Экономические науки
159
УДК 65.012.123
МОДЕЛИ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИИ О КОНКУРЕНТОСПОСОБНОСТИ МАШИНОСТРОИТЕЛЬНОЙ ПРОДУКЦИИ
Цеплит Анна Петровна1,
старший преподаватель, e-mail: [email protected] Григорьева Антонина Алексеевна2,
кандидат технических наук, доцент, e-mail: [email protected]
'Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000, Россия, г. Кемерово, ул. Весенняя, 28
2Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета 652050, Россия, г. Юрга, ул. Ленинградская, 26
Аннотация
Во всем мире промышленность является одним из основных инициаторов, заказчиков и потребителей инноваций. Благодаря инновациям машиностроители начинают выпускать товары с более высокими потребительскими свойствами. Однако любая инновация требует денег, времени и управленческих усилий на ее разработку и внедрение. А самое главное - собственная инновация чревата значительными рисками, ведь новый продукт может быть не принят рынком, а значит, все усилия окажутся потраченными зря. Поэтому целью работы является создание модельного аппарата для поддержки принятия стратегических решений о конкурентоспособности инновационной машиностроительной продукции. Предложены две модели оценки конкурентоспособности машиностроительной продукции на базе многокритериального подхода и теории нечетких множеств. Модель получение множество Парето машиностроительной продукции порогами несравнимости позволяет выделить группу наилучших аналогов продукции на этапе маркетинговых исследований, синтеза идеи, НИОКР. Модель рейтинговой оценки конкурентоспособности продукции позволяет оценить конкурентоспособность на всех этапах жизненного цикла продукции в зависимости от системы критериев. Данные модели дают возможность производителю принять решение о конкурентоспособности продукции в условиях индивидуального и группового выбора при неопределенности и недостаточности информации.
Ключевые слова: конкурентоспособность продукции, машиностроительная продукция, метод порогов несравнимости, множество Парето, нечеткие множества.
Введение
Подъем российской экономики до уровня развитых стран невозможен без активизации инновационной деятельности. Благодаря инновациям машиностроители начинают выпускать товары с более высокими потребительскими свойствами. Отношение числа технологий, которые продает Россия, к числу технологий, которые она покупает, значительно меньше единицы и уже несколько лет снижается. У истоков любого новшества, ставшего достоянием общества, т.е. инновации, всегда стоит конкретный предприниматель, рискнувший поверить в его необходимость для людей, перспективность и, конечно же, коммерческую выгодность. Можно сказать, что нашим сегодняшним достижением мы во многом обязаны не просто бизнесу вообще, а, прежде всего, предпринимательству. Несмотря на то, что в России и за рубежом ведутся работы по исследованию конкурентоспособности инновационной продукции, однако в настоящее время не выработана единая концепция принятия решений о конкурентоспособности инновационной машиностроительной
продукции [1-4].
Поэтому целью работы является создание модельного аппарата для поддержки принятия стратегических решений о конкурентоспособности инновационной машиностроительной продукции. При этом главными направлениями информационной поддержки являются этапы анализа и выбора альтернатив.
Предпосылки к созданию моделей поддержки принятия решений о конкурентоспособности машиностроительной продукции
Реструктуризация угольной промышленности предусматривает как одно из прогрессивных направлений - сокращение числа действующих на шахтах малоэффективных забоев с сохранением, а при необходимости и увеличением общей добычи угля за счет остающихся в эксплуатации высокопроизводительных, оснащенных современным оборудованием.
В 1992 году предприятиями угольной промышленности: концерном «Кузнецкуголь», «Ле-нинскуголь», «Северокузбассуголь», шахтой
160
А. П. Цеплит, А. А. Григорьева
«Распадская», и конверсируемым машиностроительным объединением «Юргинский машиностроительный завод» была учреждена ассоциация «Кузбассуглемаш».
