Научная статья на тему 'Методологические аспекты моделирования процессов управления регионом'

Методологические аспекты моделирования процессов управления регионом Текст научной статьи по специальности «Экономика и бизнес»

CC BY
230
37
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Дайджест-финансы
ВАК
Область наук
Ключевые слова
МОДЕЛИРОВАНИЕ / MODELING / УПРАВЛЕНИЕ / CONTROL / ЭФФЕКТИВНОСТЬ / EFFICIENCY / РЕГИОНА / REGION / СИСТЕМА УПРАВЛЕНИЯ / MANAGEMENT SYSTEM

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Антонова И. И.

Предмет и тема. Статья посвящена теоретическим и методическим аспектам моделирования процессов управления регионом на основе анализа связей между параметрами, которые играют существенную роль в организации регионального управления. Цели и задачи. Цель обоснование структуры и функций методологии моделирования процессов управления в региональной системе всеобщего управления качеством. Методология. Методологические аспекты моделирования процессов управления регионом сформулированы на основе использования теории целеустремленных систем и практик управления проектами, обобщенных в стандартах ГОСТ Р ИСО 10006-2005, ГОСТ Р ИСО/МЭК 15288-2005 и ГОСТ Р ИСО 21500-2014. Результаты. Предложенный подход дает возможность прогнозировать последствия управляющих воздействий, в качестве которых впервые приняты восемь принципов всеобщего управления качеством TQM (Total Quality Management), и планировать применение корректирующих мер для достижения поставленных целей. Представленная в работе экономико-математическая модель является совокупностью уравнений и зависимостей, отражающих алгоритм функционирования региона. Она позволяет моделировать влияние управляющих воздействий на показатели деятельности структурно-функциональных единиц региона в соответствии с целью управления и таким образом повышать эффективность функционирования региона. Выводы и значимость. Практическая значимость работы заключается в том, что предложенная автором методология моделирования процессов регионального управления позволяет органам власти спроецировать модель с учетом специфики региона, выбрать оптимальный набор управляющих воздействий с учетом специфики процессов, проходящих в элементах, подсистемах и системе регионального управления в целом. Впервые предложено использование принципов всеобщего управления качеством для территориальных систем, что дает возможность полнее использовать резервы повышения качества и конкурентоспособности продукции и услуг, а также обеспечить рациональное использование трудовых, материальных и энергетических ресурсов.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Methodological aspects of the simulation of quality management processes

Importance The article deals with the theoretical and methodological aspects of modeling of region governing processes based on the analysis of the relationship between the parameters that play a significant role in the organization of regional management. Objectives The objective is to support the structure and functions of the modeling methodology of management processes in the regional system of Total Quality Management. Methods The methodological aspects of modeling of region governing processes are formulated on the basis of the theory of goal-oriented systems and project management practices, summarized in the standards GOST R ISO 10006-2005, GOST R ISO/IEC 15288-2005 and GOST R ISO 21500-2014. Results The proposed approach makes it possible to predict the effects of control actions, which are the eight principles of Total Quality Management (TQM), for the first time adopted, and to plan the implementation of corrective measures to achieve the objectives. The presented economic-mathematical model is a set of equations and relationships that reflect the algorithm of functioning of the region. It allows one to simulate the effect of control actions on the performance of structural and functional units of the region in accordance with the purpose of control and thus improve the functioning of the region. Relevance The work’s practical value lies in the fact that the offered methodology to model the regional management processes shall allow the authorities to project the model, taking into account the specifics of the region, to choose the optimum set of control actions, taking into account the specificity of the processes taking place in the elements, subsystems and regional management system, in general. For the first time, it is proposed to use the principles of Total Quality Management in relation to territorial systems that should enable a better use of reserves to improve the quality and competitiveness of products and services, as well as to ensure rational use of labor, material and energy resources.

Текст научной работы на тему «Методологические аспекты моделирования процессов управления регионом»

ISSN 2311-9438 (Online) ISSN 2073-8005 (Print)

Математические методы и модели в экономике МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ УПРАВЛЕНИЯ РЕГИОНОМ* Ирина Ильгизовна АНТОНОВА

кандидат физико-математических наук, доцент, заведующая кафедрой интегрированных систем менеджмента,

Институт экономики, управления и права, Казань, Российская Федерация

[email protected]

Аннотация

Предмет и тема. Статья посвящена теоретическим и методическим аспектам моделирования процессов управления регионом на основе анализа связей между параметрами, которые играют существенную роль в организации регионального управления. Цели и задачи. Цель - обоснование структуры и функций методологии моделирования процессов управления в региональной системе всеобщего управления качеством. Методология. Методологические аспекты моделирования процессов управления регионом сформулированы на основе использования теории целеустремленных систем и практик управления проектами, обобщенных в стандартах ГОСТ Р ИСО 10006-2005, ГОСТ Р ИСО/ МЭК 15288-2005 и ГОСТ Р ИСО 21500-2014.

