Серiя: TexHÍ4HÍ науки
3. Системный подход к построению транспортного процесса виртуального предприятия доставки грузов позволил выделить управляемые параметры логистической системы.
4. Оптимизация работы логистической системы достигается методом минимизации функционала рассогласованности оптимальных значений основных параметров системы и их реальных значений. При этом параметры разделяются на управляемые и неуправляемые относительно цели функционировании ЛС ВП по доставке грузов потребителю.
5. Эффективность работы ЛС ВП по доставке грузов зависит не только от эффективности системы управления, но в первую очередь от эффективности построения первоначального плана ее работы, с увязанием параметров управления между собой и обоснованием эффективности работы системы по критериям.
Список использованных источников:
1. Губенко В.К. Логистика: Учеб. пособие / В.К. Губенко. - Мариуполь,1996.- 242 с.
2. Родкина Т.А. Информационная логистика. - М.: Экзамен, 2001. - 288 с.
3. Киркин А.П. Формализация методов виртуального предприятия направленных на совершенствование технологии нерегулярных грузопотоков / А.П. Киркин, В.И. Киркина // Вюник При-азов. держ. техн. ун-ту: Зб.наук.праць. - Марiуполь, 2009. - Вип. 19. - С. 280-283.
4. Михайлов В.С. Теория управления / В.С. Михайлов. - К.: Вища шк. Головное изд-во, 1988. - 312с.
5. Сигорский В.П. Математический аппарат инженера / В.П. Сигорский. К.: Техшка, 1975. - 768с.
Рецензент: В.К. Губенко
д-р техн. наук, проф., ГВУЗ «ПГТУ» Статья поступила 29.11.2010
УДК 656.076.15
Нефёдова Я.И.*
ЛОГИСТИЧЕСКОЕ УПРАВЛЕНИЕ ТРАНСПОРТНОЙ СИСТЕМОЙ «МЕТАЛЛУРГИЧЕСКОЕ ПРЕДПРИЯТИЕ - ПОРТ» В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
Рассмотрено управление транспортной системой «металлургическое предприятие - порт» в режиме реального времени на основании использования методов теории нечетких множеств и искусственных нейронных сетей. Решена задача скоординированного управления взаимодействием звеньев процесса доставки металла в морской порт при формировании рационального маршрута доставки. Ключевые слова: метод нечетких логических выводов, терм-множество, лингвистическая переменная, нейронная сеть.
Нефьодова Я.1. Лог^тичне управлтня транспортною системою «металурпйне тдприемство - порт» у режимi реального часу. Розглянуто управлтня транспортною системою «металургтне тдприемство - порт» у режимi реального часу на тд-став1 використання методiв теорИ' нечтких множин i штучних нейронних мереж. Виршене завдання скоординованого управлтня взаемодiею ланок процесу доставки металу в морський порт при формуванш рацюнального маршруту доставки. Ключовi слова: метод нечтких логячних висновюв, терм-множина, лiнгвiстична змтна, нейронна мережа.
Y.I. Nefyodova The logistics management a transportation system "iron and steel works--port" in real time regime. The management a transporting system "iron and steel works-port" in real time regime was analyzed, based upon application of methods line on the basis of the use of methods of theory offuzzy sets and artificial neuron networks. The problem of coordinated management of links of process of delivery of metal to port at forming of rational route of delivery is decided.
Keywords: method of unclear logical conclusions, term-sets, linguistic variable, neuron network.
* ст. преподаватель, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь
Серiя: Технiчнi науки
Постановка проблемы. Эффективное продвижение металлопотоков в условиях динамики и неопределенности окружающей среды связано с высоким уровнем логистического управления. В связи с этим возникает проблема создания новой организации процесса доставки ме-таллогрузов в порты, обеспечивающей устойчивость функционирования отдельных звеньев логистической цепи металлопотоков в зависимости от требований к процессу доставки.
Анализ последних исследований и публикаций. Анализ последних исследований и публикаций показал, что в последние годы большое внимание уделяется проблеме планирования, организации и управлению работой логистических систем доставки грузов в условиях риска и неопределенности окружающей среды [1, 2]. Однако, существующие методы управления логистическими товаропроводящими структурами материальных потоков учитывают воздействие неопределенных факторов только при изучении отдельных звеньев и элементов каналов распределения продукции.
