УДК 629.365
Б.Б. Косицын1, Г.О. Котиев1, А.В. Мирошниченко2, Б.В. Падалкин1, А.А. Стадухин1
МЕТОД ОБЕСПЕЧЕНИЯ ПОДВИЖНОСТИ РАЗРАБАТЫВАЕМЫХ
КОЛЕСНЫХ И ГУСЕНИЧНЫХ МАШИН С ИНДИВИДУАЛЬНЫМ ЭЛЕКТРОПРИВОДОМ ВЕДУЩИХ КОЛЕС
Московский государственный технический университет им. Н Э. Баумана1
ОКБ «Техника» (Москва)2
Анализируется возможность применения индивидуального электропривода ведущих колес колесных, гусеничных, а также двухзвенных гусеничных машин, а также необходимость разработки новых научных методов обеспечения их подвижности на этапе проектирования. Предложен метод определения основных характеристик привода, основывающийся на аналитическом тяговом расчете с последующим исследованием подвижности с помощью комплекса натурно-математического моделирования, позволяющий проводить имитацию движения машины в режиме «реального времени» под управлением водителя-оператора. В процессе аналитических расчетов определяются максимальная потребная сила тяги, передаточные числа двухдиапазонной трансмиссии машины, а также мощность тяговых электродвигателей, необходимая для обеспечения максимальной скорости. В дальнейшем результаты аналитического расчета используются в качестве исходных данных для исследования транспортных машин с помощью комплекса натурно-математического моделирования. С целью обеспечения заданной подвижности (средней скорости движения по трассе) мощность электродвигателей уточняется путем многократных виртуальных заездов. По результатам обработки данных моделирования могут быть определены моментные и скоростные характеристики кратковременных и длительных режимов работы тяговых электродвигателей, а также необходимые зоны высокого КПД.
Ключевые слова: транспортные средства, колесные машины, гусеничные машины, двухзвенные машины, электропривод, тяговый расчет, натурно-математическое моделирование, тяговый электродвигатель, механическая характеристика.
Введение
Схема электромеханической трансмиссии (ЭМТ) с индивидуальным приводом ведущих колес (ВК) является распространенной для колесных и гусеничных машин, а также перспективной для двухзвенных гусеничных машин. Главными преимуществами применения индивидуального привода ВК на транспортной машине являются простота механической части трансмиссии, легкость ее автоматизации и гибкость управления. При этом ограничения индивидуального привода проявляются в режимах с неравномерной загрузкой тяговых электродвигателей. Для колесных машин (КМ) таковым является преодоление подъема с характерной неравномерной нагрузкой на оси, а для гусеничной машины (ГМ) - поворот (с неравномерным распределением нагрузки на ведущие колеса забегающего и отстающего бортов). В связи с этим, для быстроходных транспортных машин целесообразно применение, по меньшей мере, двух диапазонов в трансмиссии. Высший диапазон предлагается использовать для транспортных задач, а низший - для движения в тяжелых условиях и выполнения технологических операций. Даже для такой тривиальной электромеханической трансмиссии современные научные методы обеспечения подвижности колесных и гусеничных машин на этапе проектирования в настоящее время отсутствуют. В настоящей статье предлагается метод, суть которого состоит в определении основных параметров привода с применением комплекса натурно-математического моделирования, использованием известных аналитических зависимостей тягового расчета и последующим уточнением характеристик тяговых электродвигателей.
© Косицын Б.Б., Котиев Г.О., Мирошниченко А.В, Падалкин Б.В., Стадухин А.А.
Метод выбора потребной механической характеристики тягового электродвигателя транспортной машины
Выбор потребной механической характеристики тягового электродвигателя (ТЭД) предлагается проводить следующей последовательностью действий.
1. Исходя из заданной в техническом задании массы машины, необходимо определить потребную мощность ТЭД для обеспечения максимальной скорости при прямолинейном движении. Для этого применяется зависимость [1] (1):
треб _ ( Ргр + Р\у)Цпах
етах = -п ъ- п ' ( )
//тркпот'<ТЭД
где Рр - сила сопротивления движению машины со стороны опорной поверхности; Рщ - сила сопротивления воздуха; Ртах - требуемая максимальная скорость; /тр - коэффициент полезного действия (КПД) трансмиссии машины; кпоТ - коэффициент, учитывающий потери мощности во вспомогательных агрегатах (для КМ 0,75...0,95 [1], для ГМ 0,83...0,9 [2]); пТЭд -количество тяговых электродвигателей.
