УДК 621.9
В. М. Пашкевич, М. Н. Миронова
МНОГОФАКТОРНАЯ ОПТИМИЗАЦИЯ ПАРАМЕТРОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ СЕМАНТИЧЕСКИХ СЕТЕЙ
UDC 621.9
V. M. Pashkevich, M. N. Mironova
MULTIPLE-FACTOR OPTIMIZATION OF MACHINING PARAMETERS ON THE BASIS OF USING SEMANTIC NETWORKS
Аннотация
Рассмотрены вопросы обеспечения точности механической обработки деталей машин. Использован подход, базирующийся на технологиях функциональных семантических сетей. Рассмотрена возможность многофакторной оптимизации параметров механической обработки на основе использования на семантических сетях алгоритма случайного поиска с возвратом. Описана интеллектуальная система, предназначенная для решения прикладных задач, приведены примеры ее использования.
Ключевые слова:
точность механической обработки, искусственный интеллект, функциональные семантические сети, многофакторная оптимизация.
Abstract
The issues of ensuring the accuracy of machine elements machining are considered in this paper. The approach based on the technologies of functional semantic networks is used. The paper considers the possibility of multiple-factor optimization of machining parameters on the basis of applying the backtracking algorithm on semantic networks. The intellectual system designed for solving applied problems is described, еxamples of its usage are given.
Key words:
accuracy of machining, artificial intelligence, functional semantic networks, multiple-factor optimization.
Обеспечение точности механической обработки с использованием лезвийного инструмента представляет собой одну из основных задач технологии машиностроения. Решение этой задачи логически связано с проблемой поиска оптимального решения (выбора оптимальных режимов обработки, оптимальной структуры технологических операций и переходов, оптимальной конструкции технологической оснастки).
Разработаны решения для многих классов задач оптимизации. Значительный вклад в развитие современной теории оптимизации внесли Л. В. Канторо-
вич и Дж. Данциг, Г. Кун и А. Таккер, Л. С. Понтрягин и Н. Н. Моисеев, Р. Беллман и Р. Гомори, А. А. Милютин и А. Я. Дубовицкий и многие другие отечественные и зарубежные ученые.
К сожалению, существующие методы обеспечения точности и оптимизации технологических процессов не в полной мере учитывают текущее состояние технологического оборудования, а также функциональные взаимосвязи между параметрами обработки. Альтернативу
таким подходам могли бы составить подходы, базирующиеся на технологиях искусственного интеллекта - технологиях
© Пашкевич !Ei. М/I., Миронова М. Н., 2011
функциональных семантических сетей, которые с учетом функциональных взаимосвязей между параметрами обработки могут обеспечить повышение ее точности на 23.. .47 %.
Существующие подходы к оптимизации делятся на два класса численных методов - градиентные и случайные [1].
К градиентным методам относятся, например, метод наискорейшего спуска, обобщенный метод Ньютона, метод циклического координатного спуска, метод Гаусса-Зайделя и ряд других.
Метод наискорейшего спуска является одним из наиболее распространенных численных методов. Его преимущество заключается в возможности получать максимальные приращения целевой функции при переходах от одной точки пространства поиска к другой. При этом из-за необходимости более точной аппроксимации целевой функции может оказаться недостаточным в заключительной фазе поиска использование только первых двух производных. Это приводит к необходимости применения обобщенного метода Ньютона, учитывающего производные высших порядков для улучшения показателей вычислительного процесса. Однако многократные вычисления производных функций данными методами оказываются весьма трудоемкими.
В связи с этим возникает необходимость использования методов, ориентированных на оценку значений непосредственно самой целевой функции. К таким методам можно отнести метод Гаусса-Зайделя, построенный на идее покоординатного спуска. Основным достоинством его является простота и отсутствие локальных исследований окрестностей опорных точек. Но этот метод применим, только когда зависимости между параметрами целевой функции отсутствуют. Идея покоординатного поиска используется и в методе конфигураций с простыми локальными исследованиями поверхности отклика.