Цель статьи - повышение эффективности логистического управления транспортной системой «металлургическое предприятие - порт» («МП - П») на примере доставки металлогру-зов, обрабатываемых в Мариупольском морском торговом порту. Достижение цели возможно при использовании методов теории нечетких множеств и искусственных нейронных сетей, позволяющих учитывать различные неточности и неопределенности, возникающие в процессах управления материальными потоками, в режиме реального времени.
Изложение основного материала. Эффективность логистического управления металло-потоками достигается путем скоординированного взаимодействия отдельных звеньев и элементов логистической цепи доставки металлогрузов в системе «металлургическое предприятие -порт» за счет оперативного реагирования на поступающую текущую информацию об изменении комплекса условий на всех этапах транспортного процесса.
Процесс доставки металлогрузов в системе «МП - П» представлен следующими этапами: погрузка на предприятии грузоотправителя; транспортировка металлогрузов в порт с выбором вида транспорта и маршрута следования; выгрузка в порту; хранение в порту; погрузка на судно.
Каждый этап характеризуется множеством показателей, отражающих уровень транспортного обслуживания, которые на стадии проектных разработок являются нечеткими лингвистическими переменными, поэтому целесообразно использование аппарата нечетких множеств [3].
При управлении металлопотоками в режиме реального времени необходимо обрабатывать большой поток сложноструктурируемой информации о текущем состоянии объектов транспортной системы, поэтому предлагается использование искусственных нейронных сетей.
С целью эффективного скоординированного взаимодействия смежных видов транспорта на отдельных этапах транспортного процесса доставки металлов в морские порты в реальном режиме времени предлагается использование автоматизированной информационно-управляющей экспертной системы, основанной на комплексном использовании нейросетевых технологий и механизма нечетких логических выводов теории нечетких множеств.
В общем случае математическая модель системы «металлургическое предприятие -порт» представляет функциональную зависимость между переменными состояниями системы,
управляющими воздействиями, наблюдаемыми параметрами системы и внешней среды [4]:
У ^) = F(X(t),и(t)у(0), (1)
где X (?) - вектор текущего состояния модели системы; V(t) - вектор управляющих воздействий; и (?) - вектор внешних воздействий; У (?) - вектор выходных сигналов модели.
Нейронная сеть представляет собой ориентированный граф, в котором вершины - это нейроны, внешние входные или выходные переменные, дуги - направление распространения сигнала или синапсы. Количество слоев нейронов зависит от конкретно поставленной задачи. Количество связей между нейронами также не ограничивается.
Нейрон имеет определенную внутреннюю структуру (рис. 1) и правила преобразования
Серiя: Техшчш науки
сигналов [5]. Нейрон состоит из умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы предназначены для связи нейронов между собой и умножают входной сигнал xt на вес синапса wi.
Правила преобразования сигналов определяются математической моделью нейрона:
n
s = Z wi • x-+ b;
i =1
_ y = f (s), (2)
где wi - вес синапса (i = 1,n); b - значение смещения; s - результат суммирования; xi -
компонент вектора входного сигнала (i = 1,n); y - выходной сигнал нейрона; n - число входов нейрона; f - функция активации (передаточная функция) нейрона, представляющая собой некоторое нелинейное преобразование.
В качестве метода управления металлопотоками предлагается комплексное использование алгоритма нечеткого логического вывода искусственной нейронной сети с обучением по алгоритму обратного распространения ошибки [4].
Нечеткая нейронная продукционная сеть выполняет цель реализации механизма нечетких логических выводов и включает следующие этапы:
1. Вычисляются значения функции принадлежности для входных нечетких лингвистических переменных, таких как готовность магистрали, станции, пропускная способность станции, расходы на доставку металла и др. Количество элементов данного слоя равно числу функций принадлежности для всех терм-множеств входных переменных.
Под терм-множеством лингвистической переменной понимается множество лингвистических (вербальных) значений переменных показателей работы транспортной системы Мариупольского узла, причем каждое из этих значений является нечеткой переменной.
2. Отражаются возможные значения выходной переменной (например, удовлетворительность транспортного обслуживания) при заданных значениях входных лингвистических переменных, сформированных на основе правил вида:
ЕСЛИ x1 есть Лп И ... И x. есть Л. И ... И xn есть Ain, ТО y есть Bt, (3)
где n - количество нечетких правил вывода выходной переменной при заданных нечетких значениях входных переменных показателей уровня транспортного обслуживания метал-лопотоков; Л., Bi - нечеткие множества, характеризующие значения терм-множеств лингвистических переменных показателей уровня транспортного обслуживания металлопотоков; xi,...,xn - входные переменные могут быть выражены как качественно, так и количественно; y -выходная переменная.
