Научная статья на тему 'Метод структурного синтеза систем преобразования гетерогенных сигналов'

Метод структурного синтеза систем преобразования гетерогенных сигналов Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
181
37
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОПТИМИЗАЦИЯ / ГЕТЕРОГЕННЫЕ ПРЕОБРАЗОВАТЕЛИ / СИСТЕМЫ НА КРИСТАЛЛЕ / OPTIMIZATION / HETEROGENEOUS CONVERTERS / SYSTEM-ON-CHIP

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Орлов Сергей Павлович

В статье сформулирована многокритериальная задача синтеза структуры микроэлектронных устройств на кристалле для преобразований гетерогенных сигналов. Рассмотрен подход к решению задачи на основе теории формальной технологии. Приведена схема алгоритма решения задачи оптимизации.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Method of STRUCTURAL SYNTHESIS FOR conversion systems Heterogeneous SIGNALS

In the paper the problem of multi-criteria optimization of structural synthesis of microelectronic devices on a chip for heterogeneous signal conversion is formulated. An approach to the problem based on the theory of formal technology. A scheme of the algorithm for solving the optimization problem is given.

Текст научной работы на тему «Метод структурного синтеза систем преобразования гетерогенных сигналов»

УДК 004.383.8+681.324 ББК 32.973.2

Орлов С.П.

МЕТОД СТРУКТУРНОГО СИНТЕЗА СИСТЕМ ПРЕОБРАЗОВАНИЯ ГЕТЕРОГЕННЫХ СИГНАЛОВ

Orlov S.P.

METHOD OF STRUCTURAL SYNTHESIS FOR CONVERSION SYSTEMS HETEROGENEOUS SIGNALS

Ключевые слова: оптимизация, гетерогенные преобразователи, системы на кристалле.

Key words: optimization, heterogeneous converters, system-on-chip.

Аннотация: в статье сформулирована многокритериальная задача синтеза структуры микроэлектронных устройств на кристалле для преобразований гетерогенных сигналов. Рассмотрен подход к решению задачи на основе теории формальной технологии. Приведена схема алгоритма решения задачи оптимизации.

Abstract: in the paper the problem of multi-criteria optimization of structural synthesis of microelectronic devices on a chip for heterogeneous signal conversion is formulated. An approach to the problem based on the theory of formal technology. A scheme of the algorithm for solving the optimization problem is given.

Введение

Характерной чертой современных информационных и измерительных систем является многообразие обрабатываемых сигналов различной физической природы и формы. В связи с этим в электронной промышленности развивается перспективное направление - разработка многофункциональных программируемых систем на кристалле (СНК). Это направление относится к нанотехнологиям и позволяет построить микроминиатюрные системы с совершенно новыми возможностями обработки разнородных (гетерогенных) сигналов.

В настоящее время существует ряд схемотехнических направлений в построении многофункциональных систем аналого-цифровых преобразователей на кристалле. Отметим аналоговые системы с внутренним программированием ispPAC10, ispPAC20, ispPAC30, ispPAC80 корпорации Lattice Semiconducter Corporation [1] и аналого-цифровые программируемые СНК PSoC фирмы Cypress Semiconducter Corp. [2]. Эти системы ориентированы на гетерогенные преобразования «аналог-код» и «код-аналог». Отметим, что все более широкое распространение приобретают микроэлектронные системы с гибкой структурой, предоставляющие возможные комбинации различных гетерогенных преобразований. К ним относятся: «частота-напряжение», «частота-код», время-импульсные, частотно-импульсные и другие.

В тоже время анализ состояния в области программируемых систем на кристалле свидетельствует о том, что существующие методы их синтеза не решают связанных с этим проблем в полном объеме.

1 Общая процедура синтеза

Процедура синтеза архитектуры и схемотехнических решений системы гетерогенных преобразователей на кристалле (СГПНК) основана на использовании теоретических методов, разработанных С.М. Крыловым [3,4]. Этот подход фактически развивает концепции Р. Эшби, Дж. Клира, А.А. Богданова, Е.М. Карпова и других авторов, предлагая следующее формальное представление для любого компонента (объекта) системы:

ai=<gpi, Mfi>=<{ g^ gib... gin }, { gj=j ( &*..., gjk);...; gir=jr ( gt..., gml)}> (1)

где:

gpi - список параметров {gi0, gi1,... gin}, отображающих свойства данного элемента ai на числовую ось или на другую - заранее оговариваемую - нечисловую шкалу;

Mfi={gj=jj(gis,..., gjk);...; gir = jr(git,..., gml)} - список функциональностей (методов), относящихся к этим свойствам.