Недостаток данного метода состоит в сложности схемы переходов от исследуемых точек и неполноте информации, получаемой в процессе решения задачи, так как исследуются только направления, параллельные координатным осям.
Кроме того, применение градиентных методов невозможно для задач, описываемых целевыми функциями с наличием множества локальных экстремумов, так как они часто оказываются неспособными найти оптимум из-за «застревания» в таких экстремумах.
Для решения таких задач используются методы случайного поиска, характерной чертой которых является наличие случайных перемещений в пространстве поиска. В качестве примеров можно привести алгоритм «слепого» поиска, метод парных проб, а также алгоритм со случайным блужданием. Такие алгоритмы являются полными, но неэффективными. Поэтому часто комбинируют процедуры детерминированного и случайного поиска, что обеспечивает полноту и эффективность.
Именно с этой точки зрения представляет интерес развитие теории случайного поиска, предлагающей методы оптимизации сложных многопараметрических систем.
В представленной работе авторами предложен подход, базирующийся на использовании функциональных семантических сетей, позволяющий обеспечить точность механической обработки на основе решения задачи многофакторной оптимизации на семантической сети с использованием алгоритма случайного поиска с возвратом.
Функциональная семантическая сеть представляет собой в общем случае двудольный граф, состоящий из двух типов вершин. Первый тип представляет параметры рассчитываемых задач, в том числе исходные данные. Второй тип вершин описывает отношения, определяющие функциональные зависимости между параметрами сети [2].
Семантическую сеть удобно изображать в виде графа, в котором вершины отображают понятия, а ребра или дуги - отношения между ними. В этом случае, семантическую сеть можно представить тройкой объектов (V, Е, в), где V - множество вершин графа; Е -множество ребер; в - функция инцидентности, которая каждому элементу множества Е ставит в соответствие пару элементов из множества V.
Следует отметить, что функциональная семантическая сеть является неориентированным графом, так как только при постановке задачи станет известно, какие параметры отношений сети окажутся входными, а какие - выходными [3].
В связи с этим поиск решения в функциональной семантической сети можно построить следующим образом.
Выделим в кортеже какой-либо атрибут Р]-, обозначив его через у. Отношение будет функциональным, если для всего множества кортежей кортежи (Р1,..., Р]-1, Ру+1,..., Рк ) будут различными. В этом случае кортежам (Р1,..., Р] _1, Р]+1,..., Рк ) соответствует не
более одного значения Р]- = у, такого, что (Р1,...,Р],...,Рк) е Р. Следовательно, значение Р] = у однозначно определяется значениями кортежа
(Р1,...,Р ]-1, Р]+1,..., Рк) и определяет
функцию
I Р|
у = (Р1...Р]_1,Р]+1,...,Рк), 0)
называемую разрешением функционального отношения для атрибута Р] = у.
При одном выделенном атрибуте у ранг отношения полагается равным единице.
Если взять отношение ранга 2, то будет определено 2 функций, зависящих от переменных:
У,- = Р, (?!,...,Рк_2), (2)
где , = 1, 2, ..., г.
Поиск решения в данном случае заключается в поиске кортежа (Р1,..., Рк-2), удовлетворяющего одновременно всему множеству функций
У,.
При традиционном решении задач на функциональной семантической сети определяются минимально замкнутые подсистемы отношений, у которых выявляются входные и выходные параметры, что приводит к преобразованию отношений в соответствующие функции. В результате этого происходит формирование цепочек функций и преобразование неориентированного двудольного графа отношений в ориентированные графы решения задач.
При этом для каждой поставленной задачи определяется своя минимально замкнутая подсистема отношений и формируется своя цепочка функций, что обеспечивает возможность использования этого алгоритма в компьютерных программах, выполняющих расчет точности механической обработки.
Установлено, что такой подход может быть использован, как правило, при однофакторной оптимизации. В силу сложности пространства поиска и в связи с возникновением так называемых стыков, вилок и циклов, линейный алгоритм не может быть применен к решению задач многофакторной оптимизации [4].
Рассмотрим решение задачи многофакторной оптимизации на основе использования алгоритма случайного поиска с возвратом.