Основной задачей ассоциации является создание производства по изготовлению и выпуску угледобывающего оборудования для возможности осуществления технического перевооружения очистных забоев шахт в период реструктуризации угольной промышленности региона.
Необходимость решения этой задачи диктовалась с одной стороны сложившимся критическим положением в угольном машиностроении, так как после распада СССР основные мощности по выпуску угледобывающих комплексов остались на Украине и в Казахстане, а в России отсутствовало серийное производство необходимого шахтерам оборудования, а с другой - рациональной загрузкой конверсируемых мощностей оборонных и машиностроительных предприятий. Таким образом, в успешном достижении конечных целей были экономически заинтересованы как производители, так и покупатели угледобывающего оборудования.
Для рационального размещения производства и возможности его организации на высоком техническом уровне в члены ассоциации были приняты дополнительно Томский приборный завод, Новосибирский завод металлоконструкций, ПО «Тяжстонкогидропресс» г. Новосибирска. Это дало возможность создать в ближайших городах: Новосибирске, Томске, Юрге, расположенных поблизости от потребителя оборудования - шахт Кузбасса, развитый машиностроительный комплекс, способный изготавливать сложное и трудоемкое оборудование, необходимое для технического перевооружения угольной промышленности.
Для того чтобы выйти на рынок с изделиями высокого качества машиностроительным предприятиям необходимо оценивать конкурентоспособность продукции на всех этапах ее жизненного цикла. С этой целью на кафедре Информационных систем Юргинского технологического института (филиала) Томского политехнического университета ведется работа по разработке системы поддержки принятия решений о конкурентоспособности наукоемкой машиностроительной продукции.
В системе поддержки принятия решений о конкурентоспособности продукции реализовано ряд математических моделей данной задачи. Это обусловлено:
- во-первых, динамической сущностью задачи, так как разные модели будут применяться для получения оценок конкурентоспособности и рекомендаций для разработчика на всех этапах жизненного цикла изделия;
- во-вторых, выбор модели зависит от целей разработчика, от полноты информации, получаемой от заказчика, от числа альтернатив изделия.
Следует отметить, что данные модели могут применяться как отдельно, так и в различных комбинациях. Рассмотрим две модели оценки конкурентоспособности машиностроительной продукции: модель получения множества наилучших аналогов продукции методом порогов несравнимости и модель рейтинговой оценки конкурентоспособности продукции на базе метода теории нечетких множеств.
Получение множество Парето машиностроительной продукции порогами несравнимости
Данная методика была разработана на основе метода порогов несравнимости и показателя «значимость технического решения» Зтр [5,6,7,8].
При большом банке данных существующей на рынке аналогичной продукции, когда нет явного лидера, с помощью метода порогов несравнимости можно выделить группу наилучших альтернатив, т. е. множество Парето. А затем проводить сравнение Зтр и Зап «значимость технического решения аналогичной продукции» с помощью аддитивно-мультипликативной модели. Можно пойти по другому пути, поместив все альтернативы, включая (Зтр) решенной технической задачи в исследуемое множество. Если после решения порогами несравнимости Зтр попадет в множество Парето, то после анализа ядра можно сделать вывод о конкурентоспособности продукции. При использовании данной методики применяется многокритериальный подход. Критериями служат А„ - коэффициент актуальности решенной технической задачи; Пр - коэффициент соответствия решенной технической задачи программам важнейших работ научно-технического прогресса; С3
- коэффициент сложности технической задачи; Ми
- коэффициент места использования решенной технической задачи; Ои - коэффициент объема использования решенной технической задачи; Ш0
- коэффициент широты охвата охранными мероприятиями решенной технической задачи.
В данном методе связь между любой парой альтернатив определяется последовательностью бинарных отношений. Бинарные отношения задаются следующим образом. Выдвигается гипотеза о превосходстве альтернативы А над альтернативой В. Множество, состоящее из N критериев (в нашем случае N = 6), разбивается на три подмножества:
Q+ (А,В) - подмножество критериев, по которым А предпочтительнее В,
Q= (А,В) - подмножество критериев, по которым А равноценно В,
Q- (А,В) - подмножество критериев, по которым В предпочтительнее А.