Результаты. Предложенный подход дает возможность прогнозировать последствия управляющих воздействий, в качестве которых впервые приняты восемь принципов всеобщего управления качеством TQM (Total Quality Management), и планировать применение корректирующих мер для достижения поставленных целей. Представленная в работе экономико-математическая модель является совокупностью уравнений и зависимостей, отражающих алгоритм функционирования региона. Она позволяет моделировать влияние управляющих воздействий на показатели деятельности структурно-функциональных единиц региона в соответствии с целью управления и таким образом повышать эффективность функционирования региона.

Выводы и значимость. Практическая значимость работы заключается в том, что предложенная автором методология моделирования процессов регионального управления позволяет органам власти спроецировать модель с учетом специфики региона, выбрать оптимальный набор управляющих воздействий с учетом специфики процессов, проходящих в элементах, подсистемах и системе регионального управления в целом. Впервые предложено использование принципов всеобщего управления качеством для территориальных систем, что дает возможность полнее использовать резервы повышения качества и конкурентоспособности продукции и услуг, а также обеспечить рациональное использование трудовых, материальных и энергетических ресурсов.

© Издательский дом ФИНАНСЫ и КРЕДИТ, 2015

История статьи:

Принята 03.12.2014 Принята в доработанном виде 12.02.2015

Одобрена 25.02.2015 УДК 332.12:338.24

Ключевые слова:

моделирование, управление, эффективность, региона, система управления

Для определения характера управляющих воздействий при выполнении целевых показателей подсистем региональной системы всеобщего управления качеством автором предложен теоретический подход. В качестве таких показателей приняты восемь основополагающих принципов всеобщего управления качеством [1]. При этом в ходе проектирования региональной системы всеобщего управления качеством использованы теория целеустремленных систем и практика управления проектами, обобщенные в стандартах ГОСТ Р ИСО 10006-20051, ГОСТ Р ИСО/МЭК

* Статья подготовлена по материалам журнала «Региональная экономика: теория и практика». 2015. № 25 (400).

1 ГОСТ Р ИСО 10006-2005 Системы менеджмента качества.

15288-20052 и ГОСТ Р ИСО 21500-20143, позволяющие установить основные связи и процессы, протекающие в системе, и управлять ими [2-4].

Исследования по вопросам моделирования процессов управления регионом подробно рассматриваются в трудах отечественных и зарубежных ученых по менеджменту качества, региональной экономике и

Руководство по менеджменту качества при проектировании: приказ Федерального агентства по техническому регулированию и метрологии от 06.09.2005 № 221-ст.

2 ГОСТ Р ИСО/МЭК 15288-2005 Информационная технология. Системная инженерия. Процессы жизненного цикла систем: приказ Федерального агентства по техническому регулированию и метрологии от 29.12.2005 № 476 ст.

3 ГОСТ Р ИСО 21500-2014 Руководство по проектному менеджменту: приказ Федерального агентства по техническому регулированию и метрологии от 26.11.2014 № 1873-ст.

территориальным подходам к управлению качеством [5-13]. Однако современные реалии перехода к устойчивому пространственному развитиюпри усилившейся тенденции глобализации, возрастающей сложности и многофакторности задач развития регионов требуют как более глубокой разработки методологических основ управления территорией с позиции целого, так и научного обоснования отдельных этапов, инструментов и методов, используемых для реализации конечных целей, комплексного использования принципов, содержащихся в идеологии всеобщего управления качеством.

Теоретически множество параметров Я для оценки эффективности системы, подсистем и элементов содержит бесконечное число элементов, однако на практике для определения значения того или иного показателя можно ограничиться конечным количеством наиболее существенных параметров [14]. Для любых значений 7,],к7,^,/V можно выделить свой набор параметров.

Все множество параметров Я можно разбить на два непересекающихся подмножества С и X (С,X с Я,С пX = 0), где С - подмножество параметров, имеющих постоянные значения (параметры-константы); X - подмножество переменных параметров (рис. 1).

Например, при 7 = 3, ] = 2 для определенного значения к32 к постоянным параметрам относятся размеры территории, занимаемой к3 2-м сельскохозяйственным предприятием, нормативные значения уровня загрязнения водоемов. Переменными параметрами также могут являться глубина водоемов и фактический уровень их загрязнения.

Подмножество переменных параметров X в свою очередь можно разбить на непересекающиеся подмножества детерминированных параметров X и параметров, значения которых являются стохастическими величинами X (рис. 2).

