Научная статья на тему 'Ксеногенная клеточная терапия: современное состояние проблемы и перспективы свиной клеточной трансплантации'

Ксеногенная клеточная терапия: современное состояние проблемы и перспективы свиной клеточной трансплантации Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
765
126
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КЛЕТОЧНАЯ ТЕРАПИЯ / КЛЕТОЧНЫЕ ТРАНСПЛАНТАТЫ / БОЛЕЗНИ ЧЕЛОВЕКА / CELLULAR THERAPY / CELL TRANSPLANTS / HUMAN DISEASES

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Хрыщанович В. Я., Третьяк С. И., Глинник А. А.

Большинство различных типов клеток, представленных в зрелых и еще созревающих тканях, обладают уни­кальными физиологическими особенностями. Клеточная терапия является новой технологией, позволяющей ис­пользовать столь широкое разнообразие клеток в лечении целого ряда патологических состояний человека. Тяжелые заболевания и травмы сопровождаются гибелью клеток или клеточной дисфункцией. Клеточная транс­плантация позволяет заменить поврежденную или утраченную ткань, восстанавливая, таким образом, ее пре­жнюю функциональную активность. Ограниченное применение клеточных трансплантатов, как основных компо­нентов описываемой технологии, в определенной степени обусловлено нехваткой пригодных для транспланта­ции клеток человека. Указанное обстоятельство значительно затормозило дальнейшее развитие клеточной транс­плантологии. Соответственно, в настоящее время традиционным и, пожалуй, единственным примером клеточ­ной терапии в рутинной клинической практике является переливание крови и ее клеточных компонентов. Не­смотря на многочисленные попытки наращивания человеческой клеточной биомассы в культуре ткани, суще­ствующие технологические трудности в отношении пролиферативной способности и сохранения клетками оп­ределенного фенотипа ограничили их применение для трансплантации. Использование с этой целью человечес­ких стволовых клеток с последующей их дифференцировкой является перспективным направлением и обладает большим потенциалом, однако основное препятствие связано с получением достаточного количества таких мультипотентных клеток. Таким образом, в настоящее время приоритетным источником донорского материа­ла для трансплантации являются нативные клетки. В настоящем обзоре изучены возможности и перспективы применения в клинической практике тканей свиньи, как потенциального источника разнообразных нативных клеток, для лечения заболеваний человека. Кроме того, нами проанализированы преимущества и недостатки ксеногенной клеточной терапии.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биотехнологиям в медицине , автор научной работы — Хрыщанович В. Я., Третьяк С. И., Глинник А. А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

XENOGENEIC CELL THERAPY: CURRENT STATE, PROBLEMS AND PERSPECTIVES OF PORCINE CELLS TRANSPLANTATION

The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology which allows utilizimg cell diversity to treat a wide range of human pathologies. Severe diseases and injuries are characterized by cell death or cellular disfunctions. Cell transplantation can replace the diseased or lost tissue to provide restorative therapy for these structures. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This fact has prevented further development of cell transplantation. Therefore, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand native human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype have prevented their use for transplantation. The use of human stem cells for further derivation seems to be a prospective approach, however the main problem is associated with lack of adequate amount of multipotential cells. Thus, native cells prove to be a priority source for transplantation. This review describes the possibilities and prospectives for clinical use ofporcine cells as a potential source of various type native cells for the treatment of human diseases. Besides the advantages and disadvantages of xenogeneic cell therapy.

Текст научной работы на тему «Ксеногенная клеточная терапия: современное состояние проблемы и перспективы свиной клеточной трансплантации»

УДК 616-089.843 :57.085.23

КСЕНОГЕННАЯ КЛЕТОЧНАЯ ТЕРАПИЯ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ СВИНОЙ КЛЕТОЧНОЙ ТРАНСПЛАНТАЦИИ В. Я. Хрыщанович ; С.И. Третьяк, д. м.нпрофессор; А. А. Глинник

УО «Белорусский государственный медицинский университет»