Далее формулируется индекс согласия с гипотезой о превосходстве А над В. В случае «сильного» бинарного отношения этот индекс определяется как отношение суммы весов критериев подмножеств Q+ и Q= к общей сумме весов:
Экономические науки
161
X (AUj + Пр1 + Сз( + MUj + Out + LUOj)
r _ieQ+,Q=_________________________________
c N
'^d( AUj + П Pj + C3j + MU; + Oldj + UlOj ) i=J
Наряду с этим определяется индекс несогласия с гипотезой о превосходстве А над В как отношение суммы весов критериев подмножеств Q-к общей сумме весов.
Очевидно, что 0 < 1с <1, 0 < 1н < 1.
Бинарное отношение превосходства задается уровнями индексов согласия и несогласия. Если 1с > с и 1н < d (где с, d- заданные уровни), то альтернатива А объявляется превосходящей альтернативу В. Уровни с, d позволяют выделить ядро, в которое входят доминирующие и несравнимые элементы.
Использование модели оценки конкурентоспособности продукции на базе методов порогов несравнимости повышает обоснованность управленческих решений по вопросам использования в производстве нововведений на стадии маркетинговых исследований, синтеза идеи, НИОКР.
Математическая модель рейтинговой оценки конкурентоспособности машиностроительной продукции
При создании системы поддержки принятия решения о конкурентоспособности инновационной машиностроительной продукции возникают некоторые проблемы, которые разрешить традиционными методами сложно: не все цели управления могут быть выражены количественно. Следует отметить также, что практически всегда менеджеры и эксперты работают в условиях неполноты информации и ее неопределенности. Если отсутствие информации в полном объеме можно, хотя бы принципиально снять путем получения дополнительных сведений каким либо из возможных способов: прошлый опыт, проведение экспериментов, то неопределенность, связанную с несогласованностью мнений экспертов можно в какой-то мере снять за счет методов теории нечетких множеств [9,10,11,12,13].
Основоположник теории нечетких множеств Л. Заде отмечал, что обычные методы анализа систем и моделирования на ЭВМ, основанные на точной обработке численных данных, по существу не способны охватить огромную сложность процессов человеческого мышления и принятия решений. Поэтому при построении моделей принятия решений о конкурентоспособности продукции помимо многокритериального подхода возникает необходимость использования нечеткой логики, нечетких понятий и отношений.
Л. Заде в своих работах предлагает отказ от основного утверждения классической теории множеств о том, что некоторый элемент может
либо принадлежать, либо не принадлежать множеству. При этом вводится специальная характеристическая функция множества — так называемая функция принадлежности, которая принимает значения из интервала [0, 1] [14,15].
Модель базируется на основе метода расчета степеней предпочтения с учетом порога предпочтительной конкурентоспособности [16]. В модели приняты следующие допущения: существование определенного уровня компетентности экспертов; характеристика продукции р признаками; варьирование степени важности признаков (критериев) при присвоении данной продукции рейтинга между экспертами; предпочтение одного вида продукции другому, если его признаки по своей степени важности более близки к оценке экспертов.
Предполагается, что X={xi ,х2 ,...,х„} - множество экспертов, Y={y 1, у2, ...,ур} - множество признаков (критериев) продукции и Z ={zi, z2,..., zm} -множество видов продукции (альтернатив).
Алгоритм работы модели следующий:
1. Анализ данных об альтернативах (машиностроительной продукции).
2. Анализ сведений о признаках (критериях) конкурентоспособности продукции.
3. Формирование матрицы важности (весов) признаков конкурентоспособности продукции экспертами (R).
4. Формирование матрицы степеней совместимости видов альтернатив (машиностроительной продукции) с признаками (S).