Например, если занятость магистрали низкая и готовность станции высокая и пропускная способность станции высокая, то удовлетворительность транспортного обслуживания, определяемая временем доставки в порт, - высокая, т.е. время доставки - малое.
3. Активизируются заключения правил нечетких логических выводов в соответствии со значениями определенных на предыдущем этапе значений выходной переменной и проводятся вспомогательные вычисления для последующей дефаззификации результата.
4. Выполняется дефаззификация выходной переменной, т.е. определяется ее четкое количественное значение.
Реализация задачи проведена при выборе рационального маршрута доставки с требуемым уровнем удовлетворительности транспортного обслуживания металлопотока, выражающего показатель «just in time», предложены следующие значения термов входных лингвистических переменных, выраженных в процентном соотношении: готовность магистрали - 70%; готовность станции - 30%; пропускная способность станции - 25%.
В результате проведенных вычислений в соответствии с этапами механизма нечетких логических выводов получено нечеткое множество (рис. 2) функций принадлежности выходной лингвистической переменной, оценивающей степень удовлетворительности транспортного обслуживания металлопотоков при заданных значениях входных лингвистических переменных, характеризующих определенный шаг формирования рационального маршрута доставки метал-логрузов в морской порт.
Серiя: Техшчш науки
А Оч. низ.
Низкий Средний Высокий Оч. выс.
1,0 ---г
0,8......:-
0,6-------г
0,4
V)
I V
0,2
/
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 y Значения термов лингвистической переменной «удовлетворительность»
0
Рис. 2 - График функции принадлежности термов выходной лингвистической переменной «удовлетворительность транспортного обслуживания», измеряемой в долях
Полученное значение выходной лингвистической переменной "удовлетворительность транспортного обслуживания" для функции принадлежности (рис. 2) у = 0,35 является результатом решения задачи нечеткого вывода для предложенных значений входных лингвистических переменных показателей транспортного обслуживания металлопотоков на определенном шаге выбора рационального маршрута доставки и говорит о значительном времени доставки металла в порт. Следовательно, необходимо выбрать другую станцию следования металлопотока, обладающую большей пропускной способностью и готовностью принять состав с металлом с целью сокращения простоев на пути следования в порт.
Дальнейшие исследования по повышению эффективности логистического управления транспортной системой доставки грузов в морские порты состоит в разработке нечетких ситуационных сетей для оперативного принятия решений при управления взаимодействием всех участников системы доставки в режиме реального времени.
1. Для координации взаимодействия звеньев логистической цепи металлопотоков в режиме реального времени, функционирующей в условиях воздействия неопределенных факторов, предложено использование автоматизированной информационно-управляющей экспертной системы.
2. Задача управления металлопотоками в режиме реального времени решена с использованием метода нечетких логических выводов теории нечетких множеств, реализованного искусственной нейронной сетью.
3. Предложенный подход скоординированного взаимодействия элементов и звеньев транспортной системы «МП - П» позволяет: сократить время доставки металлопродукции в порты; снизить время простоя состава в ожидании погрузки.
Список использованных источников:
1. 1нтелектуальш системи тдтримки прийняття ршень: Теорiя, синтез, ефективнють / [Тарасов В.О., Герасимов Б.М., Левш 1.О., Корншчук В.О.] - К.: МАКНС, 2007. - 336 с. - (Рос. мовою).
2. Андрейчиков А.В. Анализ, синтез, планирование решений в экономике / А.В. Андрей-чиков, О.Н. Андрейчикова. - М.: Финансы и статистика, 2002. - 368 с.
3. Губенко В.К. Эффективность функционирования логистической системы доставки грузов автотранспортом / В.К. Губенко, Я.И. Нефёдова, А.А. Лямзин // Вюник Приазовського державного техшчного ушверситету. - 2007. - № 17. - С. 204 - 208.
4. Нефёдова Я.И. Логистическое управление транспортным обслуживанием системы «металлургическое предприятие - порт» в реальном режиме времени: дис. на соискание ученой степени канд. техн. наук: 05.22.01 / Нефёдова Яна Игоревна. - Х., 2010. - 155 с.
5. Леоненков А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH / Леонен-ков А.В. - СПб.: БХВ-Петербург, 2003. - 736 с.
Рецензент: В.К. Губенко
д-р техн. наук, проф., ГВУЗ «ПГТУ» Статья поступила 28.12.2010
Выводы