МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ MECHANICAL ENGINEERING AND ENGINEERING SCIENCE
https://doi.org/10.21122/2227-1031-2025-24-1-12-23 UDC 621.9.048.7: 621.375.826: 621.373.8: 546
On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning Part 1
O. G. Devoino1), A. V. Gorbunov1), D. A. Shpackevitch1), A. S. Lapkovsky1), V. A. Gorbunova1), V. A. Koval1), S. A. Kovaleva2)
1)Belarusian National Technical University (Minsk, Republic of Belarus),
2)Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus (Minsk, Republic of Belarus)
Abstract. A comparison of operating characteristics has been carried out for laser erosion cleaning (LC) processes studied in recent years and prospective for metalworking manufacturing of products/pieces from a number of carbon steels, cast iron and low-alloy non-ferrous metal alloys from oxidized layers formed as products of gas or other corrosion, often having inhomoge-neous structure and porosity. To analyze the efficiency of various (in terms of layer composition) laser processes, it is advisable to use a group of parameters that affect the energy efficiency of LC-processing during the deoxidizing of surfaces. This group includes: a) the time-integrated energy criterion (Ken1s) of heating up to the melting point and/or evaporation temperatures of the layer and, sometimes, a metal substrate located underneath it (or the thermochemical efficiency of the heating, which is derived from the Ken1s), determined from energy consumption; b) irradiation power per surface unit (N0), or the ratio of N0 to the thermal conductivity of the layer; c) the pressure amplitude of the shock wave (SW) front in the laser plasma near the surface (Р™_р) or the dimensionless parameter that includes it, equal to the ratio of Рш.р to the shear stress for the oxidized layer/metal substrate interface. The dimensionless Ken1s criterion (or similar ones) will be more convenient in some cases for modeling and scaling of LC-processes than dimensional complexes, including thermal criteria such as DMF ("difficulty of melting factor"), which were tested in calculation of plasma spraying of ceramic materials. In this group of efficiency parameters, such a characteristic as the normalized (for example, with Ken1s) Peclet number, which characterizes the rate of propagation of the melting (or evaporation) boundary along the surface when scanning the beam, is also applicable. The considered characteristics, based on preliminary data, make it possible to evaluate the contribution of the mechanisms of the layer removal during pulsed LC, i.e.: 1) thermal effect ("ablation") with "slow" heating to the melting point of the oxide (or to its evaporation temperature) in thermodynamically quasi-equilibrium regimes; 2) initiation of thermoelastic stresses in the crystal lattice of oxide phases under the impact of high power pulse, resulting in the formation of a network of cracks in the oxide film and its exfoliation from the metal substrate ("spallation", it is approximately characterized by the maximum stress achieved during LC at the film/substrate interface); 3) plasmadynamic mechanism of the action of pressure on the surface due to the generation of near-surface plasma with a shock wave in it (with a pressure amplitude of up to >10 MPa). When assessing LC-processes taking into account efficiency characteristics, it is advisable to use a special set of verified data selected according to the ther-mophysical properties of layers of an analyzed type.
Keywords: laser erosion, cleaning of metal pieces, oxidized surface, steels, non-ferrous metal alloys, energy efficiency characteristics, mechanisms of layer removal, oxides, surface deoxidizing, energy/power consumption
For citation: Devoino O. G., Gorbunov A. V., Shpackevitch D. A., Lapkovsky A. S., Gorbunova V. A., Koval V. A., Ko-valeva S. A. (2025) On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning. Part I. Science and Technique. 24 (1), 12-23. https://doi.org/10. 21122/2227-1031-2025-24-1-12-23 (in Russian)
Адрес для переписки Address for correspondence
Горбунова Вера Алексеевна Gorbunova Vera A.
Белорусский национальный технический университет Belarusian National Technical University
просп. Независимости, 67, 67, Nezavisimosty Ave.,
220013, г. Минск, Республика Беларусь 220013, Minsk, Republic of Belarus
Тел.: +375 17 293-92-71 Tel.: +375 17 293-92-71
[email protected] [email protected]
Наука
итехника. Т. 24, № 1 (2025)
О характеристиках энергоэффективности лазерной эрозии
при очистке от оксидов поверхностей углеродистых сталей, чугуна
и низколегированных сплавов металлов
Часть 1
Докт. техн. наук, проф. О. Г. Девойно1*, канд. техн. наук А. В. Горбунов1*, Д. А. Шпакевич1*, А. С. Лапковский1*, канд. хим. наук, доц. В. А. Горбунова1*, канд. техн. наук, доц. В. А. Коваль1*, канд. техн. наук С. А. Ковалева2*
^Белорусский национальный технический университет (Минск, Республика Беларусь), 2)Объединенный институт машиностроения Национальной академии наук Беларуси (Минск, Республика Беларусь)
Реферат. Проведено сравнение технологических характеристик изучаемых в последние годы и актуальных для металлообрабатывающего производства процессов лазерной эрозионной очистки (ЛО) изделий из ряда углеродистых сталей, чугуна и низколегированных сплавов цветных металлов от оксидных слоев из продуктов газовой или иной коррозии (часто имеющих негомогенную структуру и пористость). Для анализа эффективности различных (по составу слоев) лазерных процессов целесообразно использовать группу параметров, влияющих на энергоэффективность ЛО при деоксидировании поверхности. К этой группе отнесены: а) интегральный по времени энергетический критерий (Ken1s) нагрева до температур плавления и/или испарения слоя или (иногда) расположенной под ним металлической основы (или производный от Ken1s термохимический КПД нагрева), определяемый по энергозатратам; б) мощность (амплитудная или иная) излучения на единицу поверхности (N0) или отношение N0 к теплопроводности слоя, а также в) амплитуда давления фронта ударной волны (УВ) в лазерной плазме вблизи поверхности (Р^-р) или включающий ее безразмерный параметр, равный отношению Psw-p к напряжению сдвига для границы оксидный слой / металлическая основа. Безразмерный критерий Ken1s (или аналогичные ему) в ряде случаев будет удобнее для моделирования и масштабирования процессов ЛО, чем размерные комплексы, например тепловые критерии типа DMF ("difficulty of melting factor"), апробированные ранее в расчетах плазменного напыления керамических материалов. В данной группе параметров эффективности применима и такая характеристика, как нормированное (например, по Ken1s) число Пекле, характеризующее скорость движения границы плавления (или испарения) вдоль поверхности при сканировании луча. Рассматриваемые характеристики по предварительным данным позволяют оценить вклад основных механизмов удаления слоев в ходе импульсной ЛО: 1) теплового воздействия ("ablation") с «медленным» нагреванием до точки плавления оксида (или до его испарения) в термодинамически квазиравновесных режимах; 2) инициирование термоупругих напряжений в кристаллической решетке фаз оксидов при воздействии импульса с высокой удельной мощностью, с образованием за счет этого сетки трещин в оксидной пленке и ее отслаиванием от металлической основы ("spallation", приближенно характеризуемое достигаемым максимальным напряжением на границе пленка/основа); 3) плазмодинамический механизм действия фронта УВ на поверхность за счет генерации околоповерхностной плазмы с локальной УВ (с амплитудой давления до >10 МПа). При оценке процессов ЛО с учетом характеристик эффективности целесообразно использовать массив верифицированных данных, подобранных по теплофизическим свойствам слоев данного типа.
