Научная статья на тему 'Лекарство для генов'

Лекарство для генов Текст научной статьи по специальности «Биологические науки»

CC BY
240
81
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
В. В. ВЛАСОВ / ИНСТИТУТ ХИМИЧЕСКОЙ БИОЛОГИИ И ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ / ГЕНЫ / НУКЛЕОТИДЫ / ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ / ПРИНЦИП МОЛЕКУЛЯРНОГО УЗНАВАНИЯ / ОЛИГОНУКЛЕОТИДЫ / РНК-ИНТЕРФЕРЕНЦИЯ / АНТИГЕННЫЕ ОЛИГОНУКЛЕОТИДЫ / МАТРИЧНЫЕ РНК / АПТАМЕРЫ / АНТИСМЫСЛОВЫЕ ПОДХОДЫ

Аннотация научной статьи по биологическим наукам, автор научной работы — Власов В. В.

Давняя мечта медиков иметь в своем распоряжении вещества, которые действовали бы на конкретные гены, т.е. на первопричину многих болезней. Ведь на основе таких веществ можно создавать лекарственные препараты настоящие «волшебные пули», способные поражать наследственный материал различных инфекционных агентов, не принося вреда организму человека, а также подавлять активность онкогенов, ответственных за злокачественный рост клеток. Создание подобных веществ, направленно воздействующих на генетический материал, одна из главных задач молекулярной биологии, поскольку с их помощью можно исследовать функции генов и, в конечном счете, управлять работой последних.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Лекарство для генов»

Подробнее на:

www.sciencefirsthand.ru/50vearsSBRAS/ в разделе «Науки о жизни»

Лекарство для генов

¡Я НАУКИ О ЖИЗНИ

I Q/Г'у Опубликована L_Z_LLl_ первая работа по олигонуклеотидам — ген-направленным биологически активным веществам

Давняя мечта медиков — иметь в своем распоряжении вещества, которые действовали бы на конкретные гены, т. е. на первопричину многих болезней. Ведь на основе таких веществ можно создавать лекарственные препараты — настоящие «волшебные пули», способные поражать наследственный материал различных инфекционных агентов, не принося вреда организму человека, а также подавлять активность онкогенов, ответственных за злокачественный рост клеток. Создание подобных веществ, направленно воздействующих на генетический материал, — одна из главных задач молекулярной биологии, поскольку с их помощью можно исследовать функции генов и, в конечном счете, управлять работой последних.

Но каким образом можно изменить нужную генетическую программу? Ведь все гены имеют сходные химический состав и структуру: различия между ними сводятся лишь к порядку чередования четырех мономерных блоков — нуклеотидов А, Т, G, С. Для того чтобы воздействовать на определенный ген, молекула вещества должна каким-то образом распознать эту нуклеотидную последовательность — задача, на первый взгляд, неразрешимая.

Но группа сибирских химиков, приехавших в Новосибирский академгородок в первые годы его создания, считала иначе. Сотрудники Института органической химии СО АН СССР (Новосибирск) Н.И.Гринева

и Д. Г. Кнорре на основе принципа молекулярного узнавания, используемого самой природой, сформулировали идею направленного воздействия на гены с помощью олигонуклеотидов — фрагментов нуклеиновых кислот, «вооруженных» специальными химическими группами. Первую работу по олигонуклеотидам сибирские химики опубликовали в 1967 г.— именно эта дата и считается сегодня официальной датой возникновения нового направления в молекулярной биологии и фармакологии.

Они были первыми

Осуществление этого необычного по смелости проекта (в то время нигде в мире даже не планировалось проведение подобных исследований) на начальной стадии велось небольшой группой молодых сотрудников, аспирантов и студентов НГУ. Начинать пришлось практически с нуля, поскольку тогда еще не умели синтезировать олигонуклеотиды в заметных количествах; не существовало технических приборов, необходимых для работы с малыми количествами нуклеиновых кислот и эффективной методики определения их последовательности. Решить эти проблемы нашим химикам удалось благодаря междисциплинарности — одному из принципов, легших в основу деятельности Сибирского отделения.

В НИОХ было организовано производство нуклеиновых кислот, разработаны методы их химической модификации; совместно с сотрудниками Института ядерной физики удалось создать приборы для анализа нуклеиновых кислот и манипуляции с их малыми количествами, а совместно с химиками МГУ — развернуть работы по созданию автоматических синтезаторов оли-гонуклеотидов. В результате в распоряжении ученых оказались практически все необходимые аналитические методы и приборы — биологические исследования можно было начинать.

