Компоненты и технологии, № 2'2004 Компоненты
Лампы-вспышки
компании PerkinElmer Optoelectronics
Год назад (см. «КиТ» № 22003) мы познакомили читателя с компанией PerkinElmer Optoelectronics, рассказали о выпускаемой продукции и подробно остановились на теме пироэлектрических приемников и термопарных датчиков. Продолжая знакомство с ассортиментом выпускаемой продукции, в настоящей статье мы рассмотрим лампы-вспышки, принципы их работы, особенности и сферы применения.
Юрий Левашов
Качество выпускаемой продукции — это то кредо, которое избрала компания PerkinElmer Optoelectronics на сегодняшнем рынке.
Статистический контроль и тестирование продукции — все это стало обязательным условием деятельности компании PerkinElmer Optoelectronics.
Вся выходная продукция компании проходит 100%-ный контроль по основным параметрам.
Компанией получены сертификаты качества по стандарту ISO9000.
Лампы-вспышки, история создания
Своему появлению на свет лампы-вспышки обязаны фотоаппарату, когда появилась необходимость создания яркого света в момент экспозиции изображения объекта на светочувствительную пластину.
Первые лампы-вспышки были магниевые. В 1859 г. Р. Бунзен в Германии и Г. Роско в Англии сообщили о возможности получить значительную освещенность при сгорании магния и предложили этот способ в качестве возможного источника света для фотосъемки. К 1864 г. Э. Сонштадт выпустил магниевую проволоку, горение которой использовалось в фотографии для освещения. Несмотря на то, что время экспонирования было еще около 1 мин, горящую магниевую проволоку можно рас-
сматривать как первый переносной источник света в фотографии. Однако в процессе горения магния возникало плотное облако белого дыма, которое усложняло фотографирование.
Г. Кеньон в 1883 г. предложил воспламеняемую смесь порошкообразного магния и хлорида калия, при горении которой возникает очень яркий свет в течение короткого промежутка времени. Усовершенствованная смесь, содержащая эти материалы, использовалась как переносной источник освещения и известна как магниевая вспышка. Однако дым по-прежнему оставался проблемой при фотосъемке.
Затем появились одноразовые электрические лампы-вспышки. В 1925 г. П. Виркоттер запатентовал первую лампу-вспышку. Порошок магния помещался в стеклянный баллон, содержащий воздух или кислород при низком давлении. Магний воспламенялся при прохождении электрического тока через проволоку, покрытую магнием. В 1929 г. И. Остермейер усовершенствовал лампу-вспышку, заменив магний порошком алюминия. Эта лампа-вспышка промышленно производилась в 1930-х годах. Будучи удобным портативным переносным источником света, она нашла широкое применение.
И наконец в 1931 году появилась первая электронная лампа-вспышка, изобретенная Г. Эджерто-ном, которая полностью вытеснила одноразовые лампы-вспышки.
Компоненты и технологии, № 2'2004
Физические принципы построения ламп-вспышек
Принцип работы любой лампы-вспышки основан на явлении отдачи мощного светового импульса инертным газом в момент прохождения через него импульса тока большой величины. В качестве рабочего наполнителя для ламп-вспышек часто используются такие газы, как ксенон и криптон. Ксеноновые лампы-вспышки предназначены для использования в фотографических аппаратах, высокоскоростных копирах, стробоскопах и т. д. Лампы, в которых наполнителем служит криптон, предназначены в основном для использования в схемах накачки лазеров.
Области применения ламп-вспышек
Фотография: любительская и профессиональная съемка, высокоскоростные фотоаппараты.
Транспорт: системы безопасности движения на дорогах, авиации, водном транспорте.
Индустрияразвлечений: стробоскопы, автоматы световых эффектов, игрушки.
Промышленность: стробоскопы, балансировочные аппараты, высокоскоростные копиры, лазерное оборудование, навигационное оборудование.
Медицина: лазерные аппараты, эндоскопы, анализаторы крови, стерилизационное оборудование.