Ключевые слова: лазерная эрозия, очистка металлоизделий, окисленная поверхность, стали, сплавы цветных металлов, характеристики энергоэффективности, механизмы удаления слоя, оксиды, деоксидирование поверхности, энергозатраты
Для цитирования: О характеристиках энергоэффективности лазерной эрозии при очистке от оксидов поверхностей углеродистых сталей, чугуна и низколегированных сплавов металлов. Часть 1 / О. Г. Девойно [и др.] // Наука и техника. 2025. Т. 24, № 1. С. 12-23. https://doi.org/10.21122/2227-1031-2025-24-1-12-23
Introduction and research task
A significant task for machine building and metalworking industries is the replacement of mechanical and thermal methods for cleaning the surfaces of metal parts from unwanted oxidized layers, i.e. rust and scale composed of mixture of oxidic compounds of Fe(II) and Fe(III) on steels and similar layers on some non-ferrous metal alloys [1-21]. Removal of layers of these types using modern high energy processing techniques, in particular,
laser methods, as efficient and environmentally acceptable ones, has been actively developed in recent years with the aim of commercialization. At the same time, work is underway to automatize laser cleaning (LC) from oxide layers of types mentioned to ensure optimal cleaning duration and energy consumption [1, 4, 6]. In this case, it is important to measure and analyze the levels of parameters that determine the LC efficiency in order to select power-efficient variants for removing these corrosion-induced surface layers from
H Наука
итехника. Т. 24, № 1 (2025)
metal products. The overview of current data [1-9, 11-21] on LC-processes for oxides removal from important grades of steels and some alloys shows the presence of published results on the regimes of removing at least ten types of layers (up to 1-2 mm thickness) that form oxidized compounds on the surface of a number of steels and alloys: mixed FeOx in the form of scale or rust on carbon steels, similar ones on the cast irons (gray one, etc. [5, 15]), the films based on Al2O3 on aluminum alloys, the films of CuO and Cu2O on copper and its alloys, the film based on titania on titanium alloys, the film based on ZnO on zinc alloy, the film based on MgO on magnesium alloy, the films of WO3-type on tungsten parts, the films based on PbO (with impurities, e.g. PbCO3 salt) on lead alloys, film based on Ag2O + AgO (with impurities) on silver alloy.
At the same time, the characteristics of power efficiency of laser erosion during surface deoxidizing of carbon steels and metal alloys can be of considerable importance for the optimization of efficiency of laser processes (and the corresponding technologies) that differ in the regimes and oxidic layer composition, and in this regard, the selection and testing of these characteristics are of significant interest and can be taken as the task of our investigation as applied to the processes of LC from oxidized heterogeneous layers on steels and alloys of the specified group. It is also important that, according to data overviewed, there are still few studies aimed at solving this problem, including those related to the comparison of the power efficiency parameters of LC-pro-cesses for different oxidic layers on the metals.
Possible parameters for evaluation
of the power efficiency of processing
in the technology of laser removal (LR) of oxidic layers
For a comparative analysis of the efficiency of various (by the composition of removed layers) laser processes, it is possible, based on the data of our preliminary analysis, to use a group of parameters that characterize to a certain extent the power efficiency (energy productivity level) of processing, including: a) the time-integrated di-mensionless energy criterion (Ken1s) for heating to the melting or evaporation temperatures of the layer (or such derived value as thermochemical efficiency of the heating), which can be measured as the value based on the specific energy input;
b) the specific power (amplitude value or time-averaged one) of irradiation per unit of the surface (N0 = power density); c) the amplitude of the pressure of shock wave (SW) front in partially ionized gas/laser plasma near the surface (Psw-p).
Let us approximately express the energy consumption of laser irradiation (LI) in J per kg of oxidic material, absorbed in solid removed layer due to thermal conductivity [10] at the stage of heating of the oxide being removed (at LC) from the initial temperature to its melting point Tm in the form:
öi =
ü- iw
KjATj t1
PiS
(1)
and the cleaning rate (in m2 of material per second) for steady regime of the processing can be specified:
Gw _ vc
(2)
where t1 - the time for surface heating from the initial temperature (~298 K) to the Tm of the layer; ds - the diameter of laser spot on the heated surface; S - the spot area; v - the linear scanning speed of the beam along the surface; AT1 = Tm - T0 (where Tm and T0 are the temperatures of the layer at the melting point and at standard conditions (298 K), respectively), k1 and p1 are, respectively, the characteristic values of thermal conductivity and density of the layer for AT1. It should be noted that in the considered group of parameters of power efficiency of the LC-process, the energy criterion according to A.L. Suris can be also used, which, apparently, is applicable for the considered process, by analogy with high-temperature technologies for plasma reactor production of some ceramic materials [22]. In incomplete version, i.e. considering only conductive heat transfer to condensed phase in the axial direction within the LI spot (given by equation (1), in the system for the LC process of oxidic layers) it can be written as a dimen-sionless ratio:
к _ Q1w Ken1 _ Ö1W-
(3)
The value of Q1w-ac can be found as the thermal effect of heating the layer AH (in units of J per kg of the initial layer), calculated on the equilibrium approach, determined by the value of the parameter EC (at T = Tm). A more complete variant
Наука
итехника. Т. 24, № 1 (2025)
2
of this Ken1s (which takes into account not only the conductive heat flux into heating spot zone in the axial direction, but also other mechanisms of heat transfer which occur in all directions in the system for the LC) can be specified, by analogy with the efficiency parameter (the energy efficiency) of plasma-chemical systems [23, 24], with a different ratio:
E
it — iw A , -
Qlw-ox
(4)
Here E1w - total value of energy consumption of the LC-processing (for such case of the process as laser heating to melting point of the surface layer) in units of J/(kg of removed oxidic layer). The energy consumption for the LC process of the analyzed type at a processing steady regime can be found as:
ec - ^
lw - psls,!
(5)
where A - absorptance for LI on the surface; q0 -power density of incident irradiation on the surface (in W/m2 units); ts - averaged time (duration) of heating of each surface point (i. e. full exposure time at LC per surface unit); psi and dsl - density and thickness of heated (up to required temperature) layer, respectively.
The above-mentioned parameters EC1w and EC0w (defined in W per 1 kg of heated oxidic layer, and the value of EC0w differs from expression (5) only by the absence of the absorptance A in the ratio) are expressed as some functions from the value of energy consumption EC0 and similar value EC1 per unit (i.e. in units of W/(m2 of heated (visible, i. e. neglecting the porosity) surface area of the layer)).
Also, taking into account the approach using the methods of similarity theory and previously used for modeling of heat transfer and energy balances in laser cutting of steels [25], such dimen-sionless similarity criteria can be adopted to calculate the energy parameters of the LC-processes of the oxides (Table 1): a) the Peclet number Pe (which can be considered as the normalized (with thermal diffusivity) rate of laser processing of the material) and b) the dimensionless power of absorbed LI by the surface material Wlp. The thermal diffusivity (used in the Pe) is expressed as a = = k/(p-cp), where p and cp are the density and specific heat capacity (in J/(kg-K)) for oxidic layer, averaged for the full temperature range under consideration. The value of the enthalpy difference for the material AH can be calculated using different
variants, depending on the required maximal temperature of the LC-process (e. g. Tb or Tm), selected for technological reasons, and on the accuracy of calculations required:
AH = f Vs dT + AHm + f Tbc, dT + AHv (6)
1 j To p,s m j Tm p,i v v '
(it is the variant for heating with layer melting and vaporization (AHv - heat of vaporization; AHm - heat of melting). For the case of heating only to melt, the AH2 value (i.e. form (7)) includes the first two terms of (6).
The dimensionless Ken1s criterion (or similar thermal parameters), according to our preliminary estimation (by analogy with the previously used variant of this criterion in high-temperature technologies of plasma processing of ceramic and other materials, as, for example, in [22]), in some cases will be more suitable for simulation and scaling of the LC-processes with oxide melting than dimensional complexes based on such thermal engineering criteria as DMF ("difficulty of melting factor") and similar ones, tested earlier (in [26-29], etc.) in calculation of some plasma spraying technologies with ceramic powders. As an analogue of this Ken criterion, such dimensionless "REC coefficient" (i.e. the degree of conservation of thermal energy in heated material during ablation process), proposed in [30] for energy balance calculations of surface laser heating processes with metal ablation, can be also considered.
Estimation of thermal characteristics of the operating process, including the mechanism with a shock wave and power efficiency parameters during laser removal of oxidic layers
The group of parameters that was selected to characterize the physical mechanisms of removing oxidic layers during LC of the steels and alloys is given in Table 1. For the realization of calculations to evaluate these mechanisms our prepared data set (Table 2), based on [31-81] properties, can be also used.
