Научная статья на тему 'MATLAB TIZIMIDA ODDIY DIFFERENSIAL TENGLAMALARNI YECHISH'

MATLAB TIZIMIDA ODDIY DIFFERENSIAL TENGLAMALARNI YECHISH Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

1074
170
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Matlab tizimi / ODT Matlab tizimida yechkichlari. / Matlab system / SDE Solvers in Matlab system.

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Sherali Abduqodir O’g’li Abdullayev, Maftuna Abdusamad Qizi Ahmadjonova

Maqolada masalani qo`yilishi Matlab tizimida oddiy differensial tenglamalarni taqribiy yechish, taxlili, grafigi ko`rilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SOLVING SIMPLE DIFFERENTIAL EQUATIONS IN THE MATLAB SYSTEM

Problem statement in the article Approximate solution, analysis, graph of simple differential equations in Matlab's system are considered.

Текст научной работы на тему «MATLAB TIZIMIDA ODDIY DIFFERENSIAL TENGLAMALARNI YECHISH»

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

MATLAB TIZIMIDA ODDIY DIFFERENSIAL TENGLAMALARNI

YECHISH

Sherali Abduqodir o'g'li Abdullayev

Toshkent viloyati Chirchiq davlat pedagogika instituti o'qituvchisi

Maftuna Abdusamad qizi Ahmadjonova

Namangan davlat universiteti talabasi

ANNOTATSIYA

Maqolada masalani qo'yilishi Matlab tizimida oddiy differensial tenglamalarni taqribiy yechish, taxlili, grafigi ko'rilgan.

Kalit so'zlar:Matlab tizimi, ODTMatlab tizimidayechkichlari.

SOLVING SIMPLE DIFFERENTIAL EQUATIONS IN THE MATLAB

SYSTEM

ABSTRACT

Problem statement in the article Approximate solution, analysis, graph of simple differential equations in Matlab's system are considered. Keywords: Matlab system, SDE Solvers in Matlab system.

KIRISH

Ko'plab tizimlar va qurilmalarning dinamikasini taxlil qilish, tebranishlar nazariyasining masalalarini yechish va boshqalar oddiy differensial tenglamalar sistemasini (ODtT) yechishga asoslangan. Odatda ular Koshi shaklidagi birinchi tartibli differensial tenglamalar sistemasi tarzida ko'rsatiladi:

ADABIYOTLAR TAHLILI VA METODOLOGIYA

= y\ y' = f(y,t) ODT uchun chegaraviy shartlar ham ko'rsatiladi:

y(t0rtnrp)=b, bu yerda t0,tn -integralning boshlang'ich va so'nggi nuqtalari. Boshlang'ich va so'nggi shartlar b vektor yordamida beriladi, t parametr albatta vaqt bo'lishi shart emas.

1576

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

MATLAB

Mat hWorks- R 2015 b

1- tizimni ishga tushurish 1. Oddiy differensial tenglamalarning yechgichlari.

Oddiy differensial tenglamalarni yechish uchun MATLABda turli xil usullar mavjud. Ularni amalga oshirish oddiy differensial tenglamalarning yechkichlari deb ataladi. Keyinchalik matnda keltiriladigan umumlashtirilgan solver (yechgich)nomi, oddiy differensial tenglamalarni yechishning quyidagi sonli usullaridan birini anglatadi: ode45, ode23, ode15s,ode23s, ode23t, bvp4c yoki pdepe.

Differensial tenglamaning qattiq sistemalarni yechish uchun faqat mahsus ode 15s, ode23s, ode23t, ode23tb yechgichlardan foydalanish tavsiya etiladi:

• Ode45-bir qadamli yaqqol 4-va 5-tartibli Runge-Kutta usullari. U klassik usul bo'lib ko'plab xollarda yaxshi natijalarni beradi;

• Ode23- bir qadamli yaqqol 2-va 4-tartibli Runge-Kutta usullari;

• Ode113-bir qadamli, o'zgaruvchi tartibli Adams-Bashvort-Multon usuli. Ushbu adaptiv usul yuqori aniqlikdagi yechimni berishi mumkin.