5. Расчет матрицы взвешенных степеней предпочтения продукции экспертами (Т).
6. Расчет матрицы выпуклых пересечений степеней предпочтения продукции экспертами (W).
7. Расчет порога предпочтительной конкурентоспособности продукции (w).
8. Расчет рейтинга продукции (Rep).
Данную модель можно применить на всех
этапах жизненного цикла машиностроительной продукции, меняя систему критериев. На начальных стадиях (маркетинговые исследования, синтез идеи, НИОКР) используются критерии, что и в предыдущей модели: А„,, Пр, С3, М„, Ои, Ш0[17].
На этапе производства, реализации, эксплуатации используются следующие критерии: «значимость технического решения» (Зтр), финансовый приоритет от выпуска продукции (ФП), критерии эффективности производства (ЭП) и сбыта продукции (ЭС). В зависимости от цели исследования вместо критерия «значимость технического решения» (Зтр) можно использовать признак инновационной продукции NPV - чистая текущая стоимость [17].
162
А. П. Цеплит, А. А. Григорьева
Таблица 1. Матрица нечеткого бинарного отношения
Веса Эксперты^---^^ Аи Пр Сз Ои Шо
Y 1 Y 2 Y 3 Y 4 Y 5
X 1 0 1 0 0 1
X 2 0 0 1 0 1
ХЗ 0 0 0 1 0
X 4 1 1 1 1 1
X 5 0,8 0,4 0,5 0,9 0,7
Х6 0,7 0,3 0,4 0,8 0,2
X 7 0,5 0,8 0,8 0,2 о,з
X 8 0,5 0,5 0,5 0,5 0,5
X 9 0,6 0,7 0,8 0,5 0,4
Х10 0,1 0,1 0,1 0,1 0,1
Таблица 2. Степень совместимости продукции с критериями
^ —-^___Г1родукция Эксперты " Z1 Z2 Z3 Z 4
Аи Y 1 0,9 0,1 0,5 0,7
Пр Y 2 0,5 0,9 0,6 0,6
Сз Y 3 0,4 0,9 0,5 0,4
Ои Y 4 0,8 0,1 0,5 0,6
Шо Y 5 0,1 0,1 0,1 0,1
Таблица 3. Матрица взвешенных степеней предпочтения продукции
^—~-^Г1родукция Эксперты ■— Z 1 Z2 Z3 Z 4
X 1 0,22 0,476 0,318 0,292
X 2 0,185 0,476 0,273 0,208
ХЗ 0,296 0,048 0,227 0,250
X 4 1,0 1,0 1,0 1,0
X 5 0,707 0,5 0,641 0,671
Х6 0,593 0,381 0,523 0,554
X 7 0,504 0,733 0,597 0,517
X 8 0,5 0,5 0,5 0,5
X 9 0,61 0,714 0,641 0,625
X 10 0,1 0,1 0,1 0,1
Проведем апробацию рейтинговой модели на примере оценки конкурентоспособности шахтных крепей [17]. Оценку производили десять экспертов (xj). Оценивались следующие марки шахтных крепей (альтернатив): ъ\ - 1УКП (Украина), Z2 -Тагор 13 / 29- 03 (Польша), гз - Фазос 12/25 (Польша), Z4 - М -138 /2 (ОАО «Юргинский машиностроительный завод»). Продукция оценивалась по следующим критериям: Yi- коэффициент актуальности решенной технической задачи (А„); Y2— коэффициент соответствия решенной технической задачи программам важнейших работ научно-технического прогресса (Пр); Y3- коэффициент сложности технической задачи (С3); Y4 -коэффициент объема использования решенной технической задачи (Ои); Y5- коэффициент широты охвата охранными мероприятиями решенной технической задачи (Ш0). Матрица нечеткого бинарного отношения R представлена в табл. 1.
В этой матрице элементы каждой строки выражают относительные степени важности признаков в принятии экспертом решения о присвоении
рейтинговой оценки.
