УДК 624.21
Д. И. БОРОДАЙ (ДонНАСА, Донецк)
МОДЕЛЬ ПРОГНОЗА ДОЛГОВЕЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ ПРОЛЕТНЫХ СТРОЕНИЙ АВТОДОРОЖНЫХ МОСТОВ
Сформульовано загальну проблему довговiчностi залiзобетонних елеменпв моспв. Сформульовано за-вдання дослвдження. Запропоновано модель оцiнки ресурсу залiзобетонних елементiв мостiв на стади прое-ктування з урахуванням впливу агресивного середовища й напружено-деформованого стану конструкцп. Модель дозволяе прогнозувати ресурс у функци часу залежно вiд фiзико-механiчних властивостей бетону й арматури, типу конструкцш, умов експлуатацп. Наведено чисельш приклади визначення довговiчностi по запропонованш моделi. Проаналiзовано результати дослвдження. Винесено на обговорення вiдкритi пи-тання.
Сформулирована общая проблема долговечности железобетонных элементов мостов. Сформулирована задача исследования. Предложена модель оценки ресурса железобетонных элементов мостов на стадии проектирования. Модель позволяет прогнозировать ресурс в функции времени в зависимости от физико-механических свойств бетона и арматуры, типа конструкций, условий эксплуатации. Приведены численные примеры определения долговечности по предлагаемой модели. Проанализированы результаты исследования. Вынесены на обсуждение открытые вопросы.
The general problem of bridge reinforced concrete elements durability is formulated. The research problem is formulated. The model of estimation of bridge reinforced concrete elements resource on a design stage is offered. It enables us to predict the resource as a function of time in dependence on physical-and-mechanical properties of concrete and reinforcement, type of structures, and operation conditions. Some numerical examples of durability determination according to the model offered are presented. The results of research are analyzed. Open questions are brought for discussion.
Постановка проблемы
Согласно действующим отечественным нормам [1], срок службы мостов должен составлять 100 лет. Считается, что обеспечить заданный срок службы можно путем соблюдения определенных нормативных конструктивных требований (минимально допустимое значение защитного слоя бетона, водоцементного отношения, расхода цемента, минимальной открытой пористости, максимальная плотность, и т.д.). Однако срок службы не закладывается в расчеты на этапе проектирования, т.е. не существует нормативного алгоритма, позволяющего четко определить долговечность моста при его проектировании.
Следует заметить, что уравнения предельных состояний не содержат переменной времени. Таким образом, нормы обеспечивают только мгновенную надежность конструкции моста в момент ее возведения или строительства, а происходящие в дальнейшем изменения несущей способности под воздействием внешних факторов, а также изменяющийся характер временной подвижной нагрузки не учитываются.
Неопределенность при прогнозировании долговечности мостовых сооружений приводит к тому, что предельные состояния наступают гораздо раньше нормативного срока в 100 лет.
Это подтверждается текущим техническим состоянием мостов Украины, срок службы которых находится в пределах 30...50 лет [2].
Корпорацией «Укравтодор» эксплуатируется 16059 автодорожных мостов, из которых 96 % являются железобетонными. Из них по состоянию на 2005 год 63 % мостов не соответствовали нормативным требованиям [2]. В ведомстве органов местного самоуправления находится 3113 автодорожных мостов, из которых железобетонные составляют также 96 %. По состоянию на 2005 год 59 % коммунальных мостов не соответствовали требованиям СНиП 2.05.84 «Мосты и трубы», а 13 % требовали срочного ремонта или реконструкции [2]. Очевидно, что с введением в действие с 1 февраля 2007 года новых норм ДБН В.2.3-14:2006 «Мости та труби. Правила проектування» [1], где увеличиваются классы подвижных нагрузок АК и НК, количество автодорожных мостов, не отвечающих нормативным требованиям, увеличилось.
Цель и задачи исследования
Целью исследования является разработка алгоритма, позволяющего определить срок службы железобетонных пролетных строений автодорожных мостов на стадии проектирования.
© Бородай Д. И., 2010
Задачи исследования:
- разработать математическую модель расчета долговечности железобетонных пролетных строений мостов;
- определить долговечность типовых пролетных строений мостов при помощи предложенной модели;
- сравнить полученные результаты с фактической долговечностью пролетных строений.