It is important, that as shown in [82], under LC conditions with pulsed lasers, the "shock wave ejection mechanism" prevails at intensive laser plasma (in terms of dynamic effect on surfaces) rather than the mechanism of photon pressure from the LI-beam. It is possible to use also some dependencies when using the approach
■ HayKa
«TexHMKa. T. 24, № 1 (2025)
described in Table 1 (taking into account the da- as the temperature of its front (according to equa-
ta [83]) for estimation of such parameters of SW, tions (3 and 5) in [84]), and its density [85].
Table 1
Set of proposed parameters for characterizing the main mechanisms of removing oxidic layers during LC-processing
of the carbon steels and some alloys
Layer removal mechanism Key parameters for this mechanism, their dimensions Formula for the parameter
1) thermal quasi-equilib-rium heating (with melting or/and evaporation of the layer on metal substrate), i. e. thermal ablation Energy criterion Kenls and thermochemical efficiency for the heating %C (dimensionless); energy consumption for LC-processing of the removed layer E' (in J/kg) Kenls - on the equation (4), "HtC = aТC/Ken1s, where aTC - conversion degree of the initial solid oxidic material to final product form (liquid or other)
2) dynamic (generation of thermoelastic stress to destruct solid layer and/or its exfoliation from the metal), i. e. "spallation" Specific absorbed power N0 (in W/m2) and the parameter N0/k (inK/m), i. e. the ratio of N0 and the value of thermal conductivity of the removed layer N0 = P0/S, where P0 - initial (excluding partial reflection of the laser irradiation by oxidic surface) power of the laser beam (in W) and S is the area of LI-spot on the surface (when the beam is directed normal to the surface S = nd2/4)
3) plasma effect (gas dynamic action of the shock wave (SW) from the laser plasma on the solid surface of removed layer), i. e. the "shock wave-mechanism" The pressure amplitude of the shock wave front Psw-p (in Pa) or the dimensionless parameter Psw.p/xA (where tA is the shear stress (in Pa) for the (oxidic layer/metal substrate)-interface Psw-p can be calculated by several methods (in particular, with use of three proven variants for laser plasma [83-88]): P aAP = 25 (7TT)(R3)y4 (variant I on [83] (*)); P = 32.2(2^) p0/312/3 (variant II [88] (**)); P = (&)(^^M^); t-(5c )5/3 (j" m- 0 + m ).- p = ro(k + 1)(k + 2) /[k(2 + 3k)) (last three equations can be used to calculate SW front pressure (for the moment t (= LI-pulse duration)) on variant III [84, 86, 87] (f))
Additional key parameter (dimensionless): Peclet number Pe for the process of heating of the removed oxidic layer during the LC-process Pe = Vl = a a (optionally can be also possible to use one more variant with normalization of Pe number (e.g. with Kenls value for LC-process)
Symbols: G - layer removal rate; a - thermal diffusivity of the layer; v - scanning speed of the laser beam along the surface; d - diameter of the spot on the surface (with the beam directed normal to this). Notes: * - in this variant I: y - heat capacity ratio (the ratio of specific heats) for gas in SW zone (most typically for air, y = cjcv = 1.40 (at 293 K, 0.101 MPa)); Rs - radius of SW, Y = f(y) = 1.03 [83]); ** - this equation (for the variant II) uses the value of pressure P (in kbar, i.e. 108 Pa), the values of density p0 (in g/cm3) and specific power of LI pulse I0 (in GW/cm2); here the values of the coefficient of interaction efficiency in SW a were recommend as 0.25 (at X ~ 1064 nm [88]) and as 0.40 (at such X values as 532 and 355 nm) [89]; f - in this variant III: Ms - Mach number (amplitudic), c ~ 346 m/s - sound velocity in air (at 298 K and at pressure Pl = = 0.101 MPa [84]); Ep - energy (maximal) of pulse of LI that is incident on surface (in J), a! = 0.8 is gas dynamic constant for air [84], p = 1.21 is the special aerodynamic parameter [84, 87], ro = 2.0 is the gas dynamic coefficient [84], k = 3 is a dimension (for 3D geometry of the SW) for the analyzed spherical SW).
16 Наука итехника. Т. 24, № 1 (2025)
Table 2
Physical and chemical properties (including standard enthalpy of formation AfH0, thermal effects of phase transitions (AHm, AHv), total enthalpies of heating of phases to their melting and boiling temperatures (Tm , Tb), specific heat capacity cp), absorptance A, thermal conductivity k and thermal diffusivity a for oxides that are components of oxidized layers on some steels and structural materials subjected to laser cleaning (basically for conditions at the pressure P ~ 0.1 MPa)
Thermal Absorptance of LI A (at wavelength X - 1.064 ^m) at T - 300 K
Composition AfH0, MJ/kg AHm , MJ/kg; AHv , MJ/kg cp (at 298 K and at T ^ Tm), Tm, K Tb , K AHi on the equation (6), AH2 on the expression (7), MJ/kg Thermal conductivity (at 298 K and at T ^ Tm) k (*), W/(m-K) Density (at 298 K and at T ^ Tm) p (*), kg/m3 diffusivity a (at 298 K and at T ^ Tm) a (*), m2/s (•106)
J/(kg-K) MJ/kg (if not specified otherwise) for
smooth samples
1 2 3 4 5 6 7 8 9 10 11 12
Hematite -5.169 0.5448 ([32]); 652.52; 1812 (f) 2973 [8] - ~1.87 (on 0.58 [34, 35], 4900 [39], —0.70 (♦) 0.60 (◊) [8];
Fe2O3 [31]) no reliable 913.03 (at [32] - the com- ~1.0-2.0 (f) 5240 [32], (at 293 K) 0.69 (f)
data (n.d.) 1800 K) [31] 1838 [8] bination of data [31, 32]) (at 300 K); ~3 3 (at Tm [75]) 5260 [35], ~5050 (f) (at 300 K); 4950 (at Tm [75]) [38, 39]; —0.73 (at T - Tm [75]) [40, 41]
Magnetite -4.841 0.5960 637.92; 1870 2896 —4.06 ~1.88 3.50 5100 (f) 1.06 0.815 (t) (aver-
FesO4 [31]) ([32]) - 867.26 [32] [32], (on the [31] (at 300 K [42]); (at 298 K); (at 300 K) aged value);
0.5967 (at 1800 K) 3273 [8] combi- ~3.0 (at Tm [75]) 4850 (at Tm) and ~0.713 0.53 (◊) [8];
([33]); [31] nation [75] (at T - Tm) 0.80-0.83
1.287 [33] of data [31-33]) [75] [40, 43]
Wustite -3.787 0.3354 (for 695.53; 1642- 3687 ~6.05 (for ~1.42 1.80 6000 [32], 0.42 0.81 (f) (aver-
Fei-„O [31] for FeO) [32], 891.24 1644 [45, 46], FeO) on (for FeO) (at 300 K [47]); 5870 [33], (at 300 K); aged value);
(at x < 0.06) FeO); 0.4547 (for (at 1600 K) (at 2785 the com- on the ~4.3 (at Tm [75]) ~5950 [47], ~0.873 0.81 [40, 48];
-3.868 Fe0.95O) [33]; [31] FeO) (for bination combina- 7750 [39], (at T - Tm for FeO-melt -
[44] for 3.34 (at Tb = [75] FeO) of data tion of ~6000 (f) [75]) 0.70 (***)
Feo.947O) = 2785 K for —FeO) and —6.28 (for [33], (32003400 - [31-33], [45, 46, 75] data [32] and [31] (at 300 K); ~5450 (at Tm ) [75] (at X = = 600-1064 nm at T > 2000 K)
Fe0.95O) [33] on cal- for FeO [74, 75]
culation
[75]),
3000 (f)
AI2O3 -16.435 1.090 [32], 772.56; 2327 3253 —9.92 (on ~3.41 (on 35.0 (at 273 K) For (X-AI2O3 11.04 (f) (§ Decrease from
±0.013 1.109 [31], 1361.32 [32] - [33, 52] the com- the com- and 8.0 (at 973 - 3970 [32, - at 298 K); 0.74-0.79 (f)