Классическим детерминированным переменным параметром, характерным для любых значений 7 и ], является время 7. Для всех 7, ] детерминированными параметрами являются характеристики циклограммы работы к. -й структурно-функциональной единицы]-го объекта управления. При/=4 к детерминированным переменным параметрам можно отнести количество пассажирских поездов, которые должны находиться на линии в соответствии с расписанием, а к случайным параметрам - количество пассажиров в поездах. При ] = 3 примером детерминированного переменного параметра является нормативная

Рисунок 1

Множество параметров Я, разбитое на два непересекающиесяподмножества С и X

Рисунок 2

Множество параметров R, разбитое на три непересекающиеся подмножества С, X и X

Рисунок 3

Подмножество параметров Хи и Х'и, подверженных и не подверженных региональному управлению

расценка того или иного вида работ, а случайного параметра - твердость грунта при проведении землеройных работ (нормативная расценка отнесена к переменным параметрам, поскольку при проведении работ на открытом воздухе она зависит от времени года).

Наиболее важным с точки зрения управления деятельностью региона является то обстоятельство, что подмножество X можно разбить на подмножество параметров, подверженных региональному управлению X, и подмножество параметров X'и, не

подверженных региональному управлению (рис. 3).

К подмножеству Хи при 1 = 3 для любого у = 1 относится, например, срок, отводимый на реконструкцию очистных сооружений к3 х-го предприятия региона. К переменным параметрам, не подверженным региональному управлению при 1 = 1, у=1, можно отнести, например, характеристики сырья, уже поставленного на кх х-е предприятие региона.

Вопрос о включении определенного параметра в то или иное подмножество Я имеет неоднозначное решение и зависит от конкретной задачи и ситуации, в которой она решается. Так, например, при краткосрочном прогнозировании деятельности региона параметры, характеризующие социальную структуру населения региона, можно считать постоянными, а при долгосрочном прогнозировании - переменными, подверженными региональному воздействию и имеющими вероятностный характер.

Ранее уже отмечалось, что один и тот же параметр может характеризовать состояние региона в аспекте различных подсистем управления по целевому признаку и (или) в аспекте различных отраслей народного хозяйства, не говоря уже о различных структурно-функциональных единицах в пределах одной отрасли.

Существуют два основных вида связи между параметрами, играющими существенную роль в организации регионального управления, которые можно выразить соответствующими уравнениями связи.

Рассмотрим первый вид связи. Например, производительность труда на определенном рабочем месте данного предприятия является функцией таких параметров, как квалификация рабочего, технический уровень и техническое состояние оборудования рабочего места, качество сырья, используемого для изготовления продукции, и т.п. Соответствующие зависимости параметров будут выражаться эмпирическими уравнениями связи в виде явных функций:

Хг = /г (с1,г , С2,г ,..., Сп,г ; Х1,г , Х2,г ,..., Хт,г ), (1)

где хг - основной параметр (функция вспомогательных параметров);

с1г,с2г,спг - набор постоянных вспомогательных параметров, от которых зависит Хг;

х1г, х2 г ...хтг - набор переменных вспомогательных параметров, от которых зависит основной параметр х .

Второй вид связи между параметрами определяется тем, что комбинация ряда параметров, относящихся к различным значениям 1, у, к^, I'у (суперпозиция этих параметров, их произведение или любая другая произвольная функция параметров), может быть равна по величине некоторому постоянному или переменному значению, а также превосходить или не превосходить его. Например, финансовые ресурсы предприятий региона, относящиеся к различным отраслям хозяйства, могут считаться переменными величинами (при этом допускается «перекачивание» ресурсов из одной отрасли в другую), однако сумма всех ресурсов (по всему) не должна превосходить некоторой фиксированной величины С.

Зависимости такого рода будут выражаться в виде неявных функций - ограничений:

Фг (С1,г, С2,гСп,г ; х1,г , х2,гХт,г ) ^ 0. (2)

Заметим, что знак > всегда можно изменить на <, умножив левую часть неравенства (2) на -1.

Значения критериев Ж, ^ , ^ (1 = 1,1, у = 1, J) зависят от динамики изменения показателей деятельности структурно-функциональных единиц региона, а значит, от динамики изменения параметров X из множества X параметров, определяющих функционирование региона. Под управляющим воздействием мы понимаем мероприятие, реализация которого позволяет изменить динамику параметра X. Пусть в определенный момент времени некоторый параметр х имеет определенное значение х(^0) (рис.4).

В отсутствие управляющих воздействий (автор не учитывает те управляющие воздействия, которые были реализованы до момента или реализуются в момент ¿0, но решение о проведении которых было принято до момента ¿0) динамика параметров может быть отражена в виде кривой 1.

Если в момент ¿0 реализовано некоторое управляющее воздействие (практически выбор и реализация управляющего воздействия требуют некоторого интервала времени, однако для простоты это обстоятельство не учитывается), то динамика параметра х изменится. Это может произойти как непосредственно после реализации управляющего воздействия (кривая 2), так и спустя некоторое время (кривая 4). Изменение динамики может быть непрерывным в точке ¿0 (кривая 2) или скачкообразным (кривая 3).