В общем случае задача обеспечения точности на основе использования функциональной семантической сети сводится к задаче многокритериальной оптимизации:
Гг-ДЕ(П1,П2,...,пп) ^ тах;
кеМ
где Т - допуск на обработку, мм; ДЕ -
суммарная погрешность обработки, мм; ж{ - параметры технологического процесса и технологической оснастки;
- область ограничений оптимизируемых параметров.
При использовании случайного поиска с возвратом решение этой задачи
может быть сведено к решению случайной последовательности задач однофакторной оптимизации. Алгоритм случайного поиска с возвратом для случая поиска максимума целевой функции проиллюстрирован на рис. 1.
В данном алгоритме поиск значений п переменных ж1,ж2,...,жп, доставляющих экстремум функции ЛЕ(п,П2,..., жп) при условиях
Пmax mm, начинается со случайного выбора исходной точки
Хисх (П1 , П2 ’...’ Пп )> в кот°р°й определяется значение целевой функции
ЛХ (П1 , П2,...,Пп ) _ ЛЕ исх (П1 , П2,..., Пп ) .
Для перемещения к области оптимума из исходной точки факторного пространства п переменных ж1,ж2,...,жп случайным образом выбирается одна переменная, например п1 . Значения остальных переменных остаются фиксированными.
Далее осуществляется переход
от исходной к новой точке х 1 (П1(к+1), п2,..., пп), в которой оценивается значение целевой функции
Дх (П1 , П2 ,..., Пп ) = ДЕ1 (П1(к+1), П2,...,Пп ) .
Это значение сравнивается со значением ДЕ (п1, П2,...,Пп ) = Д^исх (П1,П2,...,Пп ),
найденным в исходной точке
Хисх (п1 , П2 ,..., Пп ) .
Переход к новой точке осуществляется в соответствии с зависимостью
Х1(п1(к+1), П2 ,..., Пп ) _
= Х1(п1к ± акгк,п2,...,пп ), (4)
где ак - величина к-го шага, определяемая случайным образом; гк - единичный вектор, в направлении которого производится этот шаг.
Если оказывается, что значение целевой функции улучшилось, т. е.
АХ1(П1(к+1)>П2>...,Пп) > ДХ«сх(П1,П2,...,Пи),
то переход из Хиа (П1,П2,..., Пп) в Х1(п1(к+1),п2,...,пп) фиксируется, после
чего Х1(п1( к+1),п2,..., жп) становится новой стартовой точкой для поиска.
В том случае, если решение ухудшилось т. е. AZl(пl(k+l),п2,...,пп) <
< АХ исх (пl,п2,..., Пп ), осуществляется
возврат в исходную точку.
В дальнейшем в качестве пробных выбираются точки, в которых изменяются другие переменные - п2,..., пп.
Применительно к ним процедура поиска повторяется. Так продолжается до тех пор, пока не будет найдена точка глобального экстремума Х(п*,п*,...,п*) или когда будет выполнено условие ос-
танова поиска (например, в течение нескольких попыток решение изменяется несущественно).
Таким образом, сущность метода заключается в переходе из начальной точки в новую допустимую точку, в которой значение целевой функции лучше, чем в исходной. Этот процесс продолжается до тех пор, пока сохраняется возможность улучшения целевой функции. Каждый шаг решения основан в данном случае на двух операциях - выборе подходящего направления, двигаясь в котором можно достичь лучших ДЕ(п,п2,...,пп), и оценке случайной
величины перемещения.
В этом случае алгоритм может быть задан соотношениями:
Х (П1,...,Пгк — Пп ) ='
Х (П1 ,...,Пі(к-1),...,Пп ), если А2 (п1 ,..., Пі(к-1),..., Пп ) < АЕ (П1 ,..., Пік ,..., Пп )■
Х (п1 ,..., Пік ,..., Пп ), если А£ (п1 ,..., Пік ,..., Пп ) — АЕ (П1 ,..., Пі(к-1),..., Пп ).
Для практической реализации описанного подхода была создана интеллектуальная система, осуществляющая управление точностью механической обработки [5]. Эта система обладает существенным преимуществом по сравнению с традиционными программами, т. к. для неё четкий алгоритм решения не требуется и не строится, а формируется самостоятельно.