(corun- 1.093 [51], (at 2300 K) 2288 - >3273 bination bination K) [32], 35.0 33] - 3986 from 0.96 (at 273-400 K)
dum, i. e. 1.068 [52], [31] [52] [51] of data of data (at ~300 K) [36] [32] (at 473 K) to 0.39-0.43 (at
(X-AI2O3 1.149 [53], [31] for [31] for (sintered («-A12O3 to 0.48 1773-1800 K)
phase) 1.162 (f) (X-AI2O3 a-Al2O3, ceramics); at 300 K), (at 1473 K) [33] (***);
[32, 33] [17, 50], and [32], [32] and 30.0 (at 373 K) 3987 (f) for sprayed from 0.22
1.093±0.029 [33], [28, 50]) and 7.4 (f) [28, 50]; coatings (at 1073 K) to
[54]; [17, 50]) (at 2073 K) for 3750 (f) with 8 - 0.56 (at 1873 K)
4.763 (f) ceramics (with (at T ^ Tm - 320 ^m for X = 0.665 ^m
[33] - 4.760 p = 3800 kg/m3) [57]) (p - 2.2 %) and 0.12
[53] [32]; from 28.9-30.3 (at 373 K) to 5.78-6.07 (at 1873 K) and 9.0 (at 2273 K) [33]; [59] and close level in [68]; —1.15 (for ~2200 K) [58], —1.39 (f) (at 1273 K) for X = 1.0-3.0 ^m) for powders of AI2O3 [33] (!), —0.75 (for X - 10.6 ^m, at —300 K) [56,
for T = 300-2070 (§ - for 36]
K on the equation 2300 K
(J) from [81]; on the pro-
27.0 (~at 300 K) perties from
[55]; [32, 31, 33,
~7.0 (at 2300 K) 57])
[57]; ~34.0
(at 300 K) (f)
H HayKa
«TexHMKa. T. 24, № 1 (2025)
Continuation of Table 2
1 2 3 4 5 6 7 8 9 10 11 12
MgO -14.927 1.922 ± 0.104 918.27; 3098 3873 —18.45 —5.39 (on From 36.0 3650 [33], 10.92 (f) Decrease from
±0.007 [33], 1.910 1391.18 (at [32, 53] [32], (on the the com- (at 373 К) to 5.8 3579 - 3600 (at 298 K); 0.72-0.73 (f)
[31, 32] [32], 1.920 2100 К) 3873 combina- bination (at 1473 К) and (t) [32] (at ~2.05 (f) (at 273-400 K)
[53], and 1475.78 [53] tion of of data 9.2 (at 1973 К) 300 К); (§ - for to 0.29-0.31 (at
1.918 ± 0.144 (at 3100 К) data [31], [31] and [32]; ~3500 (1973-2273 1773-1800 K)
[54]; [31] [32] and [32]) from 34.5-40.0 (at T ^ Tm ) K) on the and 0.58 (at
13.504 [33] [53]) (at 373-400 К) properties 2300 K)[33]
11.772 (f) to 9.0-14.0 (at from [32, (***)■
[53] 2073-2273 К) 31, 33]) from 0.17
[33] ]; (at 1073 K)
~36.0 (at 300 K) to 0.44
(t) (at 1873 K) for
X = 0.665 ^m
and 0.28
(at 293 K)
for X = 1.0 ^m)
[33] (!)
TiO2 -11.820 0.851 (rutile) 690.91 (at 2116- 3200 —11.12 —2.30 9.0-13.0 (rutile 3900-4230 ~3.75 for Increase from
(rutile) [32], 0.839 298 К) and 2185 (with (rutile) - (rutile) - at 273 К) [32], (anatase) rutile (f) 0.82 (f) (at 400
[32, 31] (rutile) [33], 972.00 (at (rutile) decom- —11.21 —2.00 6.5 (at 373 К) (t), 4170 and ~2.32 K) to 0.90
and 0.838 (ana- 2000 К) and position) (anatase) (anatase) [32], from 6.53 and (f) for ana- (at 1300 K) [33]
-11.754 tase) [53], (rutile); 1833 (f) [33], (on the (on the (at 373 К) to 3.31 4230-4260 tase (§ - at (***), in va-
(anatase) 0.577 (rutile) 691.16 (at (ana- ~3273 combina- combina- (at 1273-1473 К) (rutile) (t), ~300 K); cuum; 0.27
[31] (f) [28, 50]; 298 К) and tase) (f) [32] tion of tion of [33], from 4170 ~0.838 for (at 1223 K)
7.496 [33] 971.88 (at [32], data [31], data [31] 5.2-5.9 (at ~300 (brookite) rutile (§ - at for X = 1.0 ^m)
2000 К) 2143 [32] and and [32]) K) to 3.9 (at 773 [32] (при ~(1473- for powder of
(anatase) (rutile, [33]) К [61]) and up to ~300 К); 2000 K)) TiOx [33] (!)
[31] in 02- 2.85 (at 1073 К 4245
medi- [60]) for high [28, 50];
um) [33, density polycrys- 4235 (ru-
53]; talline ceramics; tile), 4120
~2150 ~11.0 (rutile) (anatase),
(rutile, and ~6.5 4050
at 300 (anatase) (brookite)
K) (f) (at ~300 K) (t) [53]
(at ~300 К);
4066
(at 1873 K
[62])
Film of TiO2 (-118) Approxima- 1264 [7, 49] 2123 3673 [7] —11.12 - —2.00 - 0.62 [49] - 4320 [49] ~1.905 (§ - 0.30 [7], 0.45
(mixture of (our tely 0.577 (as [49] - 11.21 (by 2.30 - 10.4 (t) [7] at ~300 K [49], 0.58 (***)
rutile and estimation for rutile 2184 [7] analogy (estima- based on (f) [49]
anatase) with on the data with the tion, - by the data [7]) (—at T > 298 K)
with impuri- taking into [28, 50]); data for analogy
ty of Ti2O3, account 7.496 [33] individual with the
at 8 ~ 20 the data TiO2) data for
^m [63] for rutile individual
(—50 ^m [7]) and TiO2)
on the TA15 anatase on
alloy [7, 49] [32, 31])
Tenorite -1.962 0.468 (f) 531.02; 1500 (f) n. d. - 1.276 (on 1.01 (at 318.8 К) 6310 (t) ~0.301 (f) 0.798 (f)
CuO [31], [33], 746.75 (at [32], the com- [33]; [32], (§ - at (our calculation
-1.977 0.616 [32], 1500 К) 1609 bination ~33.0 [64] 6400-6450 ~318.8 K) from the data
[32] 0.700 [53]; [31] [33], of data [33] [2, 65]); —0.80
n.d. 1720 [33], [31] (at 1100 K)
[53] ('") and [32]) [67] (***) in air
Cuprite -1.193 0.458 (f) 437.06; 1517 (f) 2073 - 1.139 (on 5.58 (t) (at 299 6000 [32] at ~2.13 (f) (§ —0.79 [69],
Cu2O [31]), [32], 0.449 670.83 [32], (with the com- К) and 4.86 (at ~300 К - at ~299 K) 0.804 (f)
-1.192 [53]; (at 1500 К) 1515 [33], decom- bination 360 К) [32] (our calculation
[44]) n.d. [31] 1513 [53] position) of data from the
[33] [31] and data [2, 65])
[32])
Наука
итехника. Т. 24, № 1 (2025)
End of Table
1 2 3 4 5 6 7 8 9 10 11 12
ZnO -4.306 ± 0.8599 [32]; 495.0 ± 2.6 2247 > 2073 - 1.824 (on 23.4 (at 300 K), 5600-5676 8.37 - 0.91-0.82
± 0.003 ~8.582 (heat [33]; 494.0 [32, 33] (with decom- the com- 17.0 (at 473 K) [32], 5660 - (6.08 (f)) (at 1140-1330 K
[32, 31] of decom- [32] bination and 5.3 (at 1073 (t) [33] (at (§ - at ~300 for single crys-
position of position) [33] of data K) [32]; 300 К) К) tal sample) and
ZnO [33]); [33] and 0.595 (at 323 K increase from
n.d. [32]) for porous compacted powder sample) and from 17.05 (at 473 K) to 5.0 (at 1073 K) for dense poly-crystalline sample [33]; ~17.0 (at ~300 K) (f) 0.24 to 0.63 (from 1160 K to 1500 K for powder of ZnO) [33] (***); ~0.90 (f) (at 298 K for single crystal sample at X = 1.0 ^m) [33]
Structural ~0 ~0.2473 440-760 1808 [8] 3023 [8] ~8.51 ~1.152 ~52.0 [8] (SCS 7860 (at 300 14.9-15.1 0.35 (◊) [8],
low carbon (SCS) (f) (for the (for (for (esti- (estima- Q345 (0)) (f), K) [8] (for (f) [39] and 0.46 (f) [72-73]
steel (SCS) [32] - 0.270 range of Q345- Q345 mated ted value, 49.8 [72, 73] SCS Q345 19.0 (at 300 (SCS AISI
(◊) [70] (in 293- 873 К) type (#)) value, as as for the (AISI 1095 (#)) and [39] К) [76]; 1095 t), 0.52 [40]
MJ/kg of and 650 SCS (#)) for the Fe, with steel); (for SCS ~7.19 (f) (R4 J) and 0.30
steel); at 1473 К Fe, with taking 30.24 (for SCS with (our recal- [77] (AISI 1006
approximate- [71]; taking into ac- at 1623 K) [66]; 0.08-0.17 culation for tt); 0.30-0.36
ly 6.34-6.367 ~920 into count the 27.3 (for the % fraction ~1800 К for (T ~ 300 K)
MJ/kg of (at ~1800 К account data in range of carbon) SCS Q345 and 0.31-0.32
steel for SCS Q345 [8] (#)) the data in [75]) [75]) of 1073-1473 K) and 37.5 (at T < 1073 K [71]; 36.5 (for melt of SCS) [70, 75] (#)) [75] (T ~ 1270 K) for 35NCD16 (i) [79]; 0.35-0.38 (at 1809-3000 K) for SCS [78]