Большинство различных типов клеток, представленных в зрелых и еще созревающих тканях, обладают уникальными физиологическими особенностями. Клеточная терапия является новой технологией, позволяющей использовать столь широкое разнообразие клеток в лечении целого ряда патологических состояний человека. Тяжелые заболевания и травмы сопровождаются гибелью клеток или клеточной дисфункцией. Клеточная трансплантация позволяет заменить поврежденную или утраченную ткань, восстанавливая, таким образом, ее прежнюю функциональную активность. Ограниченное применение клеточных трансплантатов, как основных компонентов описываемой технологии, в определенной степени обусловлено нехваткой пригодных для трансплантации клеток человека. Указанное обстоятельство значительно затормозило дальнейшее развитие клеточной трансплантологии. Соответственно, в настоящее время традиционным и, пожалуй, единственным примером клеточной терапии в рутинной клинической практике является переливание крови и ее клеточных компонентов. Несмотря на многочисленные попытки наращивания человеческой клеточной биомассы в культуре ткани, существующие технологические трудности в отношении пролиферативной способности и сохранения клетками определенного фенотипа ограничили их применение для трансплантации. Использование с этой целью человеческих стволовых клеток с последующей их дифференцировкой является перспективным направлением и обладает большим потенциалом, однако основное препятствие связано с получением достаточного количества таких мультипотентных клеток. Таким образом, в настоящее время приоритетным источником донорского материала для трансплантации являются нативные клетки. В настоящем обзоре изучены возможности и перспективы применения в клинической практике тканей свиньи, как потенциального источника разнообразных нативных клеток, для лечения заболеваний человека. Кроме того, нами проанализированы преимущества и недостатки ксеногенной клеточной терапии.

Ключевые слова: клеточная терапия, клеточные трансплантаты, болезни человека.

The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology which allows utilizimg cell diversity to treat a wide range of human pathologies. Severe diseases and injuries are characterized by cell death or cellular disfunctions. Cell transplantation can replace the diseased or lost tissue to provide restorative therapy for these structures. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This fact has prevented further development of cell transplantation. Therefore, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand native human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype have prevented their use for transplantation. The use of human stem cells for further derivation seems to be a prospective approach, however the main problem is associated with lack of adequate amount of multipotential cells. Thus, native cells prove to be a priority source for transplantation. This review describes the possibilities and prospectives for clinical use ofporcine cells as a potential source of various type native cells for the treatment of human diseases. Besides the advantages and disadvantages of xenogeneic cell therapy.

Key words: cellular therapy; cell transplants; human diseases.

Ксеногенная клеточная трансплантация как новая биомедицинская технология

После первых попыток пересадки роговицы от животных человеку ксенотрансплантаты стали рассматриваться в качестве потенциальной альтернативы аллотран-сплантатам [1]. Дальнейшие исследования были направлены на развитие ксенотрансплантации и изучение возможности использования изолированных клеток животных. Например, экспериментальные работы по пересадке свиных островковых клеток животным с индуцированным сахарным диабетом позволили установить межвидовую физиологическую активность и регулируемый метаболизм в тканях реципиента [2-4], а также способствовали нормализации показателей гликемии. Приведенные данные, наряду с широко используемым в лечении сахарного диабета свиным инсулином, явились убедительным подтверждением возможности использования свиней как потенциального источника клеток для трансплантации при дисфункции островков Лангерганса. Кроме того, полученные результаты открывают широкие перспективы для применения ксеногенной клеточной трансплантации в лечении целого ряда заболеваний че-

ловека, сопровождающихся дисфункцией или гибелью клеток.

Клеточная трансплантация свиных донорских клеток имеет несколько существенных преимуществ. Во-первых, свиньи являются одомашненными животными, и в настоящее время мы располагаем достаточной информацией о трансмиссии потенциальных заболеваний от свиньи человеку. Несмотря на то, что еще недостаточно изучены некоторые инфекционные заболевания, свиньи считаются относительно безопасным источником донорских клеток. Во-вторых, использование свиней в качестве доноров позволяет получать клетки фактически в неограниченном количестве, а также осуществлять строгий контроль за качеством содержания животных и безопасным получением клеточного материала [6]. Следует отметить, что при выделении клеток из тканей человека, полученных из донорских органов или в результате медицинского аборта, достичь подобной степени контроля невозможно.

Преимущества использования свиных клеток становятся особенно очевидными при рассмотрении клинических протоколов, связанных с применением эмбрио-

нальной ткани. Использование животных позволяет избежать целого ряда трудностей, присущих забору человеческой фетальной ткани: этические проблемы, недостаточный контроль над донорами, определение оптимального срока для выделения клеток, оценка качества донорской ткани [7]. Извлечение свиных эмбриональных клеток можно осуществлять в зависимости от требуемого триместра беременности, что позволяет стандартизировать качество и жизнеспособность получаемых клеток. Возможно, в будущем, после преодоления некоторых нерешенных технических вопросов, применение стволовых или культивированных человеческих клеток позволит избежать недостатков, связанных с получением фетальных тканей человека.