Основные подходы к прогнозу срока службы мостов
В последние десятилетия в зарубежной инженерной практике, наряду с конструкционным проектированием строительных железобетонных конструкций, все чаще используется термины «durability design» или «service life design» [3, 4, 5], что можно перевести как проектирование долговечности или проектирование срока службы. Данный подход направлен на определение времени наступления предельного состояния железобетонной конструкции при помощи специальных алгоритмов, позволяющих прогнозировать процесс деградации конструкции с определенной степенью точности и при необходимости корректировать проектные решения для достижения требуемого срока службы.
В мировой мостостроительной практике можно выделить два основных подхода к прогнозированию долговечности мостов. Первый основывается на введении функции деградации конструкций мостов. Данная функция описывает изменение функциональных характеристик сооружения во времени при определенных исходных данных (геометрические размеры конструкции, физико-механические свойства бетона и стальной арматуры). Для использования такого подхода необходимо большое число опытных данных - в данном случае результатов обследования мостов специальной службой инспекции.
Второй подход базируется на прогнозировании изменения состояния арматуры в бетоне с точки зрения физико-химических процессов, протекающих в конструкции под воздействием меняющихся факторов окружающей среды с учетом влияния транспортных нагрузок. Большинство моделей в этом случае основываются на известной модели коррозии стальной арматуры в бетоне, предложенной K. Tuutti в [6]. В этой работе автор рассматривает длительность процесса повреждения арматуры в бетоне как сумму двух этапов: периода инициирования коррозии tin (initiation period) и периода разви-
тия коррозии арматуры tprop (propagation period) (рис. 1).
Отказ конструкции
Время
Рис. 1. Зависимость глубины коррозионного повреждения арматуры в железобетоне от времени согласно [6]
Под периодом инициирования коррозии понимают срок, в течение которого защитный слой бетона выполняет пассивирующие функции по отношению к арматуре. Этот период сопровождается проникновением и накоплением хлоридов в бетоне, а также диффузией углекислого газа в бетон, обуславливающей его карбонизацию и уменьшение показателя рН поровой влаги. Конец периода инициирования связан с достижением фронта карбонизации поверхности арматуры или накоплением у поверхности арматуры некоторого критического содержания хлоридов или раскрытием трещины критической ширины, вызывающих начало коррозии арматуры.
Период развития коррозии - это срок от начала депассивации защитного слоя арматуры, в течение которого происходит ее интенсивное корродирование вследствие изменения темпе-ратурно-влажностного режима, воздействия кислорода воздуха и растворов агрессивных веществ (хлоридов) с накоплением продуктов коррозии (ржавчины), до наступления предельного состояния, выбор которого зависит от типа конструкции и условий ее эксплуатации.
Предлагаемая модель
Предлагаемая модель деградации пролетных строений автодорожных мостов основывается на прогнозе коррозионного состояния арматуры в бетоне согласно [6] с выделением двух фаз: инициирования коррозии и развития коррозии арматуры.
Т.к. при назначении срока службы мостовых сооружений нормами предлагается опираться на технико-экономические расчеты [7], то логичным видится необходимость знать при про-
t
t
ектировании момент наступления различных предельных состояний, чтобы, например, рассмотреть несколько вариантов ремонтных работ (в разные сроки при различном состоянии сооружения) и связанные с ними финансовые затраты, иначе говоря разработать стратегию содержания и эксплуатации данного объекта.
Предлагаемая модель рассматривает следующие виды предельных состояний (рис. 2):
- начало коррозии арматуры;
- появление продольных трещин в защитном слое бетона в результате роста продуктов коррозии арматуры с учетом напряженно-деформированного состояния;
- раскрытие продольных трещин на предельно-допустимую ширину;
- скалывание бетона защитного слоя;
- разрушение конструкции.
Предлагаемая в работе модель деградации,
как уже было сказано выше, основывается на известной модели состояния арматуры в бетоне Туутти. Срок службы конструкций мостов предлагается оценивать уравнением (1):
Т = (о + 'сог,
(1)
где Т - срок службы конструкции, лет; (0 - время депассивации арматуры (фаза инициирования коррозии), лет; (Сог - время активной коррозии арматуры (фаза развития коррозии), лет.
