat membrane based on structures polysilicon-insulator-silicon and polycrystalline diamond - insulator diamond - in the case of nonlinear bending under pressure are demonstrated. The advantages of polycrystalline diamond to create a pressure sensor with improved metrological characteristics are shown.

Ключевые слова: пленка поликристаллического алмаза, чувствительный элемент, датчик давления, жесткие условия эксплуатации.

Key words: polycrystalline diamond film, sensing element, pressure sensor, tough operating conditions.

Введение

Датчики механических величин в настоящее время эксплуатируются в особо жестких условиях, к которым прежде всего относятся повышенная температура и радиация (воздействие ионизирующих излучений) [1]. Необходимость сохранения высокой точности и надежности датчиков приводит к задаче поиска новых современных материалов для изготовления чувствительных эле-

1 Работа выполнена при финансовой поддержке государства в лице Минобрнауки России (Соглашение № 14.В37.21.1647).

ментов (ЧЭ), так как они наиболее подвержены воздействиям внешней среды. В современных условиях большое внимание уделяется получению и исследованию полупроводниковых материалов с большой шириной запрещенной зоны, одним из которых является алмаз [1].

Важным преимуществом алмазных материалов как основы для изготовления ЧЭ датчиков является температурная стабильность характеристик. ТКЛР алмаза при комнатной температуре приблизительно равен 1-10-6 °С-1, что более чем в два раза меньше, чем ТКЛР кремния. Модуль Юнга для поликристаллических алмазных пленок характеризуется значением, близким к модулю Юнга монокристаллического алмаза (1143 ГПа). Отличительной чертой алмазных материалов является то, что для них модуль Юнга стабилен в диапазоне температур до 750 °С [2].

Современная технология позволяет получать поликристаллические алмазные материалы при низких давлениях (синтезом из газовой фазы) [3]. По этой причине более перспективным представляется использование поликристаллического алмаза и алмазных пленок для изготовления ЧЭ, работоспособных в жестких условиях эксплуатации и позволяющих обеспечить высокие метрологические характеристики датчика.

Эффективность применения кремния и алмаза в качестве полупроводниковых материалов для изготовления ЧЭ датчиков, эксплуатирующихся в особо жестких условиях, может быть оценена по их радиационной стойкости [4]. При прочих равных условиях радиационная стойкость алмаза в два раза выше радиационной стойкости кремния при воздействии тяжелых частиц и Р-частиц [5].

Для создания ЧЭ датчиков механических величин (давления, ускорения, силы и т.д.) широко применяется способ преобразования измеряемой величины в деформацию или прогиб упругого элемента. Для измерения деформации традиционно используется тензорезистивный эффект. Основными видами упругих элементов являются жестко защемленные балки (канти-леверы) и мембраны различной геометрической формы.

Коэффициент тензочувствительности тензорезистора в продольном направлении (протекающий ток параллелен деформации) может быть записан в виде

где "и - коэффициент Пуассона. Для поперечного направления (направление протекания тока перпендикулярно деформации), коэффициент тензочувствительности может быть записан в виде [6]

Для полупроводниковых материалов, таких как кремний, карбид кремния и алмаз, коэффициент тензочувствительности определяется в основном зависимостью удельного сопротивления от деформации, вызванной деформацией энергетической зоны, поэтому два первых слагаемых в выражении (1) и второе слагаемое в выражении (2) могут быть опущены.

Для монокристаллических полупроводниковых материалов, таких как кремний и алмаз, тензорезистивный эффект является анизотропным и выражается аналитически с помощью пьезорезистивных коэффициентов. Принципы описания тензорезистивного эффекта в полупроводниках впервые были определены для кремния [6].

Тензорезистивный эффект в кристалле кремния был описан с помощью многодолинной модели, предложенной Херрингом [6]. Под действием приложенного механического напряжения валентная зона разделяется, и происходят сдвиг зон тяжелых и легких дырок друг относительно друга и как результат перенос носителей между тяжелыми и легкими дырками. Под действием одноосного растяжения подзона тяжелых дырок перемещается вверх, а подзона легких дырок - вниз, как показано на рис. 1,6. Это приводит к увеличению числа носителей с низкой подвижностью и уменьшению числа носителей с высокой подвижностью. Так как проводимость пропорциональна подвижности носителей заряда, электрическое сопротивление уменьшается под действием механического напряжения при растяжении [6].