В формализованном виде влияние управляющего воздействия можно описать следующим образом. Пусть и - управляющее воздействие (и е и,

Рисунок 4

Динамика параметра х

to

t0+At

3 2

4 1

Источник: авторскаяразработка.

где и - множество возможных управляющих воздействий). Действие управляющего воздействия и на параметр хи можно представить в виде оператора и[хи]. Рассматривая реализацию управляющего воздействия в момент времени можно записать:

Хи(7о + 7) = и[хи(70)], У 7 > 0 (3)

или хи (70 + 7) = и[хи (70)], > А7.

В первом случае влияние управляющего воздействия сказывается непосредственно после его реализации, во втором случае - спустя некоторый интервал времени А7

Таким образом, каждое управляющее воздействие является элементом подмножества управляющих воздействий ип (и е ип с и) и по функциональному признаку относится к определенной подсистеме управления и определенной отрасли региона.

По морфологическому признаку все множество управляющих воздействий может быть разбито на подмножества, отличающиеся принадлежностью управляющих воздействий, входящих в них, той или иной организации из сферы управления регионом. Следовательно, множество и состоит из следующих подмножеств:

ип т (п = 1, N; т = 1,М),

где N - число классов управляющих воздействий;

М - число субъектов (организаций) из сферы управления регионом

В разработке рекомендаций по выбору управляющих воздействий участвуют многие органы управления

и общественные организации. Важно подчеркнуть, что подмножество ипт является пересекающимся (одно и то же управляющее воздействие может соответствовать различным организациям из сферы управления). Все это еще раз подчеркивает комплексный характер управления.

Значения критериев, определяющих результат функционирования региона в течение определенного (отчетного) интервала времени, зависят, в конечном счете, от значений показателей п7. .,к..,.,/[., достигнутых фактически к концу отчетного периода, по сравнению с нормативными значениями этих показателей пн7 .,ki .,/'..

В самом общем случае в любой момент отчетного периода известно достигнутое фактическое значение показателя на данный момент времени п7., кг.,/'. (70), представленное на рис. 5.

На этом же рисунке показано нормативное значение данного показателя, которого он должен достигнуть к моменту отчетного периода (концу периода). Для управления ростом значения показателя необходимо иметь модель, связывающую изменение показателя с изменениями параметров, от которых этот показатель зависит.

Символически такую зависимость можно представить в следующем виде:

(4)

йп7 .,к7 .,/'. —. ',. ', 1 = Ф({г}),

где {г} - совокупность параметров, от которых зависит показатель п. .,ki .,/'.;г е Я.

''У ''У ''У

t

Рисунок 5

Рост значения показателя

.,k .,V.

M К,. К]. ги}

*Ь . К] . lL

к , f(*,.].

"7w

% ___«i __—— i — i i i i -1- ^^ i L--^ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1-►

Источник: авторская разработка.

При этом в совокупности {г} следует выделить подмножества параметров - констант и параметров-переменных {г} = {{1}, {х}}, среди параметров х следует различать детерминированные и стохастические параметры, подверженные управляющим воздействиям и не подверженные им.

Таким образом,

(5)

d

Символ производной — понимается здесь в

&

обобщенном смысле, поскольку изменение показателя может быть как непрерывным, так и скачкообразным (на рис. 5 скачкообразные изменения показателя происходят в моменты времени ^¿2).

Модель, символическое обозначение которой представлено выражением (4), в простейшем случае может представлять аналитическую зависимость. В общем случае эта модель является совокупностью уравнений и зависимостей, отражающих алгоритм функционирования к.. структурно-функциональной единицы у-го объекта управления региона для достижения заданного значения Г.. -го показателя = в аспекте 1-й подсистемы управления.

В момент Х0 осуществляется прогнозирование, т.е. определение значения показателя п,., ки., Iна момент X которое проводится с помощью модели (2) с использованием в общем случае имитационного моделирования.

Поскольку ряд параметров из совокупности {г} является случайным, то прогнозируемое значение П,., к^., Iбудет случайной величиной. Осуществить прогноз относительно значения случайной величины означает найти плотность ее распределения |п. При этом в качестве прогнозируемого значения п,.,к,., 1'. можно рассмотреть его математическое ожидание М{п. .,к, .,I .}.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Вероятность того, что фактическое значение п.,.,ки.,Iк концу отчетного периода превысит нормативное значение, будет численно равна площади под кривой плотности распределения, ограниченной снизу линией нормативного уровня п"1],кг],I'у (на рис. 5 указанная площадь заштрихована).