Рассмотрим пример использования описанного алгоритма на функциональной семантической сети для обеспечения точности обработки концевым инструментом при установке заготовки в станочном приспособлении, расчетная схема которого представлена на рис. 2.
Для расчета точности системой необходимо сформировать функциональную семантическую сеть. Для этого
пользователь должен указать характеристики процесса обработки и ввести исходные данные (рис. 3).
Далее устанавливается соответствие между компонентами технической модели и моделирующими их математическими отношениями и строится математическая модель объекта, представляющая собой функциональную семантическую сеть (рис. 4). На основе этой сети подсистема формирования алгоритмов решения задач, в свою очередь, осуществляет планирование вычислений расчетных задач и формирует программу.
Рассмотрим решение задачи, определяющей оптимальную скорость резания, при которой выполнялось бы условие обеспечения точности обработки отверстия.
Рис. 3. Диалоговые окна выбора исходных данных
Рис. 4. Функциональная семантическая сеть для управления точностью
Исходными данными для этой задачи являются: суммарная погрешность обработки Д = 150 мкм; погрешность настройки станка на выдерживаемый размер Д н = 80 мкм; погрешность обработки, обусловленная температурными деформациями, ДТ =10 мкм; погрешность станка Д с = 14 мкм; погрешность приспособления еп = 10 мкм; угол призмы а = 450; допуск базовой поверхности заготовки Тв = 100 мкм; параметр шероховатости поверхности заготовки Р = 40; твердость материала заготовки по Бринеллю 190 НВ; диаметр заготовки Пзаг = 50 мм; диаметр инструмента Дп = 20 мм; подача инструмента
£ = 0,14 мм/об; минимальный гарантированный зазор посадки «втулка-инструмент» 8гар = 20 мкм; высота кондукторной втулки 1вт = 25 мм; длина обработки Ь = 10 мм; длина контакта заготовки и приспособления Ьк = 100 мм; количество деталей в настроечной пар-
тии, обрабатываемой в период между подналадками станка, N = 100; сила закрепления заготовки Ж = 12030 Н; стойкость инструмента Т = 45 мин.
В данном примере требуется использовать минимально замкнутую подсистему отношений, состоящую из отношений Я1.. .Я5, Р8.Р11, Р13, Р15.Р17 и Р20, у которых выявляются входные и выходные параметры, что приводит к формированию соответствующих функций.
Так, отношение Я} будет иметь разрешение относительно параметра Ди;
Я2 - относительно параметра 8б; Я3 - относительно параметра £з; Я4 - относительно параметра Д Г; Я5 - относительно параметра Ду ; Я8 - относительно параметра и0; Я9 - относительно параметра Ж; Я10 - относительно параметра I; Яц - относительно параметра ДРЯ ; Я15 -относительно параметра М; Я16 - относительно параметра Д7; Я17 -
относительно параметра СЯ ; Я20 - отно-
сительно параметра 8у; Я13 - относительно параметра V, поиск значения которого и является целью задачи.
В процессе решения задачи происходит формирование цепочки функций и преобразование неориентированного двудольного графа отношений, представляющего собой функциональную
семантическую сеть, в ориентированный граф решения задач (рис. 5), в котором вершины-кружки являются параметрами обработки, а вершины-прямоугольники содержат функции, в которые отношения между параметрами были преобразованы.
Рис. 5. Ориентированный граф решения задачи
Результат функционирования системы применительно к описанному выше примеру представлен на рис. 6.
Так, при приведенных исходных данных на основе методики традиционного решения задачи с использованием справочных данных была предложена скорость резания, при которой обеспечивается заданная точность обработки концевым инструментом, равная
10,62 м/мин. При этом погрешность обработки составила ДЕ = 150 мкм.
В то же время (применение описанного метода случайного поиска с возвратом) была найдена оптимальная скорость резания, равная 125,6 м/мин (рис. 7), при которой обеспечивается наименьшая возможная погрешность обработки концевым инструментом
(ЛЕ = 128,762 мкм). Таким образом, по
сравнению с существующим методом погрешность была снижена на 21,238 мкм и,
соответственно, точность обработки была повышена на 14 %.