Тензорезистивный эффект в поликристаллическом алмазе

= (ЛЯ / Я)1

= 1 + 2и + -

(1)

(2)

V Р Л

а)

б)

Рис. 1. Упрощенное графическое построение диаграммы валентной зоны кремния: а - отсутствие механического напряжения; б - одноосное растяжение

Для 3-мерного анизотропного кристалла обобщенное соотношение между электрическим полем Е, удельным сопротивлением р и протекающим током / запишется в виде [6]

(3)

Компоненты тензора удельного сопротивления также будут являться функциями деформации, приложенной к материалу [6]:

Е' " Р1 Рб Р5

Е2 = Рб Р2 Р4

Е3 _ _Р5 Р4 Рз

_г1 "

г2

1 1

Р1 " Р " АР1"

Р2 Р АР2

Рз Р АРз

= +

Р 4 0 АР4

Р5 0 АР5

_Рб _ 0 _ АРб _

(4)

Вследствие кубической симметрии кристалла кремния изменение сопротивления может быть выражено через нормальные и сдвиговые напряжения в трех направлениях [6]:

" АР1"

АР2

АРз

АР4

АР5

_ АРб _

п

11

п

12

п

12

п

12

п

11

п

12

п

12

п

12

0

0

0

п

11

0

0

0

п

44

0

0

0

0

п

44

0

0

0

0

0

п

44

1 1 1

°2

°3

Т1

^2

_тз _

(5)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для продольного направления коэффициент тензочувствительности может быть записан

в виде

оц =-

Ар

= п?

л

Продольный пьезорезистивный коэффициент определяется выражением

2 2

П1 =П11 2(п11 п12 п44)(11да]

2 2 -от1и1

-«12/12).

(6)

(7)

Для поперечного направления коэффициент тензочувствительности может быть записан

в виде

Ор =- [—') =п,у , (8)

є, V Р Л,

где поперечный пьезорезистивный коэффициент определяется выражением

П, = П12 + (п11 — П12 — п44 )(11 12 + т1 т2 + П1 п2 ) . (9)

В выражениях (7) и (9) I, тг- и п (і = 1, 2, 3) - направляющие косинусы преобразования

системы координат, связанной с кристаллической решеткой кремния, и системы координат,

связанной с направлением продольной оси тензорезистора [6].

В общем случае поликристаллические материалы состоят из кристаллических зерен, взаимодействующих между собой через границы зерен. Зерна представляют собой небольшие монокристаллы с кристаллической решеткой и структурой энергетических зон, аналогичной монокристаллу. Границы зерен состоят из беспорядочно ориентированных атомов и содержат большое количество дефектов, создающих потенциальные барьеры на границе и обедненные области внутри зерен. Для поликристаллических полупроводников удельное сопротивление пленки определяется вкладом удельного сопротивления зерна и границы зерна [6]:

Ь - (2^ + 8) (2^ + 8)

Р=-----—------ Р^ + Ръ, (10)

где Р, Р^ и Ръ представляют собой удельное сопротивление пленки, зерна и границы зерна

соответственно, 8 - толщину границы зерна, Ь и w - длину зерна и обедненной области соответственно. С учетом выражения (10) коэффициент тензочувствительности поликристалличе-ской пленки может быть записан в виде

ОР = АР 1 = Ь - ^ + 8) АРя 1 + (2w + 8) АРъ 1 (11)

Р £ Ь Р§ £ Ь Ръ є'

Считается, что тензорезистивный эффект на границе зерен проявляется гораздо слабее, чем в самом зерне кристалла. Случайная ориентация зерен также снижает тензорезистивный эффект. Это объясняет снижение коэффициента тензочувствительности поликристаллическо-го кремния по сравнению с монокристаллическим кремнием.

Для синтетических кристаллов алмаза в ряде работ были получены значения коэффициента тензочувствительности, превышающие 103 [6]. Тензорезистивные свойства поликристаллического алмаза изучались на различных структурах, для различных уровней легирования и при различных температурах с использованием кантилеверов при задании различных диапазонов давлений. Данные из литературных источников позволяют сделать вывод об увеличении коэффициента тензо-чувствительности поликристаллического алмаза при увеличении сопротивления пленки [6].