Таблица 4. Матрица выпуклых пересечений степеней предпочтения продукции экспертами
0,22 0,22 0,22 0,318 0,292 0,292
0,185 0,185 0,185 0,273 0,208 0,208
0,048 0,227 0,250 0,048 0,048 0,227
1,0 1,0 1,0 1,0 1,0 1,0
0,5 0,64 0,671 0,5 0,5 0,64
0,381 0,532 0,554 0,381 0,381 0,523
0,504 0,504 0,504 0,579 0,517 0,517
0,5 0,5 0,5 0,5 0,5 0,5
0,61 0,61 0,61 0,641 0,625 0,625
0,1 0,1 0,1 0,1 0,1 0,1
Затем эксперты оценивают степень принадлежности или совместимость продукции z с признаком (критерием) у. В матричной форме (S )это представлено в табл. 2.
На основе расчета функции принадлежности [16,17], получаем матрицу взвешенных степеней предпочтения продукции экспертами (Т), табл. 3.
Экономические науки
163
Наконец, из матрицы Т, получаем матрицу выпуклых пересечений степеней предпочтения продукции экспертами W (табл. 4).
На основе матрицы W и условия:
W < min шах min|fiAi(х,z;),juAj(x,z ■)J
ij x
рассчитаем порог предпочтительной конкурентоспособности альтернатив w [16, 17]. В нашем случае w = 0,61. Применяя 0,61 в качестве порога различения, определим следующие совокупности экспертных оценок для продукции: Pi={xs,
Х9,};Р2={х7, х9};Рз={х5, х9};Р4={х5, х9}.
Рассчитаем рейтинг продукции: Rcp(zi) = (0,707+0,61)/10=0,132;
Rcp(z2)=0,145; Rcp(zi)=0,128; Rcp(z4)= 0,130.
Самый высокий рейтинг у крепи Тагор 13 / 29-03 (Польша).
Выявлено, что конкурентоспособность продукции на разных сегментах потребительского рынка является различной. Следовательно, производитель должен вначале осуществить правиль-
ную сегментацию потребительского рынка, а затем уже рассчитывать рейтинг продукции.
Заключение
Предложенные модели позволяет охватить все этапы жизненного цикла продукции. Выходная информация оценки конкурентоспособности продукции на начальных стадиях жизненного цикла становится входной информацией для оценки конкурентоспособности на последующих этапах жизненного цикла продукции. Существует возможность обработки качественной информации и преобразования ее в количественные оценки, что особенно важно на этапах синтеза идеи и маркетинговых исследованиях. В зависимости от цели исследования конкурентоспособности продукции, лицо, принимающее решение может останавливаться на любой из моделей и самостоятельно решает на какие критерии стоит обратить внимание и включить в анализ.
СПИСОК ЛИТЕРАТУРЫ
1. Jordan Philip Solar energy markets an analysis of the global solar industry - Elsevier, 2013, 158 p.
2. Shavinina Larisa The international handbook on innovation - Pergamon, 2003, 1200 p.
3. Verloop Jan Success in innovation - Elsevier, 2013,140 p.
4. Zakharova A., Telipenko E. Information system of bankruptcy risk management of an enterprise. Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012, - 2012.
5. Осипов Ю.М. Показатель «значимость технического решения» имитационной модели АСУ конкурентоспособностью продукции // Автоматизация и современные технологии. - М., 1994. № 3.
С.33- 35.
6. Руа Б. Классификация и выбор при наличии нескольких критериев (метод ЭЛЕКТРА): Пер. с фр.
- В кн.: Вопросы анализа и процедуры принятия решений. М.: Мир, 1976, С.80-107.
7. Ларичев О.И. Наука и искусство принятия решений. М.: Наука, 1979. - 200 с.