Разрушение
Я Я Я
и
^
а н о я о и о о я
к
Скалывание /
защитного слоя
\ ' Раскрытие V
трещин \ х
Образование \ /
Депассивация трещин \ у
защитного слоя \ Д -
Фаза инициирования Время
коррозии Фаза развития коррозии
Рис. 2. Виды предельных состояний в течение срока службы конструкций мостов
Период инициирования коррозии. Процессы диффузии хлоридов в бетоне достаточно хорошо изучены [3, 4, 6, 8]. Математически они описываются классическими уравнениями аналитической теории диффузии (уравнения первого и второго законов Фика). Решая эти дифференциальные уравнения при определенных начальных условиях, можно получить выражения для определения времени карбонизации
защитного слоя бетона (2) и времени накопления критической концентрации хлоридов у поверхности арматуры (3):
Xс2
ТсагЬ
2 • д
со2
-1 • (с1 " С2У
X с2
4 • Д
С1
ей-
С - С
^ С1
С„
\\
//
(2)
(3)
где Хс - толщина защитного слоя бетона, м; ДС02 - коэффициент диффузии СО2 вглубь бетона, м2/с (зависит от состава бетона, степени гидратации, содержания влаги); с1, с2 - соответственно, содержание диоксида углерода на внешней поверхности бетона и на границе карбонизации (бесконечно малая величина), кг/м ; а - количество СО2, необходимое для превращения всех способных карбонизироваться продуктов гидратации цемента, кг/м3; ДС1 - коэффициент диффузии хлоридов в бетоне, м2/с; егй() - функция ошибок Гаусса, С. и Ссп1 - соответственно, концентрация хлоридов на поверхности бетона защитного слоя и критическая концентрация хлоридов на поверхности арматуры, % по массе цемента.
Коэффициент диффузии хлоридов в бетоне изменяется во времени и согласно [9] определяется по формуле (4):
ДС1 = ДС10
(4)
где ДС10 - начальный коэффициент диффузии хлоридов в бетоне в возрасте (0 = 28 суток, м2/с, который зависит от В/Ц и определяется по формуле (5):
ДС10 = 10'
= -«о(—12,06+2,4В/Ц) .
(5)
а - показатель степени, зависящий от водоце-ментного отношения и определяемый по формуле (6):
а = 3 • В/Ц - 0,6.
(6)
При этом меньшее из полученных значений из выражений (2) и (3) принимается в качестве периода депассивации арматуры (0.
Время активной коррозии арматуры предлагается определять исходя из назначенных видов предельных состояний.
1-й случай - коррозия арматуры не допускается.
Тогда ^ог = 0. Срок службы определяется значением периода депассивации арматуры -
Т = t 1 10 ■
2-й случай - появление продольных трещин:
С = Тсгаск ,
где время от начала коррозии арматуры до появления трещин определяется согласно модели, предложенной в работе [10], выражением (7):
W2
crack
2• 0,105-а-1 -п- d • ic
(7)
А„
У ^cor Ícor
(8)
арматуры и снижение ее механических характеристик (предела прочности при растяжении, деформативности). Т.е., установив зависимости снижения площади сечения арматуры и ее механических свойств от времени при коррозии, можно ввести в уравнения предельных состояний переменную времени, а значит, и прогнозировать наступление предельного состояния (длительность периода развития коррозии tpг0p).
Согласно [12], глубина коррозионного повреждения арматуры в железобетоне хс0г определяется соотношением:
где а - отношение молекулярной массы стали к молекулярной массе продуктов коррозии; й -диаметр арматуры, м; /с0г - плотность тока коррозии, А/м2; Жсп1 — критическое количество продуктов коррозии, вызывающих образование трещин, кг/м.
3-й случай - раскрытие продольных трещин на допустимую ширину.