Эксперименты, проведенные сначала на простых моделях, а затем на природных нуклеиновых кислотах, показали, что олигонуклеотиды действительно взаимодействуют с нуклеиновыми кислотами — мишенями с высокой степенью избирательности. В том случае, когда к олигонуклеотидам присоединены реакционно-способные группы, происходит направленная химическая модификация мишеней — нуклеиновых кислот. К тому же, впервые было продемонстрировано, что с помощью этих реагентов можно подавить вирусные инфекции у животных, а также доказана возможность введения их в организм через кожу и слизистые оболочки и т.п.

Ранние публикации, посвященные биологическим эффектам, производимым олигонуклеотидами, вызвали огромный интерес специалистов во всем мире. В 1988 г. в Академгородке был проведен первый в мире симпозиум по ген-направленным веществам на основе фрагментов нуклеиновых кислот. В работу по созданию подобных препаратов включились ученые США, Франции, а затем и других стран; возникли десятки

.........

нуклеиновая кислота олигонуклеотид

4.УУ.УУУ

химическая реакционно-способная группа

Узнавание последовательности

■т ЧТИ"" ■■яг

А пШпШ

комплементарные Образование нуклеотиды

химическои связи

........

На схеме — направленная химическая модификация нуклеиновой кислоты реакционно-способным производным олигонуклеотида

Д. Г. Кнорре с первыми сотрудниками лаборатории химии природных полимеров (1962 г., Институт гидродинамики СО АН СССР)

¡Я НАУКИ о жизни

Д. Г. КНОРРЕ — академик РАН, специалист в области химической кинетики, молекулярной биологии и биоорганической химии. Заведующий лабораторией химии природных полимеров (1960—1984 гг.), отделом биохимии и лабораторией химии нуклеиновых кислот (1970—1984 гг.) Института органической химии СО АН СССР, директор Института биоорганической химии СО АН СССР и СО РАН (1984—1996 гг.)

Антисмысловые подходы, основанные на использовании нуклеотидов и нуклеиновых кислот для подавления биологической активности нуклеиновых кислот, сулят интересные перспективы в тех случаях, когда нужно задавить реализацию нежелательной информации в живых организмах. В первую очередь открывается перспектива создания нового поколения противовирусных и противоопухолевых препаратов. Такие препараты имеют одно неоспоримое преимущество перед другими... Все олигонуклеотиды независимо от мишени, на которую они нацелены, могут быть созданы по единой технологии. Варьировать нужно только последовательность нуклеотидов. В частности, в вирусологии и онкологии часто приходится сталкиваться с таким явлением, как возникновение устойчивости к препаратам. Это происходит чаще всего потому, что у отдельной вирусной частицы или отдельной раковой клетки происходит мутация, приводящая к такой устойчивости. В любом другом случае нужно начинать эмпирический поиск нового лекарственного препарата. В случае антисмысловых воздействий нужно только определить, какое изменение в структуре вирусного генома или онкогена привело к появлению устойчивости. После чего сразу становится ясным, как по той же единой технологии создавать новый препарат*.

* Соросовский образовательный журнал. — 1998. — 12. - С. 25-31.

компаний, поставивших перед собой цель создать терапевтические препараты на основе олигонуклеотидов.

Комплементарное лекарство

Первыми из препаратов ген-направленного действия стали так называемые антисмысловые олигонуклеотиды, предназначенные для избирательной инактивации вирусных РНК и некоторых клеточных РНК. Изначально предполагалось, что к этим олигонуклеотидам будут присоединены реакционно-способные группы, которые должны химически модифицировать или разрушать целевые нуклеиновые кислоты. Однако выяснилось, что присоединение олигонуклеотидов к РНК-мишени само по себе оказывает на нее настолько большое влияние, что может провоцировать ее разрушение клеточными ферментами.

Самым мощным средством «выключения» генов оказались интерферирующие РНК — короткие двуце-почечные комплексы из РНК-олигонуклеотидов. Когда такой комплекс вводят в клетку, одна из цепочек связывается с комплементарной ей последовательностью в информационной РНК клетки. Это служит сигналом к началу работы группы ферментов, которые разрезают РНК, связанную с олигонуклеотидами. В результате программа синтеза определенного белка исчезает.

В 2006 г. за объяснение действия механизма РНК-интерференции два американских исследователя были удостоены Нобелевской премии по физиологии и медицине. Создание регуляторов экспрессии генов на основе интерферирующих РНК открыло большие возможности для получения широкого спектра высокоэффективных нетоксичных препаратов, подавляющих экспрессию практически всех, в том числе опухолевых и вирусных, генов.