8. Григорьева А.А., Григорьева А.П. Получение множество Парето наукоемкой продукции порогами несравнимости //Инновационные технологии и экономика в машиностроении: Сборник трудов Международной научно-практической конференции с элементами научной школы для молодых ученых -Юрга, ЮТИ ТПУ, 20-21 мая 2010. - Томск: Изд. ТПУ, 2010. - С. 286- 287
9. Борисов А.Н., Крумберг О.А., Федоров И.П. Принятие решения на основе нечетких моделей. -Рига, 1990. - 180 с.
10. Zakharova, A. A. Fuzzy swot analysis for selection of bankruptcy risk factors. Applied Mechanics and Materials Volume 379, 2013, Pages 207-213.
11. Кофман А. Введение в теорию нечетких множеств; Пер. с франц. - М.: Радио и связь, 1982. - 432
с.
12. Мелихов А.Н., Берштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой. - М.: Наука., 1990. - 272 с.
13. Поспелов Д.А. Логико-лингвистические модели в системах управления. - М.: Энергоиздат. 1981
- 232 с.
14. Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенных решений. - М.: Мир. 1976 - 165с.
15. Заде Л.А. Основы нового подхода к анализу сложных систем и процессов принятия решений. - В кн.: Математика сегодня /Сост. А.В.Шилейко, М.: Знание, 1974, С. 5-48.
16. Нечеткие множества и теория возможностей. Последние достижения [Fuzzy sets and possibility theory. Latest achievements]: Пер. с англ./ Под. ред. P.P. Ягера.-М.: Радио и связь, 1986 - С. 339- 347.
17. Григорьева А.А. Автоматизированный мониторинг конкурентоспособности инновационной машиностроительной продукции: монография / Григорьева А.А., Тащиян Г.О., Григорьева А.П.; Юргин-ский технологический институт. - Томск: Изд-во Томского политехнического университета, 2011. -231с.
164
А. П. Цеплит, А. А. Григорьева
УДК 65.012.123
MODELS OF DECISION SUPPORT COMPETITIVENESS ENGINEERING PRODUCTS
Anna. P. Tceplit *,
senior teacher, e-mail: [email protected] Antonina A. Grigoryeva2,
Candidate of Science (Engineering), associate professor, e-mail: [email protected]
'T.F. Gorbachev Kuzbass State Technical University, 28 street Vesennyaya, Kemerovo, 650000, Russian Federation
2Yurga Institute of Technology, National research Tomsk Polytechnic University affiliate 26 street, Leningradskaya, Yurga, 652050, Russian Federation
Abstract
Worldwide, the industry is one of the main initiators, clients and consumers of innovations. Through innovation machine builders are starting to produce products with higher consumer properties. However, any innovation requires money, time and administrative effort for its development and implementation. And most importantly - private innovation fraught with considerable risk, because the new product can not be accepted by the market and, therefore, every effort will be spent in vain. Therefore, the aim is to develop a model unit to support strategic decision-making on the competitiveness of engineering products. Two models assessing the competitiveness of innovative engineering products on the basis of multi-criteria approach and the theory of fuzzy sets. Model obtain Pareto set thresholds incomparability engineering products group allows you to select the best products to the unique step of market research, synthesis of ideas, research and development. Model rated competitiveness of products allows us to estimate the competitiveness in all phases of the product life cycle, depending on the system criteria. These models allow us to assess the competitiveness of products in terms of individual and group choice under uncertainty and lack of information.
Keywords: competitive products, engineering products, the method of threshold incomparable, Pareto, fuzzy
sets.
REFERENCES
1. Jordan Philip Solar energy markets an analysis of the global solar industry - Elsevier, 2013, 158 p.
2. Shavinina Larisa The international handbook on innovation - Pergamon, 2003, 1200 p.
3. Verloop Jan Success in innovation - Elsevier, 2013, 140 p.
4. Zakharova A., Telipenko E. Information system of bankruptcy risk management of an enterprise. Proceedings - 2012 7th International Forum on Strategic Technology, IFOST 2012, - 2012.