Таким образом:

р = Вер(^,, ^, ^ ><,, ], ^) =

= J /(* -, >, ки, lL )d *

(6)

t

0

t

t

t

t

о

2

1

w

Численное значение Р характеризует степень достоверности прогноза выполнения задания по данному показателю. Целесообразно задаться некоторым критическим значением степени уверенности Ркр. Если прогнозируемое значение Р превосходит критический уровень, то нет оснований беспокоиться за выполнение планового задания. В противном случае необходимо принимать меры по изменению роста показателя. Критическое значение Р зависит от важности показателя. Значение

кр

Ркр, равное 0,5, соответствует случаю, когда М (П',1, к..,.., /¡1) = пн,1, ки., , т.е. математическое ожидание величины показателя равно его нормативному значению.

Когда необходима уверенность в том, что значение показателя превысит нормативный уровень, целесообразно назначать Ркр > 0,5.

До сих пор говорилось о прогнозировании в условиях, когда управляющие воздействия уже реализованы или реализуются и не встает вопрос о выборе новых управляющих воздействий. Это возникает в случае, когда в результате прогнозирования обнаруживается, что Р < Ркр. Тогда реально существующий рост показателя следует признать неудовлетворительным. Из множества возможных управляющих воздействий отбираются определенные воздействия и анализируется модель с учетом реализации этих воздействий.

Пусть имеются три возможных управляющих воздействия. Осуществляется прогнозирование значения п7,., к7,., /'' . при условии, что реализовано 1-е из них, затем, при условии, что реализовано 2-е и далее - 3-е. Соответственно определяются значения Р и выбирается то из управляющих воздействий, при котором Р > Ркр.

Если это условие не выполняется ни при каком управляющем воздействии, то прогнозируется значение п7,., к7,., /''. при условии, что реализованы 1-е и 2-е управляющие воздействия, 1-е и 3-е, 2-е и 3-е. Каждый раз проверяется условие Р > Ркр.

Наконец, значение показателя может прогнозироваться при условии, что реализованы все три управляющих воздействия. Из этого следует, что модель в более точном виде символически можно выразить следующим образом:

Ф , k , l'

i,Г i,J' J

dt

= 0({r}{u}),

(7)

Прогнозируемое значение п..,..,,/'.. можно записать в следующем виде:

п',., К., К. =п',l, k',l,/'и1 (70) +

+M {jdn (M,{u}) dt},

(8)

где М{п7], к',., /',! } - оператор математического ожидания величины, стоящей в фигурных скобках. При этом интеграл понимается в обобщенном виде, т.е. совпадает с обычным интегралом в области непрерывности показателя и равен скачкообразному изменению Ап({г},{и}) в точках, где п заменяется дискретно.

Отметим следующее важное обстоятельство. Критерии, характеризующие функционирование региона, зависят от множества показателей п1}, ., /''.. (количество таких показателей равно

II k , л J ).

где {и} - совокупность возможных управляющих воздействий.

Параметры, от которых зависит значение того или иного показателя, являются общими для многих показателей. Следовательно, выражение (7) следует понимать как систему уравнений, каждое из которых отличается одним или несколькими значениями индексов ',., к,., /[.. Реализуя то или иное управляющее воздействие, мы изменяем целую группу показателей п., к 7., /''... Поэтому основанием для выбора управляющего воздействия на тот или иной параметр в общем случае служит выполнение условия Р > Ркр не для одного показателя, а для их целой группы, которыя зависят от этого параметра.

Если данное условие выполняется при нескольких управляющих воздействиях, то выбор того или другого из них проводится исходя из результирующего влияния управляющего воздействия, рассматриваемого на критерий Ж .,Ж,Ж, т.е. выбирается такое воздействие, которое доставляет максимум рассматриваемому критерию.

В качестве примера рассмотрим фрагмент управления государственным заказом (' = 5) на примере продукции, выпускаемой к-м первичным звеном промышленности (. = 1) - казенным предприятием - по государственному оборонному заказу. Продукция - интегральная плата, выпуск которой предусмотрен в порядке импортозамещения, нормативный объем выпуска пн равен 100 000 ед., ежеквартальный - 25 000.

Контроль за ее производством поручен военно-промышленной комиссией региональному органу

управления. Ход выпуска продукции в течение отчетного года представлен на рис. 6.

Кривая 1 на рис. 6 отображает фактический ход выпуска продукции в течение первых трех месяцев. Это составило 24 000 ед. при назначенном критическом уровне вероятности Ркр = 0,5, что ниже запланированного. Расчеты показывают, что при тех значениях параметров, которые они имеют в момент ¿0, и прогнозируемом законе их изменения фактический уровень показателя к концу года составит в среднем 98 000 ед. продукции (значение п1 на рис. 6) при среднеквадратичном отклонении с(л), равном 8 тыс. ед. продукции (прогнозирующая кривая 2 на рис. 6, плотность распределения п-Л(п)).

Считая закон распределения нормальным, получаем, что вероятность выполнения планового задания составит:

Р = ф{М [П] } = 0,4, с[л]

где М(п)=п1; Ф(•) - табулированная функция Лапласа.