В зависимости от типа и вида объектов списки параметров, представляющих свойства в (1), могут иметь разную длину и различный состав.

Выражение (1) и ряд доказанных в [3,4] утверждений унифицируют представление как гомогенных, так и гетерогенных компонентов гетерогенных систем, что позволяет опираться на них при дальнейшем анализе и синтезе микроэлектронных систем на основе гетерогенных компонентов.

Для проверки корректности разработанных теоретических положений и подходов к анализу и синтезу гетерогенных подсистем СГПНК в работе [5] предложена методология синтеза гетерогенных функционально-замкнутых фрагментов аналого-цифровых подсистем для решения различных задач. Здесь используются концепции конверторов и гетерогенных функциональных блоков с оценкой их эффективности на основе заданного критерия, в качестве которого принят критерий сложности реализации функциональных блоков (ФБ) в микроэлектронном исполнении.

Объективной оценкой такой сложности в СГПНК представляется площадь, занимаемая тем или иным функциональным блоком на кристалле.

В работе [6] построены специальные таблицы, описывающие свойства гетерогенных систем:

- таблица ТП возможных сочетаний «вход-выход» для электрических сигналов и параметров;

- таблица ТГМ гомогенных функциональных блоков;

- таблица ТГТ гетерогенных функциональных блоков;

- таблица ТК микроэлектронных компонентов функциональных блоков СГПНК и их параметров.

На основе этих таблиц организуется база данных для оптимального проектирования гетерогенных микроэлектронных систем.

2 Многокритериальная задача синтеза гетерогенных систем обработки информации

В качестве примера рассмотрена многокритериальная задача синтеза гетерогенных систем обработки информации с использованием трех критериев: площадь системы, функциональная полнота системы, функциональная замкнутость системы.

Использование методов теории гетерогенных схем заключается в осуществлении направленного перебора архитектурных и схемотехнических решений в структурах ^ , j=1,2,..., J,

СГПНК, альтернативных по отношению к базовой структуре :

= , тк, тгм , тгт , р\ (2)

где:

Ф - оператор выбора ФБ и компонентов 11 е TK на основе функциональной полноты и функциональной замкнутости;

ТГМ - множество гомогенных ФБ, возможных для использования в СГПНК;

ТГТ - множество гетерогенных ФБ, возможных для использования в СГПНК;

Тк - множество компонент, входящих в ФБ;

P - множество технологических параметров.

Множество альтернативных вариантов структур сокращается путем применения в процедуре оптимизации условий функциональной полноты и функциональной замкнутости в проектируемой системе.

Выполним декомпозицию площади кристалла на архитектурно-пространственные зоны в соответствии с заданными функциональностями в СГПНК.

Рассмотрим полную структуру СГПНК на кристалле :

ЧКр = {^ I l = 1,2,..., L, (3)

где L - число архитектурно-пространственных зон на кристалле.

По функциональным и технологическим требованиям некоторые зоны содержат фиксированные структуры, не меняющиеся при синтезе.

Тогда W =^с U ^, где - множество постоянного структур, ¥v - множество пере-

менных структур, участвующих в процедуре синтеза.

Задача синтеза гетерогенной системы обработки информации в СГПНК первоначально формулируется как многокритериальная задача. Интегральный критерий зависит от трех критериев и имеет вид:

КИНТ (S кр, KFP , KFZ ) ^ opt, (4)

где:

8кр - площадь, занимаемая на кристалле системой;

KFP - критерий функциональной полноты функциональных блоков, используемых в гетерогенной системе;

KFZ - критерий функциональной замкнутости.

Для решения задачи синтеза преобразуем задачу (4) в однокритериальную задачу, выбирая в качестве главного критерия площадь 8кр и переводя в ограничения KFP и KFZ. Критерий

8кр площади представим в виде:

zv L

sv =Ls'v + £ SC ■ (5)

j=1 n= Jv +1

где:

S vj - площадь j - й зоны с переменной структурой;

J v - число таких зон;

Scn - площадь n-й зоны с фиксированной структурой.

Тогда задача синтеза структур гетерогенных подсистем СГПНК сводится к задаче минимизации площади, занимаемой ими на кристалле, с соответствующими ограничениями.