т SEMANTIC
Параметры семантической сети Отношения семантической сети
Параметр Значенні Миним Макс. v Отношения 10 diuee Извесг Неизвестные параметры Honyc Æ) - Создать модель
TDZ 100 0 100000 0,5"TDs"[1 /sin[alfa“pi/180]-1 ]-Е Ь 3 3
ALFA 45 0 100000 ([0,005"R2+15/HB+0,086+8,4/D z)'(W/(1,96“lk)J"‘0,7))/'1 ООО-Es 6 6 True
ЕВ 20,71069 0 100000 u>sin[alfa*pi/180]-Eid 3 3 True Создать СС
RZ Що 100000 [[2001*1 “5Л1хНВЛ(0]]>'2+(125=‘Г0,9>5Л0,75'‘НВ'Ч(0)Г2Г0,5-Сг 4 4 True
НВ 190 0,01 100000 (Е ЬЛ2+Е гЛ2)Л0,5-Е иг 3 3 True
DZ 50 0,01 100000 2’,[deltaPA2+deltaFr2+Euz,''2ro,5-deltaT 4 4 True Ввод данных
W 12030 0 100000 0,25“Z-deHaT“Cr-Pr 4 4 True Загрузить СС
LK 100 0,01 100000 0,011 “Din'’'4-I 2 2 True
EZ 0,15Э314 0 100000 1,4"Рг*[1,75-01п]Л3/(6*10Л7"І]-Еиз 4 4 True
и 10 0 100000 (0.052 2+0,06 2) 0,5-Е Гх True
ЕЮ 14,14219 0 100000 187,95“V""'3,33/I[S Л0,86 DELTATD False
Редактировать СС
Т 10 0 100000 Klr“D in“deUaT d-Etd Значение параметра V равно 10,62009137С 12976 KLR.DELTATD False
S 0,14 0,01 100000 O+Etd-Et 1 ж J True
CR 360,6149 0 100000 V-Tin-Lt True
Сохранить СС
EUZ 20,71127 0 100000 1000-0,8/(2-Lt)-U о 2 2 True
DELTAP 0 0 100000 pi“D in“Lotv“Nd>[1000“S]-Lr 5 5 True
DELTAR 0,05 0 1 2*І_ІоІ_гЛ000-Eidi 3 3 True Вычислить
DELTAT 41,42272 0 100000 0,5“S v+S v"Lsv/Lvt+S v“Lotv/Lvt-E g 5 5 True
Z 2 0 100000 1,2"(ЕЬГ2+Е z~2+E рГ2+ЕивЛ2+Е дЛ2+Е пЛ2Г0,5+Е t+E st+Eidopi-D Е LTAt 10 10 True
PR 7468,826 0 100000 Eidopi-Eidi 2 2 True ОПТИМИЗАЦИЯ
DIN 20 0,01 100000 Очистить поля
1 1760,000 001 100000
EUS 0,004249 0 100000
EN 80 0 100000
Выход
Рис. 6. Результат решения системой
Рис. 7. Результат решения задачи по нахождению оптимальной скорости резания
Данный результат связан с тем, что использование многокритериальной оптимизации на базе функциональных семантических сетей и алгоритма случайного поиска позволяет учесть фактическое состояние технологического оборудования и за счет этого повысить точность механической обработки.
Применение описанного подхода, включающего использование функциональных семантических сетей и алгоритма случайного поиска с возвратом, дает возможность успешно решать задачи, связанные с выбором оптимальных параметров механической обработки концевым инструментом, а также с
расчетом оптимальных параметров применяемой при этом технологической оснастки.
При этом достигаемый результат не связан с использованием какой-либо специальной технологической оснастки, а обеспечивается исключительно организационными мерами. Так, при этом могут использоваться менее форсированные (или, наоборот, более форсированные) режимы обработки, учитываться фактическое состояние технологического оборудования, а также использоваться скрытые функциональные взаимосвязи между параметрами обработки.