При принятом критическом уровне вероятности Ркр = 0,5 реально существующий ход выпуска продукции следует признать неудовлетворительным, так как Р < Р и необходимо реализовать некоторые

управляющие воздействия из их совокупности {"}.

Из анализа процесса изготовления продукции следует, что основной причиной невыполнения графика производства являются большие простои

Рисунок 6

Ход выпуска продукции в течение отчетного периода

оборудования. Среднее время простоя оборудования тпр может быть значительно уменьшено (как показывает опыт) за счет применения Lean-технологий [15-18]. Принято решение об организации аудиторских проверок с использованием методик Total Productive Maintenance (TPM) и Single Minute Exchange of Die (SMED) [19, 20].

Перевод переналадки и обслуживания из внутренних операций, выполняемых при остановках оборудования, во внешние, выполняемые без остановки оборудования, ведет к сокращению среднего времени обработки на рабочем месте (т0) на величину Ах.

Следует оценить оператор и[хпр] - количественную характеристику влияния управляющего воздействия на параметр тпр.

Предположим, что выработка на производственном участке до проведения мероприятий SMED и TPM может быть описана зависимостью I (рис. 7), после проведения - зависимостью II. Результатом проведения данных мероприятий будут сокращение времени простоя оборудования и увеличение времени его работы. Предполагая, что их суммарное время даже останется неизменным O = (П+М) = О (рис. 7), мероприятия SMED и TPM (как корректирующие воздействия) приведут к дополнительному объему выпуска на производственном участке, равном AQ.

Анализ данных, представленных на рис. 7, показывает, что время простоя оборудования за смену сократится с 4 (0,5 х 8) до 2,4 (0,3 х 8) ч, а время непрерывной работы оборудования (машинное) составит не 4, а 5,6 ч.

Источник: авторская разработка.

Рисунок 7

Зависимость объема выпуска продукции от времени работы:

I - до проведения SMED и ТРМ; II - после проведения мероприятий SMED и ТРМ; П - время простоя оборудования; М- машинное время; О - оперативное время по зависимости I; Пн, Мн, Он - соответственно, время простоя оборудования, машинное и оперативное время по зависимости II; Л<2 - дополнительный объем продукции производственного участка

Объем выпуска Q, шт.

0 12 3

Источник: авторская разработка.

Таким образом, в данном случае оператор и[тпр] будет иметь простой вид:

^пр Со + *) = МКр] =^пр (0 - l,6 Ч,

где *0 - время, после которого реализовано управляющее воздействие;

т (*0) - значение параметра до реализации управляющего воздействия;

тпр(*0 + *) - значение параметра после реализации управляющего воздействия.

Имея модель процесса производства и подставляя в нее в качестве исходных данных изменившееся значение т пр (наряду с другими исходными данными, которые остались неизмененными), с помощью имитационного моделирования можно спрогнозировать ход выпуска продукции государственного заказа с учетом реализации управляющего воздействия. Пусть в результате прогноза получено М[п] = 101 тыс. ед. продукции при с[п] = 1000 000 ед. При этих условиях получаем Р = 0,54, что выше заданного критического значения Р = 0,5.

кр '

Таким образом, реализация управляющего воздействия, эффективность которого определена

Рабочее время

г, ч

путем использования модели, позволит выполнить плановое задание по рассмотренному показателю -количеству продукции данного типа, изготовленной на данном предприятии.

Покажем, при каких условиях выполняется целевая функция управления к-м числом предприятий.

Пусть пн - планируемый объем выпуска продукции к-м предприятием региона , = 1, к к моменту времени * (например, квартал), а (*) - фактический объем выпуска продукции к-м предприятием региона к моменту времени

Задача регионального центра управления -обеспечить выполнение вероятностного условия

|<(*) -п' (*)| <8,,

где 8 - минимально допустимое отклонение по к-му предприятию.

Тогда для всех к предприятий в целях управления выполнением государственного заказа должно соблюдаться следующее условие:

<(*) -п' (* )| <8,} «1,0, где , ей. Предложенный автором подход дает возможность

8

4

5

7

6

определять влияние управляющих воздействий на показатели деятельности структурно-функциональных единиц региона и поддерживать или повышать эффективность функционирования региона в соответствии с главной целью управления и принципами всеобщего управления качеством, добиваясь максимально возможных значений заданных критериев. Это позволит прогнозировать

последствия управляющих воздействий, планировать корректирующие мероприятия для достижения поставленных целей региональной системы всеобщего управления качеством - достижения высокого качества и конкурентоспособности продукции и услуг, производимых и потребляемых в регионе, как основы его устойчивого развития и обеспечения качества жизни населения.

Список литературы

1. Глудкин О.П., ГорбуновН.М., ГуровА.И., ЗоринЮ.В. Всеобщее управление качеством. М.: Лаборатория базовых знаний, 2001. 599 с.