Aluminum ~0 0.389 [80]; 1050.0 [80]; 933 2703 ~13.18 ~1.054 223 [80]; 106 2549 [80]; 83.32 (при 0.08 [80];
alloy 6061 10.50 [80] 921.0 [80] [80] (based on (based on (for melt 2224 (for ~298 К); 0.20 (for
(95.8- (for the the data the data of the alloy) the melt) 51.75 the alloy melt)
-98.6 % Al, melt) [80] in [80]) in [80]) [80] [80] (for the [80]
impurities melt at
of Mg, Si, T > 933 К)
Fe, Cu, Zn,
Cr) [80, 55]
Nomenclature: | - preferable parameter values for the practical use (for complicated cases at different published values of the parameter) - on
our analysis recommendations; ◊ - for SCS of S235JR G2 grade (EU standard, composition in wt.% - 0.063% C, 0.41% Mn, 0.13% Si, 0.34% Ni,
0.10% Mo, >8.68% Fe) [70]; 0 - Q345 SCS (PRC standard, its composition is 0.21 wt. % C, 0.96% Mn, 0.12% Si and up to 98.5% Fe) - Russian
analogues - 09G2, 09G2S, 10G2B steel grades; * - parameter values were determined for material porosity p = 0; ♦ - parameter values were deter-
mined for porosity of sintered material p = 20%; (J) - for thermal conductivity of crystalline Al2O3 (in W/(m-K)) in the temperature range T = 373-
2073 K, the approximation equation is : XAi2O3 = 93.81362 - 0.26631- T + 3.19292-10-4-T2 - 1.75732-10-7-T3 + 3.67188- 10-11 T4 [81]; *** - the values
of Sjn (normal integral emissivity) are given; ; - the values £i„ (normal monochromatic emissivity) are given; "" - for CuO (monoclinic) [53]; § - our
calculation based on the given (in publications) values of properties (including k, cp, p) for a shown substance (at the specified T).
Methodology for experimental investigation of laser cleaning of the oxide layers
A comparative description of the experimental data, including energy consumption parameters, for a number of typical variants of laser removal of oxi-dic corrosion products from steels is briefly presented in [10], including using the results of a series of our experiments on LC from mill scale layers (30-50 ^m of thickness (5)) on carbon steel samples. In this case, the LC-processing was carried out on experimental setup using the laser with high-frequency nanosecond pulses (HFNPs)
■ Наука
итехника. Т. 24, № 1 (2025)
with pulse energy < 1.0 mJ and its duration tp = = 120-150 ns [10]. The rate of LC-removal of the layer (containing mainly the magnetite Fe3O4 phase on our data of XRD analysis) in the optimal regime is at a level of > 0.005 dm2 of scale surface per second (at operating time-averaged thermal power of the beam P0 ~ 28 W, emitting in near-infrared region) and at one pass of the beam the layer decreasing was such as AS ~ 6.5 ^m. St3 grade steel was used as the plate sample material (S = 4 mm) in our experiments. The detailed data will be presented in the Part II of our article. A comparison and analysis of the results for laser
surface deoxidizing [10] and other published data were carried out using systematized data on physical properties of a number of oxides, presented in Table 2.
It should be noted that the set of data on the properties of oxides and important for engineering metallic materials (typical grade of low carbon steel and one of the commercial aluminum alloys) presented in Table 2 allows us to propose comparative conclusions for at least three properties of these materials: 1) for the energy capacity of heating (in the equilibrium approximation) up to phase transition temperatures, 2) for thermal conductivity, 3) for optical absorptance. Comparison of the energy consumption levels for isobaric (at P ~ ~ 0.1 MPa) heating (according to the AH and AH2 values in Table 2) for the analyzed oxides and for the unoxidized metals shows that the level of the AH2 parameter for the considered types of metals (for them AH ~ 1.05-1.15 MJ/kg) is quite lower than for the oxides (except the copper oxides), i.e. approximately in 1.7 times or even more. This indicates higher energy consumption needed to heat the oxides of iron, aluminum, and titanium in the region up to their melting points. At the same time, the values of the AHi (i. e. for conditions with heating up to boiling point) parameter for metals and oxides are at a quite comparable level. Comparison of the thermal conductivities of these groups of materials shows that for the metals this parameter (>36 W/(m-K)) is significantly (several times) higher than for most of the oxides (except for Al2O3 at low temperatures (~34 W/(m-K)). Concerning the specified optical characteristics of the compared materials, it is evidently that for the metals under consideration (in solid and liquid phases) the level of values of integral emissi-vity (s) and absorptance of radiation (A) (for the conditions with monochromatic irradiation) is noticeably poorer (<0.46) than for the case of main considered oxides (Fe3O4, FeO, Al2O3, TiO2, CuOx), for which these characteristics values, as it was found, are not lower than 0.70.
CONCLUSIONS
1. A comparison was carried out for a number of characteristics that determine the level of efficiency and energy consumption for laser removal of surface corrosion products for the group of published data with the processing regimes of oxidized layers (up to 2 mm in thickness) on commercial grades of steels and alloys based on nine
types of metals, including FeOx layers (in a form of scale or rust on steels or cast iron), as well as the films, which based on Al2O3, based on TiOx phases, based on CuO and Cu2O phases, based on ZnO (on a zinc alloy surface), based on MgO, based on WOx, based on PbO (with impurities of lead carbonate and others substances), and based on Ag2O and AgO (with sulfide impurities).
2. The considered efficiency characteristics (Ken1s, energy consumption and others), based on our preliminary data, make it possible to estimate the realization of main mechanisms for removing oxide layers during the pulsed LC. Analysis of the LC-processes taking into account the characteristics was based on the parameters of typical (in the field of LC of oxides) regimes of processing of oxidized carbon steels (including the data from our experiments) with the use of pulsed lasers, as well as some samples of aluminum, copper and titanium alloys and cast iron with surface oxidic phases - Fe3O4, Al2O3, CuO, TiO2 and others. The set of values obtained for the efficiency characteristics will be presented in Part II of our article and these data are suitable to estimate the effect of possible mechanisms of MeOx-layer removal during the LC-processes.
REFERENCES
1. Deschênes J. M., Fraser A. (2020) Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. Lee, J., Wagstaff, S., Lambotte, G., Al-lanore, A., Tesfaye, F. (eds). Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham, 189-201. https://doi.org/10.1007/ 978-3-030-36556-1_17.