В случае появления возможности пожизненной и полноценной коррекции дефицитарных заболеваний в перспективе клеточная терапия может стать обоснованной и единственной альтернативой традиционным методам лечения. Исследования, касающиеся клеточной ал-лотрансплантации, свидетельствуют о том, что такая цель теоретически достижима. Положительный 6-летний эффект был получен в результате применения человеческих фетальных допамин-секретирующих клеток при болезни Паркинсона [8]. Аналогичный по продолжительности терапевтический эффект наблюдался у пациентов после панкреатэктомии и пересадки собственных остро-вковых клеток [9]. Вопрос о возможности столь длительного функционирования свиных клеток в настоящее время остается открытым, а его решение непосредственно связано с разработкой мер, направленных на долгосрочное предупреждение реакции иммунного отторжения.

Учитывая все технические и клинические ограничения, связанные с применением тканей человека, а также преимущества свиных донорских тканей, в последние годы был отмечен существенный прогресс в области экспериментальной ксенотрансплантации, что послужило поводом для проведения подобных исследований в клинике.

Достижения ксеногенной клеточной трансплантации

Клеточная терапия обладает определенными преимуществами по сравнению с другими методами лечения: имплантацию клеток можно производить в наиболее оптимальные анатомические зоны, включая естественные, иммунопривилегирован-ные или эктопические участки [7, 10-14]; для повышения функциональной активности и снижения иммуногенности возможно выполнение пред-трансплантационной обработки клеток [2, 15-19]; криоконсервация и создание банка клеток дают время для их тщательной характеристики перед транспланта цией; возможно создание комбинированных клеточных трансплантатов, содержащих иммунопротектив-

ные и фенотипически отличающиеся клетки [20-22]. Использование современных визуализирующих технологий в радиологии и стереотаксической хирургии позволяет точно локализовать очаги клеточной дисфункции, дегенерации или ишемии и целенаправленно доставлять клетки к месту пораженного органа или ткани. В связи с этим в настоящее время отмечается увеличение количества экспериментальных и клинических исследований в области ксеногенной клеточной трансплантологии. К наиболее показательным примерам относятся трансплантация островковых клеток при сахарном диабете [2, 3], феталь-ных свиных нервных клеток для лечения болезни Паркинсона [23, 24] и Хантингтона [25, 26], эпилепсии [2730]. Развитие ксеногенной клеточной трансплантации для лечения других заболеваний зависит от возможности выделения необходимых клеток и поддержания их функциональной активности с доказанной клинической эффективностью. Таким образом, имплантация свиных клеток может явиться терапевтической платформой для лечения целого ряда заболеваний (таблицы 1 и 2).

Интеграция и функционирование ксеногенных клеток в организме реципиента

Чрезвычайно важным аспектом ксеногенной клеточной терапии является способность свиных донорских клеток интегрироваться в чужеродные ткани и воспроизводить физиологические функции нормальных клеток [23, 24, 26, 62, 89]. Возможность регулируемого функционирования пересаженных клеток выгодно отличает клеточную терапию от других методов лечения - генной терапии или применения небольших синтезированных молекул. До настоящего времени в клетки, отличающиеся по фенотипу от ткани реципиента, имплантировали единственный ген, отвечающий за нерегулируемый синтез требуемого фактора. Позднее были получены небольшие молекулы, эффективные в отношении стимуляции или торможения внутриклеточных процессов, однако зачастую они нарушали нормальную функцию клеток, вызывая нежелательные побочные эффекты.

Исследования в области клеточной трансплантации подтвердили возможность адекватной интеграции ксе-

Таблица 1 - Клеточная терапия, прошедшая клинические испытания (для лечения заболеваний человека использовались ксеногенные и/или аллогенные клетки)

Тип клеток и показания для Название клеток Тип Литературные

пересадки трансплантации ссылки

Нейроны:

Болезнь Паркинсона допаминергические нейроны К, А (23, 24, 31, 32)

Болезнь Хантингтона ЬОБ К, А (24, 33-35)

Эпилепсия ЬОБ К

Повреждение спинного мозга спинномозговые нейроны А (36)

Эндокринные клетки:

Сахарный диабет □-клетки К, А, Ау (2, 37)