В данном случае, силу Рр необходимо выбирать исходя из таких условий эксплуатации, в которых предполагается движение машины со скоростью Ртах ( для КМ Ргр = 0,03 • тд [1], для ГМ и ДГМ Рр = 0,05 • тд [2], где т - масса машины; д - ускорение свободного падения).
2. Предполагается, что первый диапазон трансмиссии исследуемых транспортных машин служит для преодоления максимально сопротивления движению (движение на крутой подъем, буксировка подобной машины или прицепа), а второй обеспечивает динамику машины при выполнении транспортной задачи и достижение максимальной скорости [3] (рис. 1).
Рис. 1. Зависимость удельной силы тяги от скорости машины (1 - технологический диапазон; 2 - транспортный диапазон)
Тогда, задавшись максимальной угловой скоростью ротора ТЭД, определим переда-
точное отношение высшей передачи /Тр следующим образом (2):
тр
^эд • ^вк ^тпг
(2)
где ш™* - максимальная угловая скорость ротора ТЭД (для современных ТЭД, используемых на транспортных машинах, шПДах = 6000-6500 об/мин); гвк - радиус ведущего колеса (в случае КМ допускается использовать динамический радиус колеса при номинальной нагруз-
в
ке).
3. При движении машины на высшей передаче электродвигатель должен обеспечивать возможность преодоления максимального дорожного сопротивления в транспортном диапазоне. Тогда потребный крутящий момент ТЭД Метреб, для каждого из рассматриваемых тит I Нал
пов машин (ГМ, КМ и ДГМ), определяется по формуле (3):
р тахг
м тРеб = Фтэд вк (3)
J 'етах ; в ^ ' ^ /
1тр Чтр^пот
Ртах /
,, ф - максимальная сила дорожного сопротивления в транспортном диапазоне (при-
ТЭД
ходящаяся на один ТЭД).
3.1 В случае ГМ максимальная сила сопротивления движению Рфтах определятся по-
ТЭД
требной тяговой силой на забегающем борту Р2, действующей при повороте в наиболее сложных условиях (поворот на «дернистом грунте») с максимальной дорожной кривизной 0,12 м-1 [4], что соответствует фактическому радиусу поворота К™111 = 8,33 м (4):
ртах = р =^1(г (4)
Рфтэд =Р2= 2 (ГтР+ 2В Г (4)
где /Гр - коэффициент сопротивления прямолинейному движению ГМ (для случая «дернистого грунта» /Тр = 0,07 [5]); /лп - коэффициент сопротивления повороту; Ь - база машины; В - колея машины.
Коэффициент сопротивления повороту определяется по формуле А.О. Никитина [6]
(5):
__^птах_
^ = 0,925 + 0,15^' (5)
в
где - максимальный коэффициент сопротивления повороту ГМ для данной опорной
т а х
поверхности (в случае «дернистого грунта» = 0,85 [5]); - теоретический радиус по-
т а х
ворота ГМ.
Теоретический и фактический радиус поворота Rf ГМ связаны зависимостью [7]
(6):
В
(6)
Ь
В итоге, для ГМ величина Рф т а х определяется по формулам (4), (5) и (6).
ТЭД
3.2 Для транспортных КМ высокой проходимости силу Рфтах оценим следующим об-
ТЭД
разом. Примем, что движение в сложных дорожных условиях, таких как преодоление снежной целины, крутого подъема или заболоченной местности, осуществляется в технологическом диапазоне, тогда максимально возможный коэффициент сопротивления качению КМ при выполнении транспортной задачи может быть реализован при движении по «грунтовой дороге в период распутицы» или по «песчаному грунту» и составляет /гр = 0,15 [5]. При
т а х
этом, даже в случае движения по горному типу рельефа, с вероятностью 90 % угол преодолеваемого подъема не превысит агр = 130 [8]. Тогда максимально возможная сила сопро-
гртах
тивления движению (воспринимаемая одним ТЭД) при выполнении транспортной задачи т а х ТЭД
ПТЭД
Рф т а х определяется из решения уравнения (7):
cos(агР ) + sm(агР )) = / тт( Рфтах, ), (7)
а Угртах \ гртах/ \ гртахП ¿_, \ фТЭД з^тах]'
¿=1
где - нормальные реакции, воспринимаемые колесами КМ; - максимальный коэф-
т а х
фициент взаимодействия (коэффициент сцепления) движителя с опорным основанием (в случае движения КМ по «грунтовой дороге в период распутицы» достигает величины
0,4). Величина frn cos (агр ) + sin (агр ) = 0,371 для случая КМ меньше величины
у Jlpmax \ 1ртах/ \ 1ртах/ J
= 0,4 в случае «грунтовой дороги в период распутицы», что подтверждает возмож-
шах
г> тах
ность движения и реализации силы сопротивления РрТЭд , исходя из сцепных свойств шины
с опорной поверхностью.