2. Zhang J., Wang Y., Cheng P., Yao Y. L. (2006). Effect of Pulsing Parameters on Laser Ablative Cleaning of Copper Oxides. Journal of Applied Physics, 99 (6), 064902. https://doi.org/10.1063/L2175467.
3. Seo C., Ahn D., Kim D. (2015) Removal of Oxides From Copper Surface Using Femtosecond and Nanosecond Pulsed Lasers. Applied Surface Science, 349, 361-367. https:// doi.org/10.1016/j.apsusc.2015.05.011.
4. Zaheer Ud Din S., Shi C., Zhang Q., Wei Y., Zhang W. (2023) Evaluation of the Laser Cleaning Efficacy of Q235 Steel Using Laser-Induced Breakdown Spectroscopy. Metals, 13 (1), 59. https://doi.org/10.3390/met 13010059.
5. Ogbekene Y., Shukla P., Zhang Y., Shen X., Prabha-karan S., Kalainathan S., Gulia K. (2018) Laser Cleaning of Grey Cast Iron Automotive Brake Disc: Rust Removal and Improvement in Surface Integrity. International Journal of Peening Science and Technology, 1 (2), 155-180. Available at: https://wlv.openrepository.com/bitst ream/handle/2436/622861/Author%20Accepted%20Ma nuscript%20IJPST%20KG.pdf?sequence=3&isAllowed=y.
Наука
итехника. Т. 24, № 1 (2025)
6. Xie X., Huang Q., Long J., Ren Q., Hu W., Liu S. (2020) A New Monitoring Method for Metal Rust Removal States in Pulsed Laser Derusting Via Acoustic Emission Techniques. Journal of Materials Processing Technology, 275, 116321. https://doi.org/10.1016/jjmatprotec. 2019.116321.
7. Li Z., Zhang D., Su X., Yang S., Xu J., Ma R., Shan D., Guo B. (2021) Removal Mechanism of Surface Cleaning on TA15 Titanium Alloy Using Nanosecond Pulsed Laser. Optics & Laser Technology, 139, 106998. https:// doi.org/10.1016/j.optlastec.2021.106998.
8. Ren Y., Wang L., Ma M., Cheng W., Li B., Lou Y., Li J. Ma X. (2022) Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials, 15 (21), 7559. https://doi.org/10.3390/ma15217559.
9. Ma M., Wang L., Li J., Jia X., Wang X., Ren Y. (2020) Investigation of the Surface Integrity of Q345 Steel After Nd:YAG Laser Cleaning of Oxidized Mining Parts. Coatings, 10 (8), 716. https://doi.org/10.3390/coatings100 80716.
10. Sheleg V. K., Shpakevich D. A., Gorbunov A. V., Lap-kovskiy A. S., Lutsko N. I. (2024) Study of the Process of Laser Cleaning of Low-Carbon Steel From Corrosion Products. Mashinostroenie: Respublikanskii Mezhvedom-stvennyi Sbornik Nauchnykh Trudov [Mechanical Engineering: Republican Interdepartmental Collection of Scientific Works]. Minsk, BNTU, 114-122 (in Russian).
11. Zhang G., Hua X., Huang Y., Zhang Y., Li F., Shen C., Cheng J. (2020) Investigation on Mechanism of Oxide Removal and Plasma Behavior During Laser Cleaning on Aluminum Alloy. Applied Surface Science, 506, 144666. https://doi.org/10.1016/j.apsusc.2019.144666.
12. Windmann M., Rottger A., Kugler H., Theisen W. (2016) Removal of Oxides and Brittle Coating Constituents at the Surface of Coated Hot-Forming 22MnB5 Steel for a Laser Welding Process with Aluminum Alloys. Surface and Coatings Technology, 285, 153-160. https://doi.org/10. 1016/j.surfcoat.2015.11.037.
13. Wang X., Xu M., Wang Z., Shen L., Qiu M., Tian Z., Ahsan M., Wang C. (2019) Properties of Jet-Plated Ni Coating on Ti Alloy (Ti6Al4V) with Laser Cleaning Pre-treatment. Metals, 9 (2), 248. https://doi.org/10.3390/ met9020248.
14. Grigor'eva I. A., Parfenov V. A., Prokuratov D. S., Shakhmin A. L. (2017) Laser Cleaning of Copper in Air and Nitrogen Atmospheres. (in Russian). Journal of Optical Technology, 84 (1), 1-4. https://doi.org/10.1364/J0T. 84.000001.
15. Napadlek W. (2009) Ablative Laser Cleaning of Materials. Journal of KONES Powertrain and Transport, 16 (1), 357-366.
16. Hino M., Mitooka Y., Murakami K., Nishimoto K., Kana-dani T. (2011) Application of Laser Removal Processing on Magnesium Alloy Anodized from Phosphate Solution. Materials Transactions, 52 (6), 1116-1122. https://doi. org/10.2320/matertrans.mc201005.
17. Kumar A., Bhatt R. B., Behere P. G., AfZal M., Kumar A., Nilaya J. P., Biswas D. J. (2014) Laser-Assisted Surface Cleaning of Metallic Components. Pramana, 82 (2), 237-242. https://doi.org/10.1007/s12043-013-0665-6.
18. Kumar A., Sonar V. R., Das D. K., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P. (2014). Laser Cleaning of Tungsten Ribbon. Applied Surface Science, 308, 216-220. https://doi.org/10.1016/j.apsusc.2014.04.138.
■ Наука
итехника. Т. 24, № 1 (2025)
19. Prokuratov D., Samokhvalov A., Pankin D., Vereshcha-gin O., Kurganov N., Povolotckaia A., Shimko A., Mikhai-lova A., Balmashnov R., Reveguk A. (2023) Investigation towards Laser Cleaning of Corrosion Products from Lead Objects. Heritage, 6 (2), 1293-1307. https://doi.org/10. 3390/heritage6020071.
20. Schubert S., Barday R., Kamps T., Quast T., Sievert F., Varkhalov A., Nietubyc R., Smedley J., Weinberg G. (2012) Investigation on Laser-Cleaning Process on Lead Photocathodes. Proc. of 3rd Int. Conf. on Particle Accelerator, IPAC 2012, New Orleans, LA, USA, Conference Proc. C1205201, 1515-1517. Available at: https://accel conf.web.cern.ch/IPAC2012/papers/tuppd050.pdf.
21. Palomar T., Oujja M., Llorente I., Ramírez Barat B., Cañamares M. V., Cano E., Castillejo M. (2016). Evaluation of Laser Cleaning for the Restoration of Tarnished Silver Artifacts. Applied Surface Science, 387, 118-127. https://doi.org/10.1016Zj.apsusc.2016.06.017.
22. Marotta A., Gorbunov A. V., Mosse A. L. (2004) Heat and Mass Transfer During Plasmachemical Synthesis of Doped Lanthanum Chromite Powders for High-Temperature Semiconducting Materials. Heat Transfer Research, 35 (5-6), 427-430. https://doi.org/10.1615/ HeatTransRes.v35.i56.110.
23. Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yats-kevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C-H-O-N-Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tehnika = Science & Technique, 20 (5), 390-398. https://doi.org/10. 21122/2227-1031-2021-20-5-390-398.
24. Mourao R., Marquesi A. R., Gorbunov A. V., Petraconi Filho G., Halinouski A. A., Otani C. (2015) Thermoche-mical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760-3767. https://doi.org/10.1109/TPS.2015.2416129.
25. Fomin V. M., Golyshev A. A., Orishich A. M., Shul-yat'ev V. B. (2017) Energy Balance in High-Quality Cutting of Steel by Fiber and CO2 Lasers. Journal of Applied Mechanics and Technical Physics, 58 (2), 371-378. https://doi.org/10.1134/S0021894417020237.
26. McPherson R. (1981) The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings. Thin Solid Films, 83 (3), 297-310. https://doi.org/10.1016/0040-6090(81)90633-7.
27. Pateyron B., Calve N., Pawlowski L. (2013) Influence of Water and Ethanol on Transport Properties of the Jets used in Suspension Plasma Spraying. Surface and Coatings Technology, 220, 257-260. https://doi.org/10.1016/ j.surfcoat.2012.10.010.