• Ode23tb- yechimning boshlanishida yaqqol bo'lmagan Runge-Kutta usulidan va keyinchalik 2-tartibli teskari differensiallash formulasidan foydalanuvchi usul. Aniqlik pastligiga qaramasdan, ushbu usul ode15s usulidan effektivroq bo'lishi mumkin;

• Ode15s- sonli differensiallash formalalaridan foydalanuvchi, o'zgarunchi tartibli (1dan 5gacha, dastlabki xolatda 5), ko'plab qadamli usul. Ushbu adaptiv usulni ode45 yechgich yechimni ta'minlay olmasa qo'llash maqsadga muvofiq;

• Ode23s-modifikatsiyalangan 2-tartibli Rozenbroka formulasidan foydalanuvchi bir qadamli usuli. Differensail tenglamalarning qattiq sistemasini yechishda pastroq aniqlikda va yuqori xisoblash tezligiga ega;

• Ode23t- interpolyatsiyali trapetsiyalar usuli. Ushbu usul chiqish signali garmonikalari yaqin bo'lgan tebranuvchi sistemalarni hisoblashda yaxshi natijalarni beradi.

Google Scholar Scientific Library of Uzbekistan

Academic Research, Uzbekistan 1577 www.ares.uz

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

Hamma yechgichlar y,=F(x,y) ko'rinishdagi tenglamalar sistemasini, ode15s, ode23s, ode23t va ode23t yechkichlar esa yaqqol bolmagan M(t,y) y'=F(t,y) ko'rinishdagi tenglamalarni yechishi mumkin. Hamma yechgichlar (ode23s va bvp4c dan tashqari) M(t,y) y'-F(t,y) ko'rinishdagi matrisaviy tenglamalarning ildizlarini toppish mumkin.

m

2-ishga tushgan oynasi

2. Oddiy differensial tenglamalarning yechkichlardan

foydalanish.

Differensial tenglamalarni yechish funksiyalarida quyidagi belgilash va qoidalar qabul qilingan;

• Options-odeset funksiyasi hosil qiladigan argument (yana bir funksiya -odeget yoki bvpget (faqat bvp4c uchun )-sukut bo'yicha yoki odeset/bvpset funksiyalari tomonidan o'rnatilgan parametrlarini chiqarish;

• Tspan-integralash intervalini aniqlaydigan vektor(t0, tfinal). Yechishni konkret vaqt momentlarida t0,ti...tfinal topish uchun tspan=[t0,ti,^.tfinal]dan foydalanish kerak;

• Y0-boshlang'ich shartlar vektori ;

• Pi,p2,.,.,-F funksiyaga uzatiluvchi ixtiyoriy parametrlar;

• T,Y-Y har bir satri T vektor ustunda qaytarilgan vaqtga mos keladigan funksiyalarning tavsiyasiga o'tamiz;

• Differensial tenglamalar sistemasini yechish uchun ishlatiladigan funksiyalarning tavsiyasiga o'tamiz;

• [T,Y]=solver(@F,tspan,y0)-y,=F(t,y) ko'rinishdagi differensial tenglamalar sistemasini tspan intervalda y0 boshlang'ich shartlarga asosan integrallaydi. @F-Oddiy differensial tenglamalar -funksiyaning deskriptori. Y yechimlar massividagi har bir satr T vector-ustunda qaytariluvchi vaqt qiymatlariga mos keladi;

1578

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

• [T,Y]=solver(@F,tspan,y0, options)-yuqoridagiga o'xshash, lekin qo'shimcha odeset funksiyasi xosil qiladigan options argumentning qiymatlari orqali aniqlovchi parametrlar bilan. Odatda bunday parametrlarga nisbiy xatolikning yol qo'yiladigan qiymati RelTol va ruxsat etiladigan absolyut xatoliklarning vektori AbsTol kiradi;

• [T,Y]=solver(@F,tspan,y0,options,p1,p2,...)-yuqoridagiga o'xshash , lekin qo'shimcha p1,p2,... parametrlarni har bir chaqirilganida m-fayl Fga uzatadi. Agar option parametrlar berilmaydigan bo'lsa ularningo,rniga[ ]deb yoziladi;

• [T,X,Y]=sim(@model,tspan.-y0options,ut.p1,p2.. ,,)-SIMULINK modelini ishlatiladi. Misol uchun:

• [T,X,Y]-sim(@model....).