5. Osipov YU.M. Pokazatel' «znachimost' tehnicheskogo reshenija» imitacionnoi modeli ASU konkurentosposobnost'yu produkcii [The indicator «the importance of the technical solution» simulation model of competitiveness of production automation] Avtomatizacija i sovremennye tehnologii. - Moscow, 1994. № 3. p.p. 33- 35. (rus)
6. Rua B. Klassifikacija i vybor pri nalichii neskol'kih kriteriev (metod YeLEKTRA) [Classification and selection when several criteria (ELECTRA method)]: Per. s fr. - V kn.: Voprosy analiza i procedury prinjatija reshenii [Questions of analysis and decision-making procedures]. Moscow: Mir, 1976, p.p. 80-107. (rus)
7. Larichev O.I. Nauka i iskusstvo prinjatija reshenii [The art and science of decision-making]. Moscow: Nauka, 1979. - 200 p. (rus)
8. Grigoreva A.A., Grigoreva A.P. Poluchenie mnozhestvo Pareto naukoemkoi produkcii porogami nesravnimosti [Getting a lot of high-tech products Pareto thresholds incomparability] Innovacionnye tehnologii i yekonomika v mashinostroenii: Sbornik trudov Mezhdunarodnoi nauchno-prakticheskoi konferencii s yelemen-tami nauchnoi shkoly dlja molodyh uchenyh [Innovative technology and economics in mechanical engineering] - YUrga, YUTITPU, 20-21 maja 2010. - Tomsk: Izd. TPU, 2010. - p.p. 286-287 (rus)
9. Borisov A.N., Krumberg O.A., Fedorov I.P. Prinjatie reshenija na osnove nechetkih modelei [Making a decision based on fuzzy models]. - Riga, 1990. - 180 p. (rus)
10. Zakharova, A.A. Fuzzy swot analysis for selection of bankruptcy risk factors. Applied Mechanics and Materials Volume 379, 2013, p.p. 207- 213.
11. Kofman A. Vvedenie v teoriyu nechetkih mnozhestv [Introduction to the theory of fuzzy sets]; Per. s franc. - Moscow: Radio and Communications, 1982. - 432 p. (rus)
Экономические науки
165
12. Melihov A.N., Bershtein L.S., Korovin S.Ja. Situacionnye sovetuyushie siste-my s nechetkoi logikoi [Situational advising system with fuzzy logic]. - Moscow: Nauka, 1990. - 272 p. (rus)
13. Pospelov D.A. Logiko-lingvisticheskie modeli v sistemah upravlenija [Logico-linguistic models in control systems]. - Moscow: Yenergoizdat. 1981 - 232 p. (rus)
14. Zade L.A. Ponjatie lingvisticheskoi peremennoi i ego primenenie k prinjatiyu priblizhennyh reshenii [The concept of linguistic variable and its application to decision-making close]. - Moscow: Mir. 1976 - 165 p. (rus)
15. Zade L.A. Osnovy novogo podhoda k analizu slozhnyh sistem i processov prinjatija reshenii [A new approach to the analysis of complex systems and decision-making processes]. - V kn.: Matematika segodnja [Mathematics Today] / Sost. A.V.SHileiko, Moscow: Znanie, 1974, p.p. 5- 48. (rus)
16. Nechetkie mnozhestva i teorija vozmozhnostei. Poslednie dostizhenija: Per. s angl./ Pod. red. R.R. Ja-gera- Moscow: Radio and Communications, 1986.- P. 339- 347. (rus)
17. Grigoreva A.A. Tashhijan G.O., Grigoreva A.P. Avtomatizirovannyj monitoring konkurentosposobnosti innovacionnoj mashinostroitel'noj produkcii [Automated monitoring of the competitiveness of innovative engineering products] Tomsk, Publishing of theTomsk Polytechnic University, 2011. - 231 p. (rus)
Received 13.05.2015