Болезнь Аддисона адренокортикоциты А (38)

Гепатоциты:

Острая печеночная гепатоциты А (39, 40)

недо стато чность

Цирроз гепатоциты А (41)

Синдром Криглера-Наяра гепатоциты А (42)

Ретиноциты:

Возрастная макулярная пигментные эпителиальные А (43)

дегенерация клетки сетчатки

Миоциты:

Мышечная дистрофия миобласты А, Ау (44)

Меланоциты:

Витилиго меланоциты А (45)

Кератиноциты:

Ожоги кератиноциты А, Ау (46)

Хондроциты:

Повреждение суставного хряща хондроциты А, Ау (47)

А — аллотрансплантация, Ау — аутотрансплантация, К — ксенотрансплантация.

Таблица 2 - Ксеногенные клетки, применявшиеся в лечении экспериментальных моделей заболеваний его концентрации в пост-

синаптическом пространстве. Следовательно, подобного уровня регуляции вряд ли можно достичь посредством имплантации допамин-про-дуцирующих фиброблас-тов в головной мозг реципиента.

Продукция нейро-трансмиттеров в ксенот-рансплантатах возможна в случае интеграции имплантируемых клеткок в синаптическое микроокружение нервной ткани реципиента. На модели болезни Паркинсона было показано, что пересадка эмбриона льных свиных клеток мезэнце-фалона оказывает существенное влияние на восстановление утраченных нервных связей в striatum крыс-реципиентов [24, 26, 89], при этом наблюдалось замещение значительной части поврежденного striatum, неотличимое от его интактной ткани [24]. Нормальная плотность стриатальных допа-миновых волокон восстанавливалась приблизительно на 5% от исходного уровня, то же происходило и с глиальным мат-риксом реципиента, что сопровождалась коррекцией двигательной асимметрии, индуцированной односторонним повреждением головного мозга. Другими авторами были получены схожие результаты после пересадки эмбриональных свиных клеток мезэнцефалона [9093].

Эффективность клеточной трансплантации была подтверждена целым рядом экспериментальных исследований на модели болезни Хантингтона, вызванной у животных путем повреждения нейронов в проекции striatum [26, 35, 94]. Пересаженные свиные striatum-трансплантаты содержали функционирующие нейроны и глиальные элементы, что позволило восстановить утраченные нервные связи реципиента. Таким образом, ксеногенные striatum-трансплантаты, подобные трансплантатам желудочкового мезэнцефалона, обладают способностью к адекватному функционированию в головном мозге взрослой особи других видов.

Человеческие фетальные нервные клетки, наряду с

у животных

Тип клеток и показания для пересадки Название клеток Литературные

ссылки

Нейроны:

Болезнь Паркинсона нейроны нейроны коры (48)

Синдром Дауна мозга двигательные (49)

Амиотрофический боковой склероз нейроны клетки боковых (50)

Инсульт ганглиев клетки коры мозга (51)

Инсульт инкапсулированные клетки,

Повреждение спинного мозга продуцирующие реснитчатый (52)

нейротрофический фактор

клетки Пуркинье

Мозжечковая атаксия холинергические нейроны (53, 54)

Болезнь Альцгеймера аудио-сенсорные клетки (55)

Нарушение слуха холинергические нейроны (56)

Слабоумие, не связанное с болезнью Альцгеймера клетки боковых ганглиев (55)

Выраженный болевой синдром хромаффинные клетки (57)

Выраженный болевой синдром холинергические нейроны (52)

Снижение памяти серотонинергические нейроны (58)

Шизофрения серотонинергические нейроны (59)

Сексуальные расстройства допаминергические нейроны (60)

Шизофрения (61)

Гепатоциты:

Семейная гиперхолестеринемия гепатоциты (62)

Синдром Криглера-Наяра гепатоциты (63)

Ретиноциты:

Пигментный ретинит фоторецепторы (64)

Миоциты:

Ишемия миокарда кардиомиоциты, (65)

пейсмейкерные клетки

Ишемия миокарда миобласты (66)

Тяжелая сердечная недостаточность миобласты (67)

Пластическая и реконструктивная хирургия миобласты (68)

Эндокринные клетки:

Остеопороз эстроген-секретирующие (69)

клетки

Агенезия околоушных слюнных желез ацинарные клетки (70)

Гипопаратиреоз паратироциты (71)

GnRH недостаточность супрахиазмальные клетки (72)

Репродуктивная дисфункция предоптическая область (73)