Конфигурация ламп-вспышек
Лампа-вспышка конструктивно представляет собой баллон из кварцевого или боросиликатного стекла, заполненный под высоким давлением инертным газом ксеноном или криптоном. В баллон впаяны два электрода — анод и катод. На внешней стороне баллона наносится полоска токопроводящего покрытия, к которому присоединяется третий — поджигающий электрод. Часто функции поджигающего электрода выполняют несколько витков тонкой проволоки, намотанной на баллон снаружи.
Формы баллона бывают самые различные: дугообразные, кольцевые, спиральные и т. д.
Иногда на баллон лампы-вспышки наносят специальное цветное покрытие для баланса цветов (выравнивания спектра), в результате чего их можно использовать и для цветных фотопленок.
Устройство типичной лампы-вспышки показано на рис. 1.
Вне зависимости от материала используемого стекла и электродов, лампы-вспышки
внутренний
диаметр поджигающий электрод
катод / анод У ®
^=йг« і)! і
14-
-И
растояние между электродами, е
Рис. 1. Устройство лампы-вспышки
имеют три основных конструктивных характеристики, определяющих степень их применения. К таким параметрам относятся:
1. Расстояние между внутренними электродами (е).
2. Внутренний диаметр колбы (г).
3. Используемый газ.
Соотношение этих величин определяет длительность разряда, интенсивность светового излучения и, соответственно, сферу применения. Так, например, если отношение е/г<5, лампы будет иметь короткую разрядную дугу и высокую интенсивность излучения, если же это соотношение находится в пределах 10<е/г<20, лампа будет обладать большим внутренним сопротивлением и длительной фазой разряда.
Разрядная характеристика
Процесс вспышки можно условно разделить на две основные фазы: фазу поджига и фазу разряда. На рис. 3 приведена разрядная характеристика, поясняющая процессы, происходящие в лампе.
В момент подачи напряжения на поджигающий электрод напряжение между анодом и катодом лампы максимально и равно значению, до которого заряжен разрядный конденсатор. По мере ионизации газа внутри лампы происходит постепенное снижение напряжения между анодом и катодом при незначительном увеличении анодного тока, что является следствием постепенного образования ионной дорожки между электродами внутри лампы. В какой-то момент времени внутреннее сопротивление лампы достиг-
нет такого предела, при котором произойдет резкое увеличение анодного тока и разряд конденсатора, иными словами, наступает электрический пробой. Внутри лампы в этот момент происходит образование плазмы, разогретой до температуры 7000-10000 К, и высвобождение яркого светового импульса с длительностью от 10 мкс до 10 мс. Сопротивление лампы в этот период времени составляет примерно 0,1-5 Ом. Процесс образования плазмы показан на рис. 2.
По мере разряда конденсатора происходит уменьшение анодного напряжения при постепенном снижении разрядного тока, что ведет к прекращению процесса. Вспышка продолжает «гореть», пока напряжение на лампе не упадет до уровня гашения.
Такой процесс генерации светового импульса является разовым и краткосрочным по времени своего действия. Для его возобновления необходимо повторение описанных выше фаз.
Световая энергия вспышки
Световая энергия определяется произведением светового потока вспышки на ее длительность и косвенно может быть выражена электрической энергией заряженного конденсатора:
ж=с>ш1
где W — энергия заряда в джоулях; С — емкость конденсатора в фарадах; и — напряжение, до которого заряжается конденсатор, в вольтах. Таким образом, изменять световую энергию (мощность) вспышки можно путем увеличения емкости накопительного конденсатора или изменением напряжения на лампе. При этом необходимо учитывать, что электрическая энергия заряда конденсатора может превышать аналогичный параметр самой лампы не более чем на 20% (за счет потерь в соединительных проводах лампы и источника питания). Напряжение должно быть не ниже напряжения зажигания лампы и не должно приближаться к напряжению самопробоя.
Схемы включения
Инициация вспышки происходит в момент подачи высоковольтного импульса величиной 2-20 кВ на поджигающий электрод лампы.
Импульс высокого напряжения снимается со вторичной обмотки импульсного высоковольтного трансформатора. Как правило, эти трансформаторы двухобмоточные и имеют
Компоненты и технологии, № 2'2004
соотношение витков первичной обмотки к виткам вторичной обмотки от 1:20 до 1:100.
