----------------------------------------- © А.М. Демин, Н.П. Горбачева,
А Б. Рулев, 2009
УДК 622.271
А.М. Демин, Н.П. Горбачева, А Б. Рулев
МЕХАНИЗМ ФОРМИРОВАНИЯ ПОВЕРХНОСТИ СКОЛЬЖЕНИЯ ОПОЛЗНЯ
Семинар № 4
Для выяснения механизма формирования поверхности скольжения оползня нами были проанализированы эксперименты, проведённые ранее исследования в институте Физики Земли АН СССР [1]. Мы обратили внимание на визуально наблюдаемые волновые линии на модели уступа, которые изменяли свою конфигурацию и направление по мере развития деформационного процесса. Поскольку модель уступа покоится на горизонтальном основании в поле силы тяжести Земли, то на неё действует как сила тяжести, так и направленная в противоположную сторону реакция плоскости опоры. В результате возникает давление песчинок друг на друга, и на ненагружен-ной модели уступа наблюдаются темного цвета волновые линии, параллельные откосу, как реакция основания (рис. 1).
Нагружение модели происходило при помощи воздуха, помещенного внутри модели в резиновой искусственно разрываемой оболочке, который расширялся в отсутствии атмосферного давления. При деформировании на стадии предела текучести, волновые линии распространялись параллельно основанию уступа, как реакция бокового отпора (рис. 2). В средней части уступа наблюдаются переходы с высокого уровня на более низкий уровень, свойственные пластическому состоянию среды. Переход на более низкий уровень сопровождается выделением энергии, которая расходуется на приобретение средой пластических свойств. Особенность
квантовых систем (гравитационные и электромагнитные поля подчиняются квантовым законам) состоит в том, что их внутренняя энергия меняется не непрерывно, а может принимать лишь определенные значения, образующие дискретный набор. На рис. 1 и 2 видно, что волновые линии расположены дискретно. Как по вертикали, так и по горизонтали численные значения уровней образуют одинаковый дискретный ряд. (Все размеры на первом и последующих рисунках даны в метрах с учетом масштаба моделирования).
При деформировании уступа на пределе прочности (рис. 3) визуально выделяются три зоны, различные по состоянию деформируемой среды. (Границы верхней и нижней зоны выделены пунктирными полуокружностями). В пределах нижней зоны развиваются упругопластические деформации, не нарушающие целостность нижней части уступа, что видно при сравнении рис. 3 и 4. В средней части уступа среда подверглась структурной перестройке с образованием блоков в виде брекчии. Верхняя часть уступа, где обычно наблюдаются заколы и расслоения, подверглась воздействию импульсов ЭМИ от источника денудационных сил М, который расположен на расстоянии 1.5 Н от основания уступа. Под денудацией понимается совокупность геологических процессов разрушения и переноса горных пород, приводящих к сглаживанию земной поверхности.
2 4 6 8 11 14 17 19
Рис. 1. Начальное состояние уступа после снятия атмосферного давления
2 4 6 8 11 14 17 19
Рис. 2. Деформирование уступа на пределе текучести
Ядро денудационного воздействия формируется за счет электромагнитного излучения ЭМИ, которое выделяется при разрушении горных пород. Экспериментально установлено в ИГД СО РАН, что в моменты разрушения образца или возникновения локальных трещин на осциллограмме электромагнитного излучения формируется цуг колебаний с повышенными амплитудами. На стадии лавинного разрушения сигнал излучения по амплитуде наибольший и состоит из пакета импульсов. Размеры образующихся трещин тесно свя-
м
О 4 6 8 11 14 17 19 22
Рис. 3. Деформирование уступа на пределе прочности
о 2 4 6 9 11 14 17 19 22 24 27 30 33
Рис. 4. Лавинное разрушение уступа
заны с частотным спектром ЭМИ. Трещины больших размеров отвечают за формирование низкочастотной области ЭМИ, а трещины меньших размеров - за высокочастотную область ЭМИ.