Зададим бинарные переменные для целевой функции:

XJ = К' } 1 є IJ и Yi = lm і’ m є M1,

где:

|"1 - если і - й гетерогенный блок ФБ входит в структуру Y . єТ„ ІО - в противном случае,

(6)

Xji =

11- если т - й компонент из Тк входит в г - й ФБ

Ут = ^ ;

[0 - в противном случае,

I - индексное множество ФБ, входящих в ^.;

3

Мг - индексное множество компонентов из Тк , принадлежащих г- му ФБ из структуры

Тогда необходимо найти векторы X и Y, минимизирующие целевую функцию £кр:

Jv

£ £ £ SmXjiyim ^ ^ (7)

j=1 ieItmeM,

J J 1

где:

Sm = kpmkTmZm - площадь, занимаемая на кристалле компонентом tm е TK ; kpm , ктт - технологические параметры, Zm = const - параметр, задающий величину площади для tm .

Ограничения для целевой функции:

1. В структуре *¥j должен существовать кортеж FPj функциональных блоков, такой, что:

FP: = {ФБк }: ((ФБк е Тш) v (ФБк е ТГТ)) л (FPf - удовлетворяет заданным J J (8)

условиям ).

2. Функциональная замкнутость. Структура ^. должна удовлетворять условиям, определяемым из свойств общей формальной технологии [3] .

3. Ограничение на использование компонентов в функциональных блоках:

vtm «Щ-, 1 е Ij, m е Ml ^ ym = 0 (9)

где Qi - множество компонентов, допустимых для использования в i - м ФБ.

4. Ограничение на максимальную площадь Smax , реализуемую на кристалле:

Sv — S„„. (10)

5. Ограничение на минимально возможную площадь m -го компонента функционального

блока,- при заданной величине рассеиваемой мощности PmM :

Sm > S"„(PM), m е Mi. (11)

6. Ограничение на сечение проводников в i - м функциональном блоке:

h > i е ij . (12)

7. Ограничение на технологический параметр p-n переходов транзисторов в функциональных блоках:

PHi > PHmi„i, i е Ij , (13)

где PHminJ - допустимый размер p-n перехода при выбранной технологии реализации

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

транзисторов в функциональном блоке.

3 Схема алгоритма оптимизации по критерию минимума площади кристалла

На начальном этапе формируется база данных синтеза и выбирается структура ¥Б базового варианта проектируемого СГПНК. Затем формулируется и решается задача многокритериальной оптимизации при синтезе структуры системы. Так как используются дискретные переменные, задача относится к целочисленному программированию и для решения применяется

метод ветвей и границ [7]. Если найти решение этой задачи не удается, то сперва в алгоритме выполняется коррекция таблицы ТК путем изменения параметров компонентов или введением новых компонентов для ФБ.

Если и это не дает результат, производится введение в таблицы ТП , Тгм , ТГТ данных о новых функциональных блоках. Итерации повторяются, пока не будет получено решение, на основе которого формируются спецификации для САПР проектирования кристалла СГПНК.

Подробный алгоритм синтеза с решением задачи минимизации площади кристалла СГПНК представлен на рисунке 1.

При одних и тех же нормах проектирования площадь, занимаемая компонентами функционального блока, зависит от его параметров и характеристик и может быть достаточно точно рассчитана. В качестве примера в таблице 1 приведены критерии оценки площади, занимаемой основными функциональными блоками для решения различных задач, связанных с построением схем коррекции смещения нуля для дифференциальных операционных усилителей, полученные по классическим методам и по предлагаемому методу оптимизации.

В таблице 1 за единицу площади принимается площадь, занимаемая «единичным» элементом - МОП-транзистором (размером 1х1мкм ).

Коэффициенты в формулах таблицы 1 имеют следующий смысл:

кр - коэффициент, связывающий площадь «единичного» элемента и того, который необходим в данной конкретной схеме (при увеличении мощности размеры элемента увеличиваются);

кт - коэффициент, связывающий текущую расчётную площадь элемента с его реальной площадью, занимаемой на кристалле (то есть с учётом необходимой пустой поверхности кристалла);

кЯ - коэффициент, связывающий сопротивление резистора величиной в одну единицу, с его длиной,

Я - величина резистора в принятых единицах, С - ёмкость конденсатора в принятых единицах;

кс - коэффициент, связывающий ёмкость конденсатора величиной в одну единицу, с его площадью,

Я - величина одного резистора в сетке ЦАП типа 2т ^ на т разрядов;

Яі, Я2 - величины резисторов в сетке двухполярного ЦАП типа 2т-Я на т разрядов и в цепи задатчика тока двухполярного токового зеркала для этого ЦАП соответственно,

кр2 - коэффициент, связывающий площадь транзисторов токового зеркала двухполярного ЦАП с площадью «единичного» элемента.