Первичная обмотка имеет небольшое количество витков, предназначена для разряда «поджигающего» конденсатора и выполняется, как правило, «толстым» медным проводом.
Типовая схема включения лампы-вспышки приведена на рис. 4.
Принцип работы управляющей схемы следующий. При подаче напряжения У0 на схему начинается заряд конденсатора С2 через ограничивающее сопротивление И и первичную обмотку трансформатора. Одновременно с этим происходит процесс заряда накопительного конденсатора Св.
Тиристор Т в этот момент находится в закрытом состоянии. При подаче запускающего импульса на управляющий электрод тиристора Т он открывается, тем самым замыкая разрядный конденсатор С2 на «землю». В этот момент времени конденсатор С2 начинает разряжаться по цепочке тиристор — «земля» — первичная обмотка трансформатора. Образуется своеобразный колебательный контур, в котором возникают затухающие гармонические колебания, частота которых зависит от параметров L и С. Вокруг первичной обмотки трансформатора возникает переменное магнитное поле, которое, пронизывая витки вторичной обмотки трансформатора, наводит в нем ЭДС.
Величина ЭДС зависит от коэффициента трансформации и соотношения витков первичной и вторичной обмоток. Напряжение У2, равное единицам или десяткам киловольт и снимаемое со вторичной обмотки трансформатора, подается на поджигающий электрод лампы, тем самым вызывая разряд накопительного конденсатора Св через лампу.
Существует несколько схем включения ламп-вспышек. Рассмотрим две основные. Первая схема приведена на рис. 4.
На этой схеме поджигающий электрод отделен от электродов анода и катода. При таком включении возникают достаточно продолжительные гармонические колебания, осциллограмма которых представлена на рис. 5.
К достоинствам этого способа следует отнести малые размеры и низкий ток в первичной и вторичной обмотках высоковольтного трансформатора. К недостаткам — относительно большое время задержки (10±5 мкс) и возникновение продолжительных гармонических затухающих колебаний с большой амплитудой.
Второй способ предполагает несколько иное включение лампы в цепь обмоток импульсного трансформатора. Этот способ подразумевает под собой подключение вторичной обмотки трансформатора к соединенным между собой параллельно катоду и поджигающему электроду.
Схема включения представлена на рис. 6.
• спектр излучения по своему составу близок к солнечному;
• высокая интенсивность свечения — порядка 40 лм/Вт.
Спектр излучения ксеноновой лампы-вспышки находится в интервале между ультрафиолетовой и инфракрасной областью длин волн. Получение цвета определенной длины волны на сегодняшний момент является затруднительным. Такая проблема может решаться путем добавления примесей различных газов.
Спектр излучения газонаполненной лампы находится в прямой зависимости от плотности разрядного тока. При плотности тока в несколько сотен ампер/см2 в спектре излучения доминирует инфракрасное излучение. Лампы этой группы предназначены для накачки лазеров Nd-Yag.
Газоразрядные трубки с плотностью тока от 1000 до 3000 А/см2 используются в проблесковых маячках, стробоскопах. Спектр их из-
При таком способе включения во вторичной обмотке трансформатора происходит образование одного мощного и практически сразу же затухающего импульса. Осциллограмма этого процесса представлена на рис. 7.
100 A/cm2
относительная
интенсивность
100 300 500 700 900 1000 длинна волны (нМ)
Рис. 8. Спектр излучения ламп-вспышек при силе разрядного тока 100 А/см2
К достоинствам этого способа следует отнести малое время задержки и низкий уровень электромагнитных колебаний, к недостаткам — большие размеры изделия и большой ток, проходящий через вторичную обмотку высоковольтного трансформатора.
Генерация света с помощью ксеноновых ламп
Использование ксенона в качестве внутреннего газа наполнителя ламп-вспышек позволяет получить плотность разрядного тока порядка 1-10 кА/см2. Применение ксенона имеет свои особенности:
• температура плазмы внутри лампы составляет порядка 7000-10000 К;
і к 2000 A/cm2
излучение абсолютно
к л л О 5 £ £5 U I черного тела К
О Ф Е Ї О X 1-1
і і 111 11 III*.