Лавинное разрушение (рис. 4) связано с наличием колебательного режима, для создания которого необходимы осцилляторы, роль которых выполняют способные пульсировать открытые трещины и полости. Обычно в основании откоса уступа в процессе деформирования образуется малая полость. Минимальный размер
полости, при котором ещё возможно самопроизвольное оползневое проявление, не может быть менее 0.175 Н [2]. На рис. 3 в основании откоса можно заметить малую полость, а на рис.4 -наличие нескольких цугов волн в разрушенной части уступа и проследить роль денудационного источника в формировании поверхности скольжения. По мере приближения нагрузки к разрушающей, колебательный режим переходит в лавинное разрушение с почти мгновенным падением несущей способности. В следующий момент времени произойдет сдвижение оторванной от уступа и раздробленной массы вдоль вогнутой поверхности скольжения, в приграничной области которой магнитная составляющая ЭМИ наиболее сильно ослабляет сцепление.
Деформационный процесс останется прежним и при наложении атмосферного давления, которое преодолевается увеличением внутренней нагрузки. Отсюда можно сделать вывод, что с падением атмосферного давления вероятность схода оползня возрастает. Влияние жидкости на процесс деформирования исключается, поскольку она практически отсутствовала. Добавление в чистый кварцевый песок модели всего 0.15% глицерина в виде бесцветной вязкой жидкости по химическому составу относящейся к трехатомным спиртам, вряд ли следует считать наличием жидкой компоненты.
1. Ракишев Б.Р. Прогнозирование технологических параметров взорванных пород на карьерах. - Алма-Ата: Наука, 1983. - 240 с.
Итак, на основании новой интерпретации данных моделирования в вакуумной камере, было выявлено наличие в уступе трех различных по механизму деформирования зон. Зону упруго-пластических деформаций в основании уступа и вдоль вертикальной границы, расположенной на расстоянии 17-18 м от верхней бровки уступа, отделяющей область влияния приот-косной части уступа от остального массива горных пород. В этой приграничной зоне происходит отпор от основания уступа и от боковой поверхности, в результате образуется наклонная плоскость. На верхней площадке уступа выделяется зона формирования ширины захвата, где преобладают растягивающие деформации. В средней части уступа происходит изменение структуры среды с образованием блоков, которые в нашем случае имеют вид отдельных кусков. Все эти процессы происходят при нагружении уступа на пределе прочности. Разрушение упругих связей в породе в процессе трещинообразования сопровождается возникновением электромагнитных излучений ЭМИ и акустической эмиссии АЭ, коэффициент связи между которыми равен отношению их энергий. Согласно многочисленных модельных и натурных наблюдений источник денудационных сил находится от основания уступа на расстоянии трех вторых высоты уступа, что соответствует 1.5 Н.
--------------- СПИСОК ЛИТЕРАТУРЫ
2. Коротков П.Ф. Образование поверхности скольжения при обрушении склона. Доклады АН СССР. 1982, Том 267, №4, С. 818-822.
И'.Ц=1
— Коротко об авторах ---------------------------------------------------------------
Демин А.М., Горбачева Н.П., Рулев А Б. - ИПКОН РАН.
Доклад рекомендован к опубликованию семинаром № 4 симпозиума «Неделя горняка-2007». Рецензент д-р техн. наук, проф. С.А. Гончаров.
Файл:
Каталог:
Шаблон:
1т
Заголовок:
Содержание:
Автор:
Ключевые слова: Заметки:
Дата создания: Число сохранений: Дата сохранения: Сохранил:
10_2_Демин4
Н:\Новое по работе в универе\ГИАБ-2009\ГИАБ-5\7 С:\и8ег8\Таня\АррВа1а\Коатіп§\Місго80й\Шаблоньі\Когта1.до
123
16.03.2009 17:32:00 3
18.03.2009 12:13:00 Пользователь
Полное время правки: 1 мин.
Дата печати: 24.03.2009 0:10:00
При последней печати страниц: 3
слов: 1 001 (прибл.)
знаков: 5 708 (прибл.)