Экспериментальными исследованиями [11] установлена линейная зависимость между глубиной коррозионного повреждения арматуры и шириной раскрытия трещины на поверхности бетона. Согласно этой работе, математическая модель, описывающая процесс раскрытия трещины, имеет вид:
= Vc
cor apit ^cor'
(9)
где ¥сог - скорость коррозии арматуры, мм/год; арц - питтинговый фактор, который учитывает характер коррозии и согласно [12] равняется арц = 2 при общей коррозии вследствие карбонизации и арц = 9,28 при питтинговой коррозии в случае локального воздействия хлоридов; t -время, лет.
В зависимости от условий воздействия окружающей среды скорость коррозии определяется по формуле (10):
N
V = V • —
cor cor,a - '
365
(10)
где у - коэффициент пропорциональности, зависящий от физико-механических характеристик бетона; ссог - коэффициент скорости коррозии, зависящий от условий эксплуатации; Лтах - максимально допустимая ширина раскрытия трещин, зависящая от типа конструкции и определяемая согласно Нормам [1], мм.
В этом случае время активной коррозии
описывается выражением: ^ = тсгаск + Ттах .
4-й случай - скалывание защитного слоя.
Большинство авторов считают, что скалывание бетона начинается при раскрытии трещин шириной более 1 мм [4, 5]. Значит, при помощи уравнения (8) можно определить время от появления трещины на поверхности железобетонной конструкции до момента раскрытия ее на критическую ширину Лтах = Лкра11 = 1 мм.
Таким ^р^^ ^ = тсгаск + Тра11 .
5-й случай - разрушение (потеря несущей способности).
В процессе коррозии стали в железобетоне происходит уменьшение диаметра (площади)
где Усог,а - средняя скорость коррозии арматуры, мм/год, которая определяется исходя из природных условий эксплуатации железобетонного элемента по табл. 1; - число дней в году с осадками более 2,5 мм.
Таблица 1
Средняя скорость коррозии стальной арматуры в железобетоне Усог,а в различных условиях эксплуатации согласно [12]
Коррозионное состояние Условия эксплуатации V мм/год
Общая кор- на открытом воздухе 0,005
розия при карбонизации в помещении 0,002
сухие 0,004
Питтинговая коррозия переменная влажность 0,03
в воздухе над морской водой 0,03
зона периодического смачивания 0,07
Таким образом, определив зависимость глубины коррозионного повреждения от времени
x
cor
хсог = /(^сог),, можно определить зависимость площади сечения арматуры от времени коррозии.
В результате уменьшения сечения арматуры из-за коррозии на величину хсог по всему периметру через время tcoг от начала коррозии площадь сечения арматурного стержня диаметром й будет определяться выражением:
4ог =П-(|-Хсог)2. (11)
Устанавливая минимально допустимые значения площади арматуры расчетом на прочность нормальных сечений в середине пролета и наклонных сечений в приопорном участке, можно определить время снижения площади сечения арматуры до этого значения.
Подводя итог, согласно введенным обозначениям периодов коррозии арматуры зависимость определения срока службы Т от рассматриваемых предельных состояний можно привести в табличной форме.
Таблица 2
Определение срока службы Т для различных предельных состояний
№ п/п Расчетный случай Срок службы Т
1 Начало коррозии арматуры Т = t 0
2 Образование продольных трещин Т = t0 + Тcrack
3 Раскрытие продольных трещин Т = t0 + Тcrack + Tcrit
4 Скалывание бетона защитного слоя Т = t0 + Тcrack + Tspall
5 Разрушение Т = tQ + tcor
Анализ модели
На основе приведенной модели деградации железобетонных элементов мостов были произведены расчеты фактической долговечности пролетных строений на примере типовых плитных конструкций по проекту Белгипродор 5-04145. В качестве расчетного предельного состояния было принято образование продольных трещин в пролетных строениях (2-й расчетный случай). Предварительные расчеты показали, что в случае использования солей-антиобледенителей срок накопления критической концентрации хлоридов на поверхности арматуры горазда меньше срока карбонизации защитного
слоя. Поэтому в качестве процесса депассива-ции арматуры рассматривалось проникновение хлоридов в бетон.
Расчеты производились при помощи метода статистического моделирования в программной среде МаШСАБ. Моделировалось 1000 значений периода депассивации арматуры t0 = тс1 и периода трещинообразования ^ог = тсгаск согласно исходным данным, приведенным в типовом проекте. Срок наступления принятого предельного состояния Т определялся путем суммирования двух полученных выборок. Для всех полученных выборок был проведен статистический анализ, результаты которого приведены в табл. 3.