28. Grimm M., Conze S., Berger L. M., Paczkowski G. (2021) Changes in the Coating Composition Due to APS Process Conditions for Al2O3-Cr2O3-TiO2 Ternary Powder Blends. Journal of Thermal Spray Technology, 30 (1-2), 168-180. https://doi.org/10.1007/s11666-020-01133-3.
29. Kulik A. Ya., Borisov Yu. S., Mnukhin A. S., Nikitin M. D. (1985) Gas Thermal Spraying of Composite Powders. Leningrad, Mashinostroenie Publ. 199 (in Russian).
30. Vorobyev A. Y., Guo C. (2007). Residual Thermal Effects in Laser Ablation of Metals. Journal of Physics: Conference Series, 59, 418-423. https://doi.org/10.1088/ 1742-6596/59/1/089.
31. National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69. Available at: https:// webbook.nist.gov/chemistry/form-ser/.
32. Haynes W. M. (ed.) (2016) CRC Handbook of Chemistry and Physics. 97th ed. CRC Press, USA. 2670. https://doi. org/10.1201/9781315380476.
33. Samsonov G. V. (1982). The Oxide Handbook. 2nd ed. IFI/Plenum, Springer, New York. 463.
34. Shackelford J. F., Alexander W. (2001) CRC Materials Science and Engineering Handbook. 3rd ed. CRC Press, Boca Raton, FL, USA. 645. https://doi.org/10.1201/9781 420038408.
35. Masdeu F., Carmona C., Horrach G., Muñoz J. (2021) Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14, 998. https://doi.org/10.3390/ma14040998.
36. Yan Y., Ji L., Bao Y., Jiang Y. (2012). An Experimental and Numerical Study on Laser Percussion Drilling of Thick-Section Alumina. Journal of Materials Processing Technology, 212 (6), 1257-1270. https://doi.org/10.1016/). jmatpro-tec.2012.01.010.
37. Yan C., Li L., Li D. (2008) Experimental Measurement on the Absorption Coefficients of Al2O3 Ceramics to CO2 Laser Radiation (in Chinese). Hunan Daxue Xuebao / Journal of Hunan University (Natur. Sci.), 35 (1), 41-44.
38. Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J. (1992). Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in Stepwise Reduction. ISIJ International, 32 (7), 829-837. https://doi.org/10.2355/isijinternational.32.829.
39. Endo R., Yagi T., Ueda M., Susa M. (2014). Thermal Diffu-sivity Measurement of Oxide Scale Formed on Steel during Hot-rolling Process. ISIJ International, 54 (9), 2084-2088. https://doi.org/10.2355/isijinternational.54.2084.
40. Bergström D., Powell J., Kaplan A. F. H. (2007) The Ab-sorptance of Steels to Nd:YLF and Nd:YAG Laser Light at Room Temperature. Applied Surface Science, 253 (11), 5017-5028. https://doi.org/10.1016Zj.apsusc.2006.11.018.
41. Marusak L. A., Messier R., White W. B. (1980). Optical Absorption Spectrum of Hematite, aFe2O3 Near IR to UV. Journal of Physics and Chemistry of Solids, 41 (9), 981-984. https://doi.org/10.1016/0022-3697(80)90105-5.
42. Li M., Akoshima M., Endo R., Ueda M. (2022) Thermal Diffusivity and Conductivity of Fe3O4 Scale Provided by Oxidation of Iron. ISIJ International, 62 (1), 275-277. https://doi.org/10.2355/isijinternational.ISIJINT-2021-326.
43. Schlegel A., Alvarado S. F., Wachter P. (1979) Optical Properties of Magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12 (6), 1157-1164. https://doi.org/10. 1088/0022-3719/12/6/027.
44. Holmes R. D., O'Neill H. S. C., Arculus R. J. (1986). Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO, and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900-1400 K. Geochimica et Cosmochimica Acta, 50 (11), 2439-2452. https://doi.org/10.1016/0016-7037(86)90027-x.
45. Iron (II) Oxide. CeraWiki. Available at: https://ceramica. fandom.com/wiki/Iron(II)_oxide.
46. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M. (1999) Advanced Inorganic Chemistry. 6th ed. New York, Wiley-Interscience. 1376.
47. Li M., Endo R., Akoshima M., Susa M. (2017) Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation.
ISIJ International, 57 (12), 2097-2106. https://doi.org/10. 2355/isijinternational.ISIJINT-2017-301.
48. Henning T., Mutschke H. (1997) Low-Temperature Infrared Properties of Cosmic Dust Analogues. Astronomy and Astrophysics, 327, 743-754.
49. Li Z., Xu J., Zhang D., Shan D., Guo B. (2022) Finite Element Simulation of Temperature Field in Laser Cleaning of TA15 Titanium Alloy Oxide Film (in Chinese). Scientia Sinica Technologica, 2022, 52 (2), 318-332. https://doi.org/10.1360/SST-2021-0059.
50. Bale C. W., Be'lisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A. E., Hack K., Jung I.-H., Kang Y.-B., Melancon J., Pelton A. D., Petersen S., Robelin C., Sang-ster J., Spencer P., van Ende M.-A. (2016) Factsage Thermochemical Software and Databases, 2010-2016. Calphad, 54, 35-53. https://doi.org/10.1016/jxalphad. 2016.05.002
51. Corundum, Aluminum Oxide, Alumina, 99.9%, Al2O3. MatWeb. Available at: https://www.matweb.com/search/ datasheet.aspx?MatGUID=c8c56ad547ae4cfabad15977bf b537 f1&ckck=1.
52. Krzhizhanovsky R. E., Stern Z. Y. (1973) Thermophysical Properties of Non-Metallic Materials (Oxides). Leningrad, Energiya Publ., Leningrad Branch. 336 (in Russian).
53. Lidin R. A., Andreeva L. L., Molochko V. A. (2006) Constants of Inorganic Substances. 2nd ed. Moscow, Drofa Publ. 685 (in Russian).
54. Lamoreaux R. H., Hildenbrand D. L., Brewer L. (1987) High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. Journal of Physical and Chemical Reference Data. 16 (3), 419-443. https://doi.org/10. 1063/1.555799.
55. Li Y., Li J., Dong H., Zhang W., Jin G. (2024). Simulation and Experimental Study on Continuous Wave Fiber Laser Removal of Epoxy Resin Paint Film on the Surface of 6061 Aluminum Alloy. Photonics, 11 (1), 82. https:// doi.org/10.3390/photonics11010082.
56. Wang C., Zhao Z., Zhou H., Zeng J., Zhou Z. (2023) Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface. Micromachines, 14 (11), 2012. https://doi.org/10.3390/mi14112012.
57. McQuarrie M. (1954) Thermal Conductivity: VII, Analysis of Variation of Conductivity with Temperature for Al2O3, BeO, and MgO. Journal of the American Ceramic Society, 37 (2), 91-95. https://doi.org/10. 1111 /j. 1551 -2916.1954.tb20106.x.
58. Munro M. (2005). Evaluated Material Properties for a Sintered alpha-Alumina. Journal of the American Ceramic Society, 80 (8), 1919-1928. https://doi.org/10.1111/j. 1151-2916.1997.tb03074.x.
59. Yang K., Zhou X., Liu C., Tao S., Ding C. (2013) Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite Under Severe Conditions. Journal of Thermal Spray Technology, 22 (7), 1154-1162. https://doi.org/10.1007/s11666-013-9959-y.
60. He Q., Hao Q., Chen G., Poudel B., Wang X., Wang D., Ren Z. (2007) Thermoelectric Property Studies on Bulk TiOx with x from 1 to 2. Applied Physics Letters, 91 (5), 052505. https://doi.org/10.1063/L2767775.
61. Harada S., Tanaka K., Inui H. (2010) Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magne'li Phases. Journal of Applied Physics, 108 (8), 083703. https://doi.org/10.1063/L3498801.
Наука
итехника. Т. 24, № 1 (2025)
62. Sugiyama K., Takéuchi Y. (1991). The Crystal Structure of Rutile as a Function of Temperature up to 1600°C. Zeitschrift Für Kristallographie - Crystalline Materials, 194 (3-4), 305-313. https://doi.org/10.1524/zkri.1991.194.3-4.305.