Результаты анализа литературных источников также свидетельствуют о влиянии на тен-зорезистивные свойства пленки размера зерна, структуры, материала подложки и технологии получения и обработки, однако в настоящее время отсутствуют систематизированные данные

о взаимосвязи размера зерна и коэффициента тензочувствительности. При этом данные литературных источников подтверждают высокую чувствительность тензорезисторов из поликри-сталлического алмаза, легированных бором [6]. Основной целью использования алмазных тензорезисторов является создание стабильных и надежных МЭМС-датчиков, характеризующихся высокой воспроизводимостью характеристик.

Для сравнения характеристик кремния и алмаза было проведено численное моделирование консольной балки из кремния и алмаза для определения максимальной нагрузки при одинаковых геометрических размерах. На основании результатов моделирования была определена максимальная нагрузка для данных ЧЭ из условия двукратного запаса прочности по пределу текучести. Для кремния предельное значение нагрузки составляет 2,5 • 107 Па, для алмаза - 1,5 • 108 Па [7].

Моделирование ЧЭ на основе поликристаллических структур

Для сравнения механических свойств тензорезисторов из поликристаллического кремния и поликристаллического алмаза было проведено численное моделирование методом конечных элементов структуры, изображенной на рис. 2.

Измерение. Мониторинг. Управление. Контроль

3 кГі § су

; н- - & су § су

2

/и / 2_

Рис. 2. ЧЭ в виде круглой мембраны (моделирование проводилось для половины сечения мембраны в осесимметричной постановке задачи):

1 - ЧЭ из кремния-поликристаллического алмаза; 2 - изолирующий слой двуокиси кремния;

3 - тензорезистор из поликристаллического кремния-поликристаллического алмаза

В результате моделирования были проанализированы свойства двух структур: поликристал-лический кремний-двуокись кремния-кремний (ПКДКК) и поликристаллический алмаз-двуокись кремния-поликристаллический алмаз (ПАДКА). Численное моделирование проводилось в программе Сош8о1 МиШрЬу8Ю8, в которой автоматически включается режим больших перемещений, т.е. моделируется деформация ЧЭ в условиях нелинейного изгиба, когда прогиб в центре мембраны сравним или превышает толщину самой мембраны, что предполагает учет механических напряжений в объеме всей мембраны и существенно усложняет аналитический расчет.

На рис. 3 представлена деформация в области тензорезистора в структуре «поликремний на диэлектрике» под действием давления Р = 105 Па.

Рис. 3. Деформация тензорезистора в структуре ПКДКК

На рис. 4 представлена деформация в области тензорезистора в структуре ПАДКА под действием давления Р = 105 Па.

Рис. 4. Деформация тензорезистора в структуре ПАДКА

Из анализа рис. з и 4 видно, что деформация тензорезистора максимальна у его края, расположенного вблизи заделки, и уменьшается к центру мембраны (тензорезисторы расположены радиально) по линейному закону, при этом деформация тензорезистора в структуре ПАДКА в 1,5 раза превышает деформацию тензорезистора в структуре ПКДКК.

На рис. 5, б представлены максимальная радиальная деформация и прогиб центра мембраны при изменении давления в диапазоне от 1о5 до 1об Па.

P

Рис. 5. Максимальная радиальная деформация тензорезисторов в структурах ПКДКК и ПАДКА

P

Рис. 6. Максимальный прогиб мембран в структурах ПКДКК и ПАДКА

Результаты моделирования

Из анализа рисунков видно, что в диапазоне изменения давления от 105 до 3 • 105 Па зависимость прогиба и деформации от приложенного давления близка к линейной, далее прогиб и деформация увеличиваются нелинейно, при этом значение прогиба для структуры ПКДКК составляет порядка 30 мкм, для структуры ПАДКА - порядка 45 мкм, что сравнимо с толщиной мембраны. При этом радиальная деформация, соответствующая давлению 3 • 105 Па, в структуре ПАДКА на 12 % больше, чем в структуре ПКДКК. Это позволяет обеспечить более высокие метрологические характеристики датчиков давления на основе структуры ПАДКА (более высокий уровень выходного сигнала при сохранении линейности) без изменения конструкции и геометрии ЧЭ, только за счет использования поликристаллического алмаза для изготовления чувствительного элемента и тензорезистора.