Integrallash parametrlari (options) m-faylda yoki odeset komandasi yordamida komandalar satrida aniqlanishi mumkin.

Yechkichlarning parametrlari ro'yxatida quyidagi parametrlar bolishi mumkin:

• NormControl-yechim vektori normasi [on| {off}]ga bog'liq xolda xatolikni boshqaradi, norm(e)<=max(RelTol*norm(y), AbsTol) boTishi uchun 'on' o'rnatiladi;

• RelTol-nisbiy tanlash chegarasi [musbat skalyar]. Hamma yechkichlarning aniqligi sukut holatida 1e-3(0.1%)gat eng;

• AbsTol-absolyut aniqlik [musbat skalyar yoki vektor{1e-6}];

• OutputFcn-chiqarish funksiyasi[function]ning deskriptori;

Birinchi tartibli sodda differensial tenglamalar.

1.^ = fix) ko'rinishdagi tenglamalar.

Bu tenglamaning yechimi quyidagicha topiladi.

dy = f{x)dx tenglikning ikkala tomonini integrallaymiz va yechimni topamiz.

Misol.

Bu tenglamaning yechimi.

1579

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

y = sinOO -I- c

Tenglamaning Matlabda yechimi. Tenglamaning analitik yechimi.

>> y=dsolve('Dy-cos(t)=0')

y =

sin(t)+C1

Tenglamaning MATLAB tizimidagi sonli aniq yechimi.

M.file da funksiyani e'lon qilamiz.

>> [T,Y]=ode45(@f1,[0,1],1)

T = Y =

0 1.0000

0.0250 1.0250

0.0500 1.0500

0.0750 1.0749

0.1000 1.0998

0.1250 1.1247

0.1500 1.1494

0.1750 1.1741

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.2000 1.1987

0.2250 1.2231

0.2500 1.2474

0.2750 1.2715

0.3000 1.2955

0.3250 1.3193

0.3500 1.3429

0.3750 1.3663

0.4000 1.3894

0.4250 1.4123

2. = 9(y) ko'rinishdagi tenglamalarning yechimi quyidagicha topiladi.

dy = ¿¡•'yy)dx tenglikning ikkala tomonini integrallaymiz va quyidagicha yechim hosil bo'ladi.

x =

f—

J div)

drj + c

Misol.

1580

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

dy dx

Tenglamani yechamiz.

dy y2 +1

= y2 + l

= dx

Tenglikning ikkala tarafini integrallaymiz va quyidagicha yechimni olamiz.

dy

Endi MATLAB paketida yechimi. >> y=dsolve('Dy-yA2-1=0') y =tan(t+C1)

Tenglamaning sonli yechimi va grafigi.

M.file da funksiyani e'lon qilamiz.

MATLAB R2015b

EDITOR ■ ill JÎI Si ^ B Search Documentation E

£ Q g^"- * - E^k b 1 J^J Compare - c^jj Go To -*■ Comment % ¿3 Save """ " Breakpoints Run Run and St Advance Run and ■»' Print Find Indent [il^SLj^^— ▼ ■» Advance Time

New Open

FILE NAVIGATE EDIT BREAKPOINTS RUN

♦ ♦Of . ► C; ► Users * Nastinov.S ► Desktop ► HP

Current Folder □ Nam

1, 16.10,. MAGS

Figure 1

. Pisa hi

Wf Algebi ■ Algebi

Ü Excel

Hf1.m Hf2.m M Googl |o] Hisobl 4y Kitob H maqol Maten

s

IÜ Obekt

Details

File Edit View nsert Tools Desktof Window Help *»

D d £ | : «V-;/ S • »

1 0.5

0.1 02 0 3 04 0 5

j J fl.m Xj f2.m Unt'rtled.3 X "[ + \

1 H function odt2=f2(x,y)

2 - LodC2=y"2+l;

Workspace ®

Name Value

BT . > " 'I r 1

Ey " sym

LijV 12x1 doli bit

Command Window

» [I,Y]=ode23(@f2,[0 0.5],0.5)

.0320 . 0820 .1320 .1820 .2320 .2820 .3320 .3820 .4320 .4820 .5000

®

0.5000 0.5407 fxw 0.6071

>> [T,Y]=ode23(@f2,[0 0.5],0.5)

T = Y =

0 0.5000

0.0320 0.5407

0.0820 0.6071

0.1320 0.6778

0.1820 0.7534

0.2320 0.8349

0.2820 0.9235

0.3320 1.0207

0.3820 1.1284

0.4320 1.2489

Grafigi.