63. Liao D., Wang Q., Wang F., Chen H., Ji F., Wen T., Zhou L. (2023) Effect of Nanosecond Pulsed Laser Cleaning Scanning Speed on Cleaning Quality of Oxide Films on TC4 Titanium Alloy Surface. Chinese Journal of Lasers, 50 (4), 0402020 (in Chinese). https://doi.org/10.3788/CJL220819.
64. Park J., Kim D., Kim H., Lee J., Chung W. (2021) Thermal Radiative Copper Oxide Layer for Enhancing Heat Dissipation of Metal Surface. Nanomaterials, 11 (11), 2819. https://doi.org/10.3390/nano11112819.
65. Palik E. (ed.) (1991) Handbook of Optical Constants of Solids. Vol. II. Academic Press, San Diego, 1991.
66. Timoshpolsky V. I., Samoilovich Yu. A., Trusova I. A., Khopova O. G. (2001) Calculation Analysis of the Occurrence of "Dark Spots" During Thermal Interaction of Heated Wares with Supporting Devices of Reheating/ Continuous Furnaces. Metallurgiya: Respublikanskii Mezhvedomstvennyi Sbornik Nauchnykh Trudov [Metallurgy: Republican Interdepartmental Collection of Scientific Works]. Minsk, Vysshaya Shkola Publ., Iss. 25, 12-23 (in Russian).
67. Shi D., Zou F., Zhu Z., Sun J. (2014). Modeling the Normal Spectral Emissivity of Red Copper T2 at 800-1,100 K During the Growth of Oxide Layer. Transactions of the Indian Institute of Metals, 68 (4), 601-609. https://doi. org/10.1007/s12666-014-0490-8.
68. Ding C. X., Huang B. T., Lin H. J. (1984) Plasma-Sprayed Wear Resistant Ceramic and Cermet Coating Materials. Thin Solid Films, 118 (4), 485-493. https://doi. org/10.1016/0040-6090(84)90277-3.
69. Wang S., Wang Y., Zhang S., Wang L., Chen S., Zheng H., Zhang C., Liu S., Cheng G.J., Liu F. (2021) Na-noscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation. Micromachines, 12 (10), 1188. https://doi.org/10.3390/mi12101188.
70. Teulet P., Girard L., Razafinimanana M., Gleizes A., Bertrand P., Camy-Peyret F., Baillot E., Richard F. (2006) Experimental Study of an Oxygen Plasma Cutting Torch: II. Arc-Material Interaction, Energy Transfer and Anode Attachment. Journal of Physics D: Applied Physics, 39 (8), 1557-1573. https://doi.org/10.1088/0022-3727/39/8/015.
71. Li G., Wang P. (2013) Properties of Steel at Elevated Temperatures. Advanced Analysis and Design for Fire Safety of Steel Structures. Advanced Topics in Science and Technology in China, 37-65. https://doi.org/10.1007/ 978-3-642-34393-3_3.
72. Okumu H. W. (2022) Cleaning of Metal Surfaces by Laser Irradiation; Mathematical Modeling and Experimental Analysis. Tesis de Maestría en Ciencias (Óptica). Centro de Investigaciones en Óptica, A.C. León, Guanajuato. 91. Available at: https://cio.repositorioinstitucio nal.mx/ jspui/handle/1002/1243.
73. Kermanpur A., Mahmoudi Sh., Hajipour A. (2008) Numerical Simulation of Metal Flow and Solidification in the Multi-Cavity Casting Moulds of Automotive Components. Journal of Materials Processing Technology, 206 (1-3), 62-68. https://doi.org/10.1016/j.jmatprotec. 2007.12.004.
74. Muller M., El-Rabii H., Fabbro R. (2015). Liquid Phase Combustion of Iron in an Oxygen Atmosphere. Journal of Materials Science, 50 (9), 3337-3350. https://doi.org/10. 1007/s10853-015-8872-9.
75. Devoino O. G., Gorbunov A. V., Lapkovsky A. S., Lut-sko N. I., Shpakevitch D. A., Gorbunova V. A., Koval V. A. (2024) Data Sets Formation on the Physical Properties of Oxide Scale Components for theoretical Assessment of efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes. Nauka i Tehnika = Science & Technique, 23 (3), 192-203. https://doi.org/10.21122/2227-1031-2024-23-3-192-203.
76. Lienhard J. H. IV, Lienhard J. H. V. (2019) A Heat Transfer Textbook. 5th ed. Phlogiston Press. 784.
77. Frewin M. R. (1997) Experimental and Theoretical Investigation of Tandem Laser Welding. Doctor of Philosophy Thesis. University of Wollongong, Australia. 179. Avai lable at: https://core.ac.uk/download/pdf/37028176.pdf.
78. Volpp J. (2023). Laser Beam Absorption Measurement at Molten Metal Surfaces. Measurement, 209, 112524. https://doi.org/10.1016/j. measurement.2023.112524.
79. Dausinger F., Shen J. (1993). Energy Coupling Efficien-cyin Laser Surface Treatment. ISIJ International, 33 (9), 925-933. https://doi.org/10.2355/isijinternational.33.925.
80. Chen Y., Xie X., Xiao X. (2019). An Evolving Model of Surface Profile Produced by Nanosecond laser Ablation on Aluminum Alloy. JLMN-Journal of Laser Micro Nanoengineering, 14 (2), 152-160. https://doi.org/10. 2961/jlmn.2019.02.0007.
81. Chen M. J., Zhang P., Li Q. (2018) Design and Heat Transfer Analysis of a Compound Multi-Layer Insulations for Use in High Temperature Cylinder Thermal Protection Systems. Science China Technological Sciences, 61 (7), 994-1002. https://doi.org/10.1007/s11431-017-9250-x.
82. Yu H., Li H., Wu X., Yang J. (2020). Dynamic Testing of Nanosecond Laser Pulse Induced Plasma Shock Wave Propulsion for Microsphere. Applied Physics A, 126 (1), 63. https://doi.org/10.1007/s00339-019-3243-z.
83. Lammers N. A., Bleeker A. (2007) Laser Shockwave Cleaning of EUV Reticles. Naber R. J., Kawahira H. (ed.). Photomask Technology. Proc. of SPIE, 6730, 67304P. https://doi.org/10.1117/12.746388.
84. Lim H., Jang D., Kim D., Lee J. W., Lee J. M. (2005). Correlation Between Particle Removal and Shock-Wave Dynamics in the Laser Shock Cleaning Process. Journal of Applied Physics, 97 (5), 054903. https://doi.org/10.1063/L1857056.
85. Campanella B., Legnaioli S., Pagnotta S., Poggialini F., Pal-leschi V. (2019). Shock Waves in Laser-Induced Plasmas. Atoms, 7 (2), 57. https://doi.org/10.3390/atoms7020057.
86. Kumar A., Prasad M., Bhatt R., Behere P., Afzal M., Kumar A., Nilaya J., Biswas D. (2014) Laser Shock Cleaning of Radioactive Particulates From Glass Surface. Optics and Lasers in Engineering, 57, 114-120. https://doi.org/10.1016/) .optlaseng.2014.01.013.
87. Gu Q., Feng G., Zhou G., Han J., Luo J., Men J., Jiang Y. (2018) Regional Effects and Mechanisms of Nanoparticle Removal From Si Substrate by Laser Plasma Shock Waves. Applied Surface Science, 457, 604-615. https://doi.org/10.1016Zj.apsusc.2018.06.234.
88. Fabbro R., Fournier J., Ballard P., Devaux D., Virmont J. (1990) Physical Study of Laser-Produced Plasma in Confined Geometry. Journal of Applied Physics, 68 (2), 775-784. https://doi.org/10.1063/L346783.
89. Berthe L., Fabbro R., Peyre P., Bartnicki E. (1999) Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime. Journal of Applied Physics, 85 (11), 7552-7555. https://doi.org/10.1063/L370553.
Received: 27.06.2024 Accepted: 27.08.2024 Published online: 31.01.2025
H HayKa
«TexHMKa. T. 24, № 1 (2025)