Правильные мутации

Внимание специалистов давно привлекают и методы мутагенного воздействия на ДНК с помощью олигонуклеотидов или их производных. В случае успеха может стать реальным то, что сегодня кажется фантастикой: коррекция дефектных генетических программ.

Экспериментально уже доказано, что с помощью коротких олигонуклеотидов можно вносить в генетические программы точечные мутации. Как это осуществить? Мутагенные олигонуклеотиды, содержащие «неправильные» нуклеотидные блоки, вводятся в клетку, где они соединяются с ДНК. В результате в некоторых участках нуклеотидных последовательностей появляются «неправильные», т. е. некомплементарные, пары оснований, что и воспринимается клеточной системой репарации («ремонта») ДНК как повреждение. Нуклеотиды в подобной паре заменяются репаратив-

ными ферментами таким образом, чтобы она стала «правильной», комплементарной. При этом замена может происходить как в олигонук-леотидной последовательности, так и в самой клеточной ДНК.

В последнем случае мы имеем дело с изменением генетической программы, т. е. с мутацией. И хотя эффективность подобного мутационного процесса в целом невелика, он может быть использован применительно к новым клеточным технологиям. Например, стволовые клетки больного с каким-либо наследственным нарушением можно обработать избирательным мутагеном, а затем отобрать те из них, в которых произошла нужная мутация (т. е. клетки с «исправленной» генетической программой), размножить и ввести в организм.

Таким образом, существующие на сегодняшний день олигонуклеоти-ды способны регулировать «работу» генов на различных уровнях. Так, вышеупомянутые антисмысловые олигонуклеотиды и интерферирующие РНК работают на стадии синтеза белка, воздействуя на матричные РНК — информационные молекулы, в которых происходит сборка полипептидных цепочек. Антигенные олигонуклеотиды, образующие комплексы с ДНК, подавляют экспрессию генов — образование самих матричных РНК, а олиго-нуклеотиды-аптамеры могут, подобно антителам, образовывать связи с определенными белками, блокируя их. Кроме того, некоторые олигонуклеотиды способны стимулировать работу иммунной системы — сегодня их используют в качестве компонентов вакцин.

В настоящее время разработку и синтез олигонуклеотидов и их аналогов ведут большие исследовательский и индустриальный секторы. Так, в прошлом году только объем рынка олигонуклеотидов, предназначенных для исследовательских целей, превысил 800 млн долларов! Сейчас разработаны

и синтезированы десятки новых видов химически модифицированных олигонуклеотидов, идут испытания ряда противовирусных и противовоспалительных препаратов, полученных на их основе. Исследования подобного рода в России сейчас проводятся в основном в Институте химической биологии и фундаментальной медицины СО РАН, где работают ученики и последователи академика Д. Г. Кнорре.

Вот так плодотворность идеи, возникшей в Сибирском отделении сорок лет назад, была доказана самой жизнью. Используя в качестве базовых структур для создания ген-направленных биологически активных веществ короткие фрагменты нуклеиновых кислот, можно быстро разработать и внедрить в производство специфические лекарственные препараты практически против любого вируса. Для этого необходимо лишь расшифровать нуклеотидную последовательность вирусных генов, что несложно сделать с помощью современных технологий. У этого универсального подхода большое будущее: результаты исследований последних лет, в частности по на-

без лечения

лечение

традиционными

препаратами

лечение традиционными препаратами в сочетании с малыми интерферирующими

Ученик Д. Г. Кнорре директор ИХБФМ СО РАН В. В. Власов

правленному мутагенезу, позволяют рассчитывать на появление в скором времени эффективных лекарств для борьбы с заболеваниями, до сих пор считающихся неизлечимыми.

Академик В. В. Власов (Институт химической биологии и фундаментальной медицины СО РАН, ННЦ)

)

размер опухоли (%)

РНК о 20 40 60 80 100

Специалисты ИХБФМ СО РАН на примере лимфосаркомы мышей линии СВА показали, что развитие опухоли можно подавить более эффективно, если проводить лечение традиционными лекарственными препаратами в сочетании со специфическими малыми интерферирующими РНК. Эти РНК способны подавлять функцию гена тс1г1, обеспечивающего устойчивость опухолей к ряду лекарственных средств

i Надоели баннеры? Вы всегда можете отключить рекламу.