2. Акофф H., Эмери Ф. О целеустремленных системах. М.: Книга по Требованию, 2012. 270 с.

3. Гладких Б.А., Люханов В.М., Перегудов Ф.И. и др. Основы системного подхода и их приложение к разработке территориальных автоматизированных систем управления. Томск: ТГУ, 1976. 243 с.

4. Морозова Т.Г. Региональная экономика. М.: ЮНИТИ-ДАНА, 2012. 526 с.

5. Васильева С.Н. Моделирование и управление процессами регионального развития. М.: ФИЗМАТЛИТ, 2001. 432 с.

6. Глинский Б.А. и др. Моделирование как метод научного исследования. М.: МГУ, 1965. 245 с.

7. СтефановН., ЯхиелН., Качаунов С. Управление, моделирование, прогнозирование. М.: Экономика, 1972.143 с.

8. Кимени Дж., Спел Дж. Кибернетическое моделирование. Некоторые приложения. М.: Советское радио, 1972. 192 с.

9. Гранберг А.Г. Динамические модели народного хозяйства. М.: Экономика, 1985. 240 с.

10. Белобрагин В.Я. Современные проблемы территориального управления эффективностью производства и качеством продукции в условиях становления рынка. М.: Издательство стандартов, 1994. 140 с.

11. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. М.: Финансы и статистика, 2006. 432 с.

12. Репин В.В., Елиферов В.Г. Процессный подход к управлению. Моделирование бизнес-процессов. М.: Стандарты и качество, 2006. 405 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. Олейник А.Г. Концептуальное моделирование региональных систем. Saarbrucken, LAP Lambert Academic Publishing, 2011. 204 с.

14. Белобрагин В.Я. Региональная экономика: проблемы качества. М.: АСМС, 2001. 282 с.

15. Вумек Дж., Джонс Д. Бережливое производство. Как избавиться от потерь и добиться процветания вашей компании. М.: Альпина Паблишер, 2005. 473 с.

16. Вэйдер М. Инструменты бережливого производства: мини-руководство по внедрению методик бережливого производства. М.: Альпина Бизнес Букс, 2007. 125 с.

17. Кудряшов А.В. Бережливое производство: проблемы и опыт внедрения // Методы менеджмента качества. 2013. № 4. С. 4-9.

18. Синго С. Изучение производственной системы Тойоты с точки зрения организации производства. М.: ИКСИ, 2006. 312 с.

19. Итикава А., Такаги И., Такэбэ Ю. и др. ТРМ в простом и доступном изложении. М.: Стандарты и качество, 2008. 128 с.

20. Синго С. Быстрая переналадка. Революционная технология. Оптимизации производства. М.: Альпина Бизнес Букс, 2006. 352 с.

ISSN 2311-9438 (Online) ISSN 2073-8005 (Print)

Mathematical Methods and Models in Economics METHODOLOGICAL ASPECTS OF THE SIMULATION OF QUALITY MANAGEMENT PROCESSES Irina I. ANTONOVA

Institute of Economics, Management and Law, Kazan, Republic of Tatarstan, Russian Federation [email protected]

Article history:

Received 3 December 2014 Received in revised form 12 February 2015 Accepted 25 February 2014

Keywords: modeling, control, efficiency, region, management system

Abstract

Importance The article deals with the theoretical and methodological aspects of modeling of region governing processes based on the analysis of the relationship between the parameters that play a significant role in the organization of regional management.

Objectives The objective is to support the structure and functions of the modeling methodology

of management processes in the regional system of Total Quality Management.

Methods The methodological aspects of modeling of region governing processes are formulated

on the basis of the theory of goal-oriented systems and project management practices, summarized

in the standards GOST R ISO 10006-2005, GOST R ISO/IEC 15288-2005 and GOST R ISO

21500-2014.

Results The proposed approach makes it possible to predict the effects of control actions, which are the eight principles of Total Quality Management (TQM), for the first time adopted, and to plan the implementation of corrective measures to achieve the objectives. The presented economic-mathematical model is a set of equations and relationships that reflect the algorithm of functioning of the region. It allows one to simulate the effect of control actions on the performance of structural and functional units of the region in accordance with the purpose of control and thus improve the functioning of the region.

Relevance The work's practical value lies in the fact that the offered methodology to model the regional management processes shall allow the authorities to project the model, taking into account the specifics of the region, to choose the optimum set of control actions, taking into account the specificity of the processes taking place in the elements, subsystems and regional management system, in general. For the first time, it is proposed to use the principles of Total Quality Management in relation to territorial systems that should enable a better use of reserves to improve the quality and competitiveness of products and services, as well as to ensure rational use of labor, material and energy resources.

© Publishing house FINANCE and CREDIT, 2015

Acknowledgments

The article was adapted from the publication in the journal Regional Economics: Theory and Practice, 2015, no. 25(400).