Таблица 3
Статистические параметры выборок
Параметры Значения по выборкам, лет
выборки t0 tcor Т Т 1 факт
Среднее значение 28,6 3,7 37,8 33,0
Минимальное значение 8,0 1,9 16,0 12,0
Максимальное значение 57,1 5,9 64,9 59,0
Стандарт 7,7 0,7 7,7 9,3
Для оценки полученных результатов был произведен статистический анализ данных фактической долговечности Тфакт типовых плитных пролетных строений по проекту Белгипродор 5-04-145, полученных в результате обследования технического состояния мостов (табл. 3). Сравнивая полученные результаты расчета долговечности с фактическими значениями срока службы мостов, можно сказать, что предложенный алгоритм может использоваться для прогноза сроков службы железобетонных мостов на стадии проектирования.
Выводы и открытые вопросы
Разработана модель прогноза долговечности железобетонных элементов мостов на стадии проектирования, которая позволяет прогнозировать срок службы мостов в виде функции времени в зависимости от физико-механических свойств бетона и арматуры, условий эксплуатации.
Модель предлагает рассматривать различные предельные состояния конструкции для рассмотрения нескольких вариантов стратегии эксплуатации объекта.
Автор выражает искреннюю признательность своему научному руководителю докт. техн. наук профессору Альберту Ивановичу Лантуху-Лященко, под руководством которого была выполнена данная работа.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. ДБН В.2.3-14:2006. Мости та труби. Правила проектування [Текст]. - Чинний ввд 2007-0201. - К.: Мшбуд Украни, 2006. - 359 с.
2. Мости: конструкцп та надшшсть [Текст] / за ред. В. В. Панасюка та Й. Й. Лучка. - Львiв: Каменяр, 2005. - 989 с.
3. DuraCrete/BE95-1347/R14 (1999) «General Guidelines for Durability Design and Redesign», Task 7 Report. Prepared by COWI Consulting Engineers and Planners AS, Denmark.
4. LIFECON; Models for the Prediction of the Residual Service Life. State of the Art Report. Deliverable D3.2, Project G1RD-CT-2000-00378, 2003.
5. Edvardsen, C. DURACRETE - a guideline for durability-based design of concrete structures [Текст] / C. Edvardsen, L. Mohr: Fib Symposium on Structural Concrete - the Bridge between people. - Prague, October 1999.
6. Tuutti, K. Corrosion of Steel in Concrete [Текст] / K. Tuutti // Swedish Cement and Concrete Research Institute. Stockholm. - 1982. - S-100 44.
7. ДБН В.1.2-14-2009. Загальш принципи забезпе-чення надшносп та конструктивно! безпеки будiвель, споруд, будiвельних конструкцш та основ [Текст] / Мшрегюнбуд Украши. - К., 2009. - 37 с.
8. Collepardi, M. The Kinetics of Chloride Ions Penetration in Concrete [Текст] / M. Collepardi, A. Marcialis, R Turriziani // Il cemento. - 1970. -Vol. 67. - P. 157-164.
9. Takewaka, K. Quality and Cover Thickness of Concrete based on the Estimation of Chloride Penetration in Marine Environments [Текст]: ACI SP 109-17 / K. Takewaka, S. Mastumoto. - American Concrete Institute, 1988. - P. 381-400.
10. Liu, Y. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structure [Текст] / Y. Liu, R. E. Weyers // ACI Material Journal. - 1998. - 95, № 6. - P. 675-681.
11. Thoft-Christensen, P. Modelling of the Deterioration of Reinforced Concrete Structures [Текст] / P. Thoft-Christensen // Proc. of IFIP Conf. on Reliability and Optimization of Structural Systems. -Michigan: Ann Arbor, 2000. - P. 15-26.
12. DuraCrete: Brite EuRam III Project BE95-1347, Report R4-5, Modelling of Degradation, 1998 [Текст].
Поступила в редколлегию 15.03.2010.
Принята к печати 24.03.2010.