100 300 500 700 900 1000
длинна волны (нМ)
Рис. 9. Спектр излучения ламп-вспышек при силе
разрядного тока 2000 А/см2
і к. 6000 A/cm2
к Л л О І т 1- X излучение абсолютно черного тела
о 1
I £
о X 1 1 1 1 1 1 1 1 ^
100 300 500 700 900 1000" длинна волны (нМ)
Рис. 10. Спектр излучения ламп-вспышек при силе
разрядного тока 6000 А/см2
Компоненты и технологии, № 2'2004
лучения состоит из видимого и инфракрасного излучения.
Спектр излучения ламп с плотностью тока 4000-10000 А/см2 максимально приближен к солнечному (7000 К). Эти трубки обеспечивают наивысшую отдачу энергии в видимом диапазоне. Основная область их применения — фотографические лампы-вспышки.
А
vO Q1 ✓
21 80- ■ / f f
fc 60- /
о т 40- _ / Q2 Q3
8- 20- - J
2 п_ 1 ' 1 1 Г \ Ь
с 01 I I 1 1 1 ^
150 200 250 300 350 400
Рис. 12. Характеристика прозрачности
для кварцевого стекла
Типы применяемого стекла
В лампах вспышках компании РегкіпЕішег Ор1оеіеС:гош8 используются два вида стекла: боросиликатное и кварцевое.
Боросиликатное стекло подразделяется на четыре вида: В1, В2, В3, В4 и обладает большой прозрачностью в видимом и инфракрасном (ИК) диапазоне длин волн.
Различные типы фильтров позволяют пропускать определенную часть спектра. На рис. 11 представлены спектральные характеристики боросиликатного стекла.
а
п
D.
Рис. 14. Внешний вид лампы-вспышки серии OR 9901
Кварцевое стекло обладает уникальными свойствами выдерживать механические и тепловые нагрузки. Химическая формула: 8Ю2.
Подразделяется на следующие типы: Q1, Q2, Q3. Кварцевое стекло обладает большей прозрачностью для ультрафиолетового (УФ) излучения. Применяя тот или иной тип стекла, можно получить различную прозрачность в УФ диапазоне длин волн.
Наработка до отказа для ламп-вспышек может быть выражена в двух единицах: часах непрерывной работы или в количестве вспышек.
Так, для ламп, предназначенных для использования в фотографическом и копировальном оборудовании, этот параметр указывается в количестве возможных вспышек, в то время как для ламп, предназначенных для использования в стробоскопах и автоматах световых эффектов, этот параметр выражается в часах. Такая единица измерения является более удобной для оценки непрерывной работы изделия в совокупности наработок до отказа всех невосстанавливаемых элементов объекта.
Так, жизненный цикл лампы серии FGA 9902-1, применяемой в стробоскопах, равен 500 часам. Для ламп серии BR 8980 (профессиональная фотография) он равен 70 тыс. срабатываний.
Виды ламп-вспышек компании PerkinEImer Optoelectronics
Лампы-вспышки компании PerkinElmer Optoelectronics подразделяются на несколько категорий в зависимости от сферы применения.
Любительская фотография
К лампам-вспышкам этой категории относятся серии: CGA, BGA, AGA, CG. Лампы этой категории имеют небольшие размеры и представлены в виде цилиндрических стержней. Внешний вид представлен на рис. 13.
Жизненный цикл ламп-вспышек
Лампы-вспышки, как и любое не восстанавливаемое изделие электронной техники, характеризуются определенной наработкой до отказа. Время жизни лампы определяет, прежде всего, степень ее применения в различных отраслях и зависит от следующих параметров:
• энергии вспышки;
• анодного напряжения;
• разрядного конденсатора;
• системы охлаждения.
=□
I
Рис. 13. Пример лампы вспышки для любительской фотографии
вания в профессиональном студийном фотографическом оборудовании. Характерной особенностью является максимальное приближение спектра излучения к солнечному, а также высокая интенсивность светового потока. Представлены большим количеством конструктивных вариаций (рис. 14-15, табл. 1).