3.3 Для случая ДГМ величина Рф^^ определяется, исходя из условия обеспечения
раздельного движения секций в случае принудительного расцепления или возможности преодоление максимального дорожного сопротивления по аналогии с КМ.
При движении ДГМ на подъем пренебрежем перераспределением нормальных реакций между секциями, тогда, исходя из формул (4) и (7), получим (8):
т а х т а х т а х т а х
^ТЭЛ = ( ^ТЭЛ.. ' ^тял.. ' J'
'ТЭД \ ГТЭД^' УТЭД^' *ТЭДагр,
ртах ртах , ^Л
^ТЭД^ 2 (Ьр+ 2BJ' ^тэДц2 2 (Ьр+ 2В2Г
{Ьтах C0S (агРтах) + SÍn Ктах)) = (8)
= 2тiп (Рфтах , т1дД5тах cos (агр )) V УтЭДа' 2 V т?тах))
+ 2тiп(рфтах т29Дзтах cos (агр )),
V УтЭДатр' 2 V т?тах))'
где т1, т2 - массы первой и второй секции; - коэффициент сопротивления повороту
первой и второй секции для случая поворота с минимальным радиусом К™1П по «дернистому грунту» (определяется по формулам (5)5) и (6)6)); /Тр - коэффициент сопротивления прямолинейному движению ДГМ по «дернистому грунту»; Ь1,Ь2 - база первой и второй секции ДГМ; В1,В2 - колея первой и второй секции ДГМ; Р-ф^* , Рф™^ - сила, потребная для
обеспечения раздельного движения первой и второй секции ДГМ в случае расцепления (приходящаяся на один ТЭД секции ДГМ); р-тах - сила, потребная для преодоления макси-
ТЭДагр
мального дорожного сопротивления по аналогии с КМ (приходящаяся на один ТЭД ДГМ).
Величины агр для случая КМ и ДГМ допускается принять одинаковыми. Коэффи-
тах
циент /гр для ДГМ определим по аналогии с КМ (для случая движения по «сухому пест а х
чаному грунту» Ггртах = [5]). Величина (^а* (агРтах) + Ытах)) = °А2 случая ДГМ меньше величины , достигающей 0,5 в случае «сухого песчаного грунта»
т а х
[5], что подтверждает возможность движения и реализации силы сопротивления р-тах ,
ТЭД«гр
исходя из сцепных свойств гусеницы с опорной поверхностью.
4. При движении машины на низшем диапазоне трансмиссии, ТЭД должен обеспечивать возможность преодоление максимально возможного дорожного сопротивления, исходя из технического задания. Для оценки такого сопротивления целесообразно использовать величину требуемой максимальной удельной силы тяги /уд . Для полноприводных КМ вы-
т а х
сокой проходимости требуемую /уд примем равной /уд = °,7 [9]. Для ГМ и ДГМ, с
т а х т а х
целью обеспечения возможности буксировки себе подобных машин, = 1,1 [3]. Тогда
уд т а х
передаточное отношение низшего диапазона / трн целесообразно определить как (9):
.-тр
■ н _ 'удтах__,-qn.
1тр = треб , ■ (9)
_ fygтах ^ т9 ^ Гвк
^ мтх • ЛтрПтэдк
5. Полученную при помощи тягового расчета величину Ыетреб необходимо скорректи-
т а х
ровать, исходя из условия обеспечения требуемой средней скорости движения по среднестатистическим трассам. Область поиска требуемой тяговой характеристики может быть полу-
чена в следующем виде (рис. 2).
Для решения поставленной задачи используется подход, описанный в [10] и заключающийся в применении комплекса натурно-математического моделирования, который позволяет проводить имитацию движения исследуемых типов машин в режиме «реального времени» под управлением человека.
Разработанный комплекс, состоит из программной части, в которой реализованы математические модели динамики рассматриваемых типов машин и аппаратной части, включающей:
• ЭВМ, служащую для решения дифференциальных уравнений динамики, формирования трехмерного изображения и регистрации данных виртуального заезда;
• органы управления, служащие задания управляющих воздействий водителя;
• дисплей с пользовательским интерфейсом для обеспечения водителя-оператора информацией о прохождении трассы.
Математические модели основаны на представлении движения корпуса транспортной машины в виде плоского движения твердого тела. Одним из допущений является предположение об отсутствии вертикальных колебаний корпуса. Данное допущение позволяет получить информацию о предельных режимах работы ТЭД в связи с отсутствием ограничений скорости движения, связанных с влиянием системы подрессоривания. Основные уравнения и подходы, используемые в моделях, изложены в [11,12].