При этом анализ рисунков также показывает, что максимальный прогиб в центре мембраны для структуры ПАДКА на 30 % больше, чем для структуры ПКДКК. Это позволяет сделать

вывод о перспективности применения структуры ПАДКА для создания датчиков механических величин, основанных на преобразовании измеряемой величины в прогиб мембраны.

Таким образом, проведенные исследования и моделирование подтверждают перспективность использования поликристаллических алмазных пленок для изготовления ЧЭ датчиков механических величин для эксплуатации в особо жестких условиях при обеспечении высоких метрологических и эксплуатационных характеристик. Задачами дальнейшего исследования являются моделирование ЧЭ, представляющих собой структуры ПАДКА с профилированными мембранами различной геометрической формы, а также исследование влияния технологии получения поликристаллического алмаза на характеристики датчиков.

Список литературы

1. Баринов, И. Н. Высокотемпературные датчики давления на основе поликристалличе-ского алмаза. Состояние разработок и тенденции развития / И. Н. Баринов, В. С. Волков // Датчики и системы: методы, средства и технологии получения и обработки измерительной информации (Датчики и системы - 2012) : тр. Междунар. науч.-техн. конф. с элементами науч. школы для молодых ученых (г. Пенза, 22-26 октября 2012 г.) / под ред. Е. А. Ломтева, А. Г. Дмитриенко. - Пенза : Изд-во ПГУ, 2012. - С. 91-93.

2. CVD Diamond for Electronic Devices and Sensors // John Wiley & Sons, Ltd, 2009.

3. Ральченко, В. CVD-алмазы. Применение в электронике / В. Ральченко, В. Конов // Электроника: Наука, Технология, Бизнес. - 2007. - № 4. - С. 58-67.

4. Properties of natural diamond microlenses fabricated by plasma etching // Industrial Diamond Review. - 2005. - Р. 29-32.

5. Гончаров, В. В. Обзор работ по исследовательским реакторам и их использованию в СССР / В. В. Гончаров // Атомная энергия. - 1964. - Т. 17, вып. 4.

6. Yuxing, Tang. Poly-Crystalline Diamond (Poly-C) Technology And Piezoresistive Sensor Application For Cochlear Prosthesis / Tang Yuxing // Ph. D Dissertation, Michigan State University. - 2006.

7. Использование поликристаллических алмазных пленок для создания чувствительных элементов датчиков механических величин / И. Н. Баринов [и др.] // Известия ПГПУ им. В. Г. Белинского. Физико-математические и технические науки. - 2012. - № 30. -С. 384-390.

Цыпин Борис Вульфович Tsypin Boris Vul'fovich

доктор технических наук, профессор, doctor of technical sciences, professor,

кафедра информационно-измерительной техники, sub-department of information

Пензенский государственный университет E-mail: [email protected]

Арискина Екатерина Вячеславовна

студентка,

Пензенский государственный университет E-mail: [email protected]

Щипанов Владимир Дмитриевич

студент,

Пензенский государственный университет E-mail: [email protected]

Ярославцева Дарья Александровна

студентка,

Пензенский государственный университет E-mail: [email protected]

and measuring technique,

Penza State University

Ariskina Ekaterina Vyacheslavovna

student,

Penza State University

Shchipanov Vladimir Dmitrievich

student,

Penza State University

Yaroslavtseva Dar'ya Aleksandrovna

student,

Penza State University

Волков Вадим Сергеевич

кандидат технических наук, доцент, кафедра приборостроения,

Пензенский государственный университет E-mail: [email protected]

Volkov Vadim Sergeevich

candidate of technical sciences, associate professor, sub-department of instrument making,

Penza State University

Баринов Илья Николаевич

кандидат технических наук, доцент, кафедра информационно-измерительной техники, Пензенский государственный университет E-mail: [email protected]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Barinov Il'ya Nikolaevich

candidate of technical sciences, associate professor, sub-department of information and measuring technique,

Penza State University

УДК 621.3.032 Цыпин, Б. В.

Моделирование характеристик чувствительных элементов микромеханических датчиков давлений для эксплуатации в особо жестких условиях / Б. В. Цыпин, Е. В. Арискина, В. Д. Щипа-нов, Д. А. Ярославцева, В. С. Волков, И. Н. Баринов // Измерение. Мониторинг. Управление. Кон-

троль. - 201З. - № 2(4). - С. З0-З7.

i Надоели баннеры? Вы всегда можете отключить рекламу.