References

1. Gludkin O.P., Gorbunov N.M., Gurov A.I., Zorin Yu.V. Vseobshchee upravlenie kachestvom [Total Quality Management]. Moscow, Laboratoriya bazovykh znanii Publ., 2001, 599 p.

2. Ackoff R.L., Emery F.E. O tseleustremlennykh sistemakh [On Purposeful Systems]. Moscow, Kniga po Trebovaniyu Publ., 2012, 270 p.

3. Gladkikh B.A., Lyukhanov V.M., Peregudov F.I. et al. Osnovy sistemnogo podkhoda i ikh prilozhenie k razrabotke territorial'nykh avtomatizirovannykh sistem upravleniya [The bases of system analysis and their application to develop territorial control systems]. Tomsk, TSU Publ., 1976, 243 p.

4. Morozova T.G. Regional 'naya ekonomika [Regional economy]. Moscow, YUNITI-DANA Publ., 2012, 526 p.

5. Vasil'eva S.N. Modelirovanie i upravlenie protsessami regional'nogo razvitiya [Modeling and control of regional development]. Moscow, FIZMATLIT Publ., 2001, 432 p.

6. Glinskii B.A. et al. Modelirovanie kakmetodnauchnogo issledovaniya [Modeling as a method of scientific research]. Moscow, MSU Publ., 1965, 245 p.

7. Stefanov N., Yakhiel N., Kachaunov S. Upravlenie, modelirovanie, prognozirovanie [Management, simulation, prediction]. Moscow, Ekonomika Publ., 1972, 143 p.

8. Kemeny J.G., Snell J. Kiberneticheskoe modelirovanie. Nekotoryeprilozheniya [A Cybernetic Simulation. Some Applications]. Moscow, Sovetskoe radio Publ., 1972, 192 p.

9. Granberg A.G. Dinamicheskie modeli narodnogo khozyaistva [Dynamic models of the national economy]. Moscow, Ekonomika Publ., 1985, 240 p.

10. Belobragin V.Ya. Sovremennyeproblemy territorial 'nogo upravleniya effektivnogoproizvodstva i kachestvom produktsii v usloviyakh stanovleniya rynka [Modern problems of territorial administration of efficient production and quality in the conditions of market]. Moscow, Izdatel'stvo standartov Publ., 1994, 140 p.

11. Berezhnaya E.V., Berezhnoi V.I. Matematicheskie metody modelirovaniya ekonomicheskikh system [Mathematical modeling of economic systems]. Moscow, Finansy i statistika Publ., 2006, 432 p.

12. Repin V.V., Eliferov V.G. Protsessnyi podkhod k upravleniyu. Modelirovanie biznes-protsessov [A process approach to management. Business process modeling]. Moscow, Standarty i kachestvo Publ., 2006, 405 p.

13. Oleinik A.G. Kontseptual'noe modelirovanie regional'nykh system [Conceptual modeling of regional systems]. Saarbrucken, LAP Lambert Academic Publ., 2011, 204 p.

14. Belobragin V.Ya. Regional'naya ekonomika: problemy kachestva [Regional economy: quality issues]. Moscow, ASMS Publ., 2001, 282 p.

15. Womack J.P., Jones D.T. Berezhlivoeproizvodstvo. Kak izbavit'sya otpoter 'i dobit'syaprotsvetaniya vashei kompanii [Lean Thinking: Banish Waste and Create Wealth in Your Corporation]. Moscow, Al'pina Pablisher Publ., 2005, 473 p.

16. Weider M. Instrumenty berezhlivogo proizvodstva: mini-rukovodstvo po vnedreniyu metodik berezhlivogo proizvodstva [Lean Tools: A Pocket Guide to Implementing Lean Practices]. Moscow, Al'pina Biznes Buks Publ., 2007, 125 p.

17. Kudryashov A.V. Berezhlivoe proizvodstvo: problemy i opyt vnedreniya [Lean manufacturing: challenges and the experience in implementation]. Metody menedzhmenta kachestva = Methods of Quality Management, 2013, no. 4, pp. 4-9.

18. Singo S. Izuchenie proizvodstvennoi sistemy Toioty s tochki zreniya organizatsii proizvodstva [A study of the Toyota production system from the viewpoint of production organization]. Moscow, ICSS Publ., 2006, 312 p.

19. Itikava A., Takagi I., Takebe Y. et al. TRMv prostom i dostupnom izlozhenii [Total Productive Maintenance]. Moscow, Standarty i kachestvo Publ., 2008, 128 p.

20. Singo S. Bystrayaperenaladka. Revolyutsionnaya tekhnologiya. Optimizatsiiproizvodstva [Short changeover. Breakthrough technology. Production optimization]. Moscow, Al'pina Biznes Buks Publ., 2006, 352 p.

i Надоели баннеры? Вы всегда можете отключить рекламу.