Заключение

Данный подход позволяет находить альтернативные решения, построенные на гетерогенных преобразователях, которые могут быть более точными, компактными и простыми с точки зрения сложности проектирования и общей площади получаемых схем. В статье рассмотрены системы с цифро-аналоговыми и аналого-цифровыми преобразованиями, но общность используемой теоретической базы позволяет применять методику и для систем на кристалле с гетерогенными преобразованиями других типов и другой физической природы.

Рисунок 1 - Алгоритм синтеза гетерогенных систем с решением задачи минимизации

площади кристалла

Таблица 1 - Параметры и качественные характеристики различных функциональных блоков при реализации в составе СГПНК___________________________________________________________________

Тип ФБ Тип Слож- ность Авто- настр. ^м0 Площадь, в заданных единицах. Точность или Есм0, мВ Макс. число функций

Резистор R Ia/Ua Ua/Ia Низкая нет kpkjkpR 20% 2

Ёмкость С Ua/UhUh/U h Низкая нет kpkrkCC 10% 2

МОП-транзстор Ua/R Низкая нет kpkT - 1

Я^-триггер Uц/Uц Средняя нет 18kPkT - 1

Регистр на т разрядов Uц/Uц Средняя нет 18mkPkT - 1

Непрер. ДОУ Ua/Ua Средняя нет 1000kpkT 10 мВ 2

ДОУ на ПК (Р8оС) Ua/Uh Средняя есть 1240Kpkт+kcCос 1 мВ 5

Непрерывный компаратор Ua/Щ Средняя нет 1000kPkT 10 мВ 1

Компаратор на ПК Ua/Uц Средняя есть 1200kPkT 1 мВ 1

Симметричное токовое зеркало Ia/Ia Низкая нет 2KpkT+kPkjkRR 10% 1

ЦАП на токовом зеркале на т разрядов Uц/Iа Средняя нет kPkT(2m+I+I) + +kPkTkRR 10% 1

2-х-полярный токовый ЦАП на т разрядов Uц/Iа Средняя нет kPkT(2m+2+2) + +kPkTkRR 10% 2

Цифровой инвертор Щ/Щ Низкая - 2kpkT - 1

Ключ КМОП Uц/UаUц/Iа Низкая - 4kpkT - 1

Полный двоичный дешифратор на т входов Uц/Uц Средняя - kpkT(2m+ +2m+I(m+I)) - 1

ЦАП на сетке 2т-Я на т разрядов Uц/Iа Высокая Нет kPkT(2m+ +2m+I(m+2)) + +2m kPkTkRR 20% 1

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Lattice Semiconducter Corporation. In-System Programmable Analog Circuit ispPAC™ 10. September 2000. Электронный ресурс: http://www.latticesemi.com.

2. CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13,

CY8C21x34, CY8C21x23, CY8C64215, CY7C603xx, and CYWUSB6953. PsoC Mixed Signal Array

technical Reference Manual (RTM), Version 2.10 - Cypress Semiconductor. Электронный ресурс: http://www.cypress.com.

3. Крылов, С.М. Формальная технология и эволюция / С.М. Крылов. - М.: Машиностроение^, 2006. - 384 с.

4. Крылов, С.М. Онтология мета-науки. Аксиомы, технологии, алгоритмы, эволюция / С.М. Крылов. - LAP LAMBERT Academic Publishing, Saarbrucken, Deutchland, 2012. - 408 с.

5. Сараев, М.В. Синтез конфигурируемых блоков для аналого-цифровых систем на кристалле с использованием гетерогенных функциональных компонентов / С.М. Крылов, М.В. Сараев // Вестник Самарского государственного технического университета. Серия «Технические науки». - №2 (20). - 2007.

6. Сараев, М.В. Синтез многофункциональных гетерогенных информационноизмерительных систем на основе программируемых аналого-цифровых микроконтроллеров / А.В. Капитонов, С.М. Крылов, А.С. Крылова, Д.В. Лавров, М.В. Сараев, В.Н. Толчев // Вестник Самарского государственного технического университета. Серия «Технические науки». -№1. -2008. - с. 73-78.

7. Алексеев, О.Г. Комплексное применение методов дискретной оптимизации / О.Г. Алексеев - М.: Наука, 1987. -294 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.