Таким образом, осуществляя виртуальные заезды по среднестатистическим трассам, необходимо, изменяя итерационным путем максимальную мощность ТЭД, определить такую
N
треб
, которая позволит обеспечить требуемую среднюю скорость движения машины в за-
данных условиях (рис. 3).
0 Угловая скорость, рад/с
Рис. 2. Область поиска потребной тяговой характеристики
т а х
На рис. 3 показано ограничение средней скорости, следовательно, максимальной мощности ТЭД, связанное с безопасностью движения и обусловленное существованием критической скорости ТС в повороте по «заносу» и «опрокидыванию».
Рис. 3. Качественная зависимость средней скорости движения машины от максимальной мощности ТЭД
Заезды необходимо проводить по трассе, протяженность которой позволит обеспечить приближение средней скорости движения машины к некоторому установившемуся значению. Как показывает практика использования комплекса натурно-математического моделирования, для оценки средней скорости движения ТС на каждой итерации по мощности ТЭД следует проводить не менее трех заездов, с целью снижения влияния ошибок при вождении (съезд с трассы и т.д.) Полученная таким образом величина Метреб(^) является искомой максимальной мощностью ТЭД, требуемой для обеспечения заданной средней скорости.
Трассы для виртуальных испытаний создаются на основе статистических данных о дорожной кривизне кд, максимальном коэффициенте взаимодействия с опорной поверхностью „, коэффициенте сопротивления движению /гр. Реализация рассмотренных пара-
//ШЛ г
метров по пути проводилась при помощи метода неканонических представлений [ 13-16]. Таким образом, при исследованиях всегда существует возможность создать трассу незнакомую для водителя. Фрагмент одной из «разыгранных» трасс показан на рис. 4.
Рис. 4. Фрагмент «разыгранной» трассы для комплекса натурно-математического моделирования
По временным зависимостям крутящих моментов и угловых скоростей роторов ТЭД, полученным во время имитации движения, строится гистограмма, отражающая долю от общего времени работы электродвигателя в различных режимах при движении по трассе. Выделив на гистограмме наиболее вероятные режимы, можно экспертным методом сформировать требования к зоне высокого КПД электромашины в тяговом и генераторном режимах, а также к внешней механической характеристике ТЭД (отличной от кривой постоянной мощности) в длительном и кратковременном режиме работы (рис. 5).
3000
. 2500 СС О
2000
ф
I 1500 3"
Е юоо
о.
500 0
1
\/
Е отребная зона ысокого КПД
г \ в
\
Я 1
1 о ■.
1 ■
0 100 200 300 400 500 600 Угловая скорость ротора, рад/с
Рис. 5. Выбор зоны высокого КПД для гусеничной машины:
1 - внешняя характеристика ТЭД в кратковременном режиме;
2 - внешняя характеристика ТЭД в длительном режиме;
3 - характеристика ТЭД, полученная из тягового расчета
Таким образом, предлагаемый метод позволяет исходя из требуемой средней скорости определить потребные характеристики тяговых электродвигателей ГМ, КМ и ДГМ с индивидуальным электроприводом ведущих колес. Общий вид блок-схемы метода приведен на рис. 6.
Рис. 6. Блок-схема метода определения потребных характеристик индивидуального
электропривода транспортных средств
Вывод
Представленный метод позволяет получить потребную механическую характеристику ТЭД для транспортной машины в кратковременных и длительных режимах работы. Получаемые параметры могут являться требованиями к вновь разрабатываемому ТЭД, позволяющими определить конструкцию электромашины. При этом, существует возможность оценить характеристики механических тормозов, предназначенных для обеспечения режимов замедления, которые не способен реализовать ТЭД [12]. Дальнейшая обработка результатов натурно-математического моделирования позволяет (при необходимости) оценить потребную мощность системы охлаждения и источника энергии транспортного средства, а также емкость накопителей электрической энергии.
Библиографический список
1. Проектирование полноприводных колесных машин: Учебник для вузов: В 3 т. Т. 2 / Б.А. Афанасьев, Л.Ф. Жеглов, В.Н. Зузов. - М.: Изд-во МГТУ им. Н.Э. Баумана. 2008. - 528 с.
2. Забавников, Н.А. Основы теории транспортных гусеничных машин / Н.А. Забавников. - М.: Машиностроение. 1967. - 356 с.
3. Котиев, Г.О. Определение скоростных диапазонов многоцелевых колесных и гусеничных машин с электромеханической трансмиссией / Г.О. Котиев, А.В. Мирошниченко, А.А. Стадухин // Труды НАМИ. - 2017. - № 3 (270). - С. 51-55.