СПИСОК ЛИТЕРАТУРЫ
1. Дегтярев, Ю. И. Методы оптимизации : учеб. пособие для вузов / Ю. И. Дегтярев. - М. : Сов. радио, 1980. - 272 с.
2. Гаврилова, Т. А. Базы знаний интеллектуальных систем / Т. А. Гаврилова, В. Ф. Хорошевский. -СПб. : Питер, 2000. - 384 с.
3. Поспелов, Г. С. Искусственный интеллект - основа новой информационной технологии / Г. С. Поспелов. - М. : Наука, 1988. - 280 с.
4. Пашкевич, В. М. Повышение точности проектирования станочных приспособлений на основе устранения зацикливания семантических сетей / В. М. Пашкевич, М. Н. Миронова // Сб. науч. тр. Меж-дунар. балтийской ассоциации машиностроителей. - Калининград, 2009. - С. 104-110.
5. Пашкевич, В. М. Оптимизация режимов резания на основе использования семантических сетей / В. М. Пашкевич, М. Н. Миронова // Вестн. Белорус. нац. техн. ун-та. - 2011. - № 3. - С. 9-12.
LIST OF LITERATURE
1. Degtyarev, Y. I. Methods of optimization: tutorial for HEI / Y. I. Degtyarev. - М. : Sov. radio, 1980. -
272 p.
2. Gavrilova, T А. Foundations of intellectual systems knowledge / T А. Gavrilova, V. F. Kho-roshevsky. - St.Pb. : Piter, 2000. - 384 p.
3. Pospelov, G. S. Artificial intelligence is a foundation of the new information technology / G. S. Pospelov. - М. : Nauka, 1988. - 280 p.
4. Pashkevich, V. М. Improvement of accuracy of machine attachments designing on the basis of elimination of semantic systems cycling / V. М. Pashkevich, M. N. Mironova // Proceedings of Internat. baltic association of machine-builders. - Kaliningrad, 2009. - P. 104-110.
5. Pashkevich, V. М. Optimization of cutting conditions based on using semantic networks / V. М. Pashkevich, M. N. Mironova // Her. of Belarus. Nat. Techn. Un-ty. - 2011. - № 3. - P. 9-12.
LIST OF LITERATURE (TRANSLITERATION)
1. Degtyarev, Y. I. Metody optimizatsii: ucheb. posobie dlya vuzov / Y. I. Degtyarev. - М. : Sov. radio, 1980. - 272 s.
2. Gavrilova, T А. Bazy znanij intellektual’nykh sistem / T А. Gavrilova, V. F. Khoroshevsky. - SPb. : Piter, 2000. - 384 s.
3. Pospelov, G. S. Iskusstvennyj intellect - osnova novoj informatsionnoj tekhnologii / G. S. Pospelov. -М. : Nauka, 1988. - 280 s.
4. Pashkevich, V. М. Povyshenie tochnosti proektirovaniya stanochnykh prisposoblenij na osnove ustraneniya zatsiklivaniya semanticheskikh setej I V. М. Pashkevich, M. N. Mironova II Sb. nauch. tr. Mezhdunar. baltiyskoj assotsiatsii mashinostroitelej. - Kaliningrad, 2009. - S. 104-110.
З. Pashkevich, V. М. Optimizatsiya rezhimov rezaniya na osnove ispol’zovaniya semanticheskikh setej I V. М. Pashkevich, M. N. Mironova II Vestn. Belorus. national. tekhn. un-ta. - 2011. - № 3. - S. 9-12.
Статья сдана в редакцию 5 сентября 2011 года
Виктор Михайлович Пашкевич, д-р техн. наук, доц., Белорусско-Российский университет. E-mail: [email protected]. Марина Николаевна Миронова, ассистент, Белорусско-Российский университет. E-mail: [email protected].
Viktor Mikhailovich Pashkevich, DSc, Associate Professor, Belarusian-Russian University. E-mail: [email protected]. Marina Nikolayevna Mironova, assistant lecturer, Belarusian-Russian University. E-mail : [email protected].