Автоматы световых эффектов
К лампам-вспышкам этого типа относятся серии CGA, BGG, DSG, FG, 8Н, ВН и некоторые другие. Жизненный цикл находится в интервале от 50 до 500 часов. Лампы представлены большим разнообразием конструктивных форм. Предназначены для использования в стробоскопах, автоматах световых эффектов, рекламных панно (рис. 16, табл. 1).
Жизненный цикл ламп этого типа находится в интервале от 1000 до 10000 срабатываний. Параметры представлены в таблице 1.
Профессиональное фотографическое оборудование
Серии: ^, DG, EG, DU, DW, ОИ. Эти лампы-вспышки предназначены для использо-
Компоненты и технологии, № 2'2004
Таблица 1. Основные параметры ламп-вспышек
Тип лампы Энергия вспышки Анодное напряжение, В (ном) Наработка до отказа Материал стекла Тип трансформатора Примечания
CGA003 0,4 300 5000 всп. B1 ZS1092 любительская фотография
BGA1014 10 330 2000 всп. B1 ZS1092 любительская фотография
CGA4230 36 380 1000 всп. B1 ZS1092 любительская фотография
CG8560 140 380 10000 всп. B1 ZS1092 любительская фотография
NG6901 120 660 10000 всп. B1 ZS1052 профессиональная фотография
0R9901 2000 550 10000 всп. Q1 ZS1052 профессиональная фотография
DW8790 500 400 10000 всп. Q1 ZS1052 профессиональная фотография
CGA1010 1 280 5 О B1 ZS1052 стробоскопы
SH205 20 400 250 ч. B1 ZS1052 стробоскопы
EGL3840 40 450 70 млн. всп. Q2 ZS1052 проблесковые маячки
EG4764 45 450 70 млн. всп. Q2 ZS1052 проблесковые маячки
BH1670 25 300 3,6 млн. всп. B1 ZS1052 проблесковые маячки
BGS2902 40 330 10000 Q2 STS44/33 медицина
DG8907 300 500 30000 Q2 ZS1052 медицина
Сигнальное оборудование Лампы этого типа предназначены для использования в сигнальном световом оборудовании — в проблесковых маячках на спецмашинах, системах безопасности на дорогах, сигнальных лампах самолетов.
Характеризуются высокой надежностью в совокупности с большим количеством срабатываний. Так лампа-вспышка серии EGL 3840 имеет 70млн срабатываний! Параметры ламп этой категории представлены в таблице 1. Внешний вид лампы-вспышки серии DW 3670, представлен на рис. 17.
Лампы специального назначения PerkinElmer Optoelectronics выпускается большой ассортимент специализированных ламп-вспышек. К ним относятся серии: BSG, CGS, DGS, DG и некоторые другие. Лампы
этого типа предназначены для использования в медицинском оборудовании (анализаторы крови, эндоскопы, стерилизационные камеры) и в промышленности,
Характеризуются особой конструкцией, напоминающей по своему внешнему виду лампу Рентгена. Благодаря особой форме колбы и электродов в лампе образуется короткая дуга, большая часть излучаемого спектра которой приходится на коротковолновую область УФ-излучения. Внешний вид представлен на рис. 18,
Аксессуары
Компанией PerkinElmer Optoelectronics выпускается большой ассортимент аксессуаров для ламп-вспышек. К ним относятся:
Таблица 2. Параметры высоковольтных импульсных трансформаторов
Тип, трансформатора Напряжение на втроричной обмотке, кВ Напряжение на первичной обмотке, В Коэффициент трансформации Емкость поджигающего конденсатора, мкФ
ZS1092 5 250 1:43 0,022-0,068
ZS1052 11 300 1:36 0,047-0,22
ZS1031 20 400 1:70 0,1-0,47
ZS1088 7 330 1:16 0,047-0,22
ZS1032 20 400 1:70 0,1-0,47
-е-
• высоковольтные трансформаторы (рис. 19-20, табл. 2);
• рефлекторы и отражатели для малогабаритных ламп-вспышек;
• защитные стекла;
• печатные платы;
• пластиковые и керамические разъемы. Дополнительная информация по продукции компании PerkinElmer по адресу http:// www.alkon.net/PerkinElmer.