4. Савочкин, В.А. Статистическая динамика транспортных и тяговых гусеничных машин / В.А. Са-вочкин, А.А. Дмитриев. - М.: Машиностроение. 1993. - 320 с.
5. Платонов, В.Ф. Гусеничные и колесные транспортно-тяговые машины / В.Ф. Платонов, Г.Р. Леи-ашвили. - М.: Машиностроение. 1986. - 296 с.
6. Никитин, А.О. Теория танка / А.О. Никитин. - М.: Типография Военной ордена Ленина академии бронетанковых войск, 1962. - 584 с.
7. Фаробин, Я.Е. Теория поворота транспортных машин / Я.Е. Фаробин. - М.: Машиностроение.
1970. - 176 с.
8. Исаков, П.П. Теория и конструкция танка / П.П. Исаков // Параметры внешней среды, используемые в расчете танков. Т.8. - М.: Машиностроение, 1987. - 196 с.
9. Яковлев, А.И. Конструкция и расчет электромотор-колес / А.И. Яковлев. - М.: Машиностроение, 1970. - 240 с.
10. Исаков, П.П. Теория и конструкция танка / П.П. Исаков // Основы систем управления развитием военных гусеничных машин. Т.1. - М.: Машиностроение, 1982. - 212 с.
11. Горелов, В.А. Математическое моделирование рабочих процессов колесных и гусеничных машин с электромеханическими трансмиссиями / В.А. Горелов, А.В. Мирошниченко // Сборник статей научно-практической конференции: Разработка и исследование электрических трансмиссий для образцов вооружения и военной техники. 2016. - С. 76-86.
12. Горелов, В.А. Математическая модель электромеханического тормозного управления колесной машины / В.А. Горелов, Г.О. Котиев, А.В. Мирошниченко // Журнал автомобильных инженеров. -2012. - № 2 (73). - С. 38-43.
13. Котиев, Г.О. Комплексное подрессоривание высокоподвижных двухзвенных гусеничных машин / Г.О. Котиев, Е.Б. Сарач. - М.: Изд-во МГТУ им. Н.Э. Баумана. 2010. -184 с.
14. Шалыгин, А.С. Прикладные методы статистического моделирования / А.С. Шалыгин, Ю.И. Па-лагин. - Л.: Машиностроение, 1986. - 320 с.
15. Расщепляев, Ю.С. Синтез моделей случайных процессов для исследования автоматических систем управления / Ю.С. Расщепляев, В.Н. Фандиенко. М.: Энергия. 1981. - 145 с.
16. Чернецкий, В.И. Анализ точности систем управления / В.И. Чернецкий. - М, 1968. - 247 с.
Дата поступления в редакцию: 25.06.2019
B.B. Kositsyn1, G.O. Kotiev1, A.V. Miroshnichenko2, B.V. Padalkin1, A.A. Stadukhin1
THE METHOD OF ENSURING THE MOBILITY OF WHEELED AND TRACKED VEHICLES WITH INDIVIDUAL ELECTRIC DRIVE AT THE DEVELOPMENT STAGE
1Bauman Moscow State Technical University 2OKB «Tekhnika» (Moscow)
Purpose: Nowadays, individual electric drives are widely used on wheeled and tracked vehicles, and this type of drive is also an attractive option for articulated tracked vehicles, which makes it necessary to develop new scientific methods to ensure their mobility at the design stage.
Design/methodology/approach: The authors propose a method for determination of the main characteristics of the drive based on analytical traction calculation followed by mobility studies using a driving simulator, which allows a real-time simulation of the vehicle under the control of the driver-operator. In the course of analytical calculations, the maximum required traction force, the gear ratios of the two-range transmission, as well as the power of the traction motors required to ensure maximum speed are determined. On the next step, the results of the analytical calculations are used as the input for the study of transport vehicles using a driving simulator. In order to ensure a required mobility (vehicle average speed on the route), the power of the electric motors is corrected based on multiple virtual runs. Findings: The results of the virtual runs are used for the calculation of the moment and speed characteristics of the short-term and long-term operating modes and the necessary zones of high efficiency of the traction motors. Research limitations/implications: The present study provides a starting-point for further research in electric drive for wheeled and tracked vehicles.
Originality/value: The proposed scientific method allows to obtain the parameters of the electric driveline for advanced tracked and wheeled vehicles.
Keywords: vehicles, wheeled vehicles, tracked vehicles, articulated vehicle, electric drive, traction calculation, real-time driving simulator, propulsion motor, mechanical characteristic.