1581

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

0.4820 1.3856

0.5000 1.43

>> plot(T,Y)

File Edit View Insert Tools Desktop Window Help

DE on

1.4 1.3 1.2 1.1 1 0.S 0.8 0.7 0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 5

3. O'zgaruvchilari ajraladigan differensial tenglamalar.

ko'rinishdagi tenglamalar o 'zgaruvchilari ajraladigan differensial tenglamalar deyiladi. Misol uchun:

Tenglamani yechamiz va quyidagicha natijaga ega bo'lamiz.

MATLAB paketida yechimi quyidagicha. >> y=dsolve(,Dy-eAy*sin(t)=0')

У =

log(-1 /log(e)/(-cos(t)+C1 ))/log(e)

Tenglamaning sonli yechimi va grafigi.

M.file da funksiyani e'lon qilamiz.

>> [T,Y]=ode113(@f3,[-1 1],1)

T = Y =

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

-1.0000 1.0000

-0.9965 0.9921

-0.9896 0.9766

-0.9756 0.9465

-0.9478 0.8897

-0.8921 0.7879

-0.7808 0.6217

-0.5808 0.4125

-0.4808 0.3389

-0.3808 0.2821

1582

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

>>plot(T,Y) Grafigi.

REFERENCES

1. Arislanovna, Y. S., Bakhtiyorvich, G. B. (2021). Marketing And Information Support In Public Sector. European Journal of Molecular & Clinical Medicine, 8(1), 940-947.

2. Arislanovna, Y. S., Nematjanovna, K. M. (2021). Specifics Of Corporate Governance In Road Transport. Psychology and Education Journal, 58(2), 80278030.

3. Arislanovna, Y. S., Bakhtiyorvich, G. B. (2021). Using The Experience Of Developed Countries In Developing A Consortium Between Higher Education Institutions And Production. European Journal of Molecular & Clinical Medicine, 8(1), 819-825.

4. Yuldaheva, S. A., Malenkikh, D. A. (2018). Unctad methodology in globalization of the direct investment market. Актуальные проблемы экономики и управления на предприятиях машиностроения, нефтяной и газовой промышленности в условиях инновационно-ориентированной экономики, 1, 149-154.

1583

Academic Research in Educational Sciences VOLUME 2 | ISSUE 11 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-11-1576-1584

5. Mukhitdinova, K., Yuldasheva, S. (2020). Development of transport and logistics services market. EPRA International Journal of Research and Development, 5(5), 464-466.

6. Yuldasheva, S. A., Murodov, B. X. ugli, Suvonqulov, S. I. ugli (2020). Negative consequences of monopoly and methods of regulation. 195-196.

7. Djurayeva, Y., Ayatov, R., & Shegay, A. (2020). Current Problems and Resolutions of Teaching English Grammar. Academic research in educational sciences, 1 (3).

8. Djurayeva, Y. A. (2021). Aesthetic Culture of a Translator. Tilshunoslikdagi zamonaviy yo'nalishlar: muammo va yechimlar, 210-212.

9. Djurayeva, Y. A. (2021). Using innovative methods in learning English. Экономика и социум, 11.

10. Djuraeva, Yu. A., Ayatov, R. I. (2021). Development of independent creative activity in the teaching process. Экономика и социум, 6-1, 85-88.

11. Djurayeva, Y. A. (2021). Teaching mixed -ability student in classroom. Academic research in educational sciences, 2(2), 1071-1075.

12. Djurayeva, Y. A. (2021). Enhancing English pronunciation in learning process. Academic research in educational sciences, 2, 302-306.

1584

i Надоели баннеры? Вы всегда можете отключить рекламу.