Тестикулярная недостаточность клетки Сертоли (74)

Инсульт эстроген-секретирующие (75)

клетки

Болезнь Альцгеймера эстроген-секретирующие (59)

клетки

Гипотиреоз тироциты (76)

Несахарный диабет гипоталамус (77)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Сахарный диабет □ -клетки (78-80)

Кератиноциты, фибробласты, волосяные фолликулы:

Хроническая оторея кератиноциты (81)

Шрамы фибробласты (82)

Косметология (восстановление волос) волосяные фолликулы (83)

Хондроциты, остеобласты:

Восстановление кости хондроциты (84)

Клетки слизистой оболочки:

Болезнь Крона слизистая оболочка ЖКТ (85)

Клетки роговицы:

Заболевания поверхности глаза эпителиальные клетки (86)

роговицы

Заболевания хрусталика конъюнктивальные клетки (87)

Другие:

Рассеянный склероз олигодендроциты (88)

Демиелинизирующие заболевания глиальные, шванновские (88)

клетки

ногенных нервных клеток в ткани реципиента, и, тем самым, указали на очевидные преимущества ксенотранс-плантации над генной терапией, в процессе которой наблюдается дефицит синтеза целого ряда молекул, принимающих участие в регуляции физиологического гомеос-таза. Передача синаптического нервного импульса представляет собой сложный процесс, который, помимо разрушения и синтеза нейротрансмиттеров, требует обновления рецепторов. Синтез допамина клетками substantia nigra регулируется уровнем тирозин-гидроксилазы, однако, допаминовый ре-синтез и разрушение зависят от

ксеногенными, показали свою эффективность в компенсации неврологического дефицита у экспериментальных животных с болезнями Паркинсона и Хантингтона. Более того, человеческие клетки использовались для лечения болезни Паркинсона в клинических условиях [31, 9598]. При этом наблюдаемое клиническое улучшение сопровождалось торможением прогрессирования патологического процесса в головном мозге реципиента [8]. В настоящее время продолжаются активные исследования в отношении потенциальных возможностей трансплантации свиных фетальных нервных клеток в лечении эпилепсии, болезней Паркинсона и Хантингтона.

Другим примером интеграции ксеногенных клеток в организме реципиента является трансплантация свиных гепатоцитов животным с дисфункцией печени. Как показали исследования, регуляция синтеза белков клетками печени осуществляется целым рядом факторов транскрипции, чувствительных к некоторым метаболическим сигналам: онкотическое давление, цитокины реципиента, регуляция синтеза и разрушения протеинов по принципу обратной связи [62]. Например, уровень липопро-теинов низкой плотности (ЛНП) регулируется в соответствии с критическим балансом между синтетической функцией печени, диетой и содержанием связанного холестерина (интестинальные желчные кислоты). Снижение уровня ЛПН достигается посредством регуляции ЛПН-рецепторов и поглощения сывороточных ЛПН. Ус -тановлено, что внедрение ДНК, кодирующей ЛПН-ре-цептор, в генотип клеток реципиента не приводило к регулируемой экспрессии соответствующих рецепторов [99].

Еще одним примером, касающимся лечения сахарного диабета, является регулируемая секреция инсулина пересаженными островковыми клетками, которая строго контролируется количеством утилизируемой организмом и потребляемой с пищей глюкозы. Как было показано, свиные островковые клетки активно синтезируют инсулин и приводят к восстановлению нормогликемии у животных с индуцированным сахарным диабетом [2-4, 100, 101]. Кроме того, клиническое применение свиных островков Лангерганса подтвердило способность П-кле-ток к выживанию и функционированию [2, 102, 103]. Несмотря на то, что клинический эффект подобных пересадок был более чем скромный, тем не менее, полученные результаты продемонстрировали возможность безопасной пересадки свиных островковых клеток человеку и их функционирования в течение небольшого периода времени.

Результаты собственных исследований указали на возможность длительного, в течение 6 и более месяцев, сохранения в артериальном сосудистом русле жизнеспособности ксеногенного щитовидно-паращитовидного трансплантата без применения иммуносупрессии. Обнаружение при морфологическом исследовании кубического или цилиндрического фолликулярного эпителия, достижение реципиентами эутиреоидного состояния на фоне снижения потребности в заместительной терапии, нормализация кальциевого гомеостаза и купирование симптомов гипопаратиреоза подтвердили функциональную активность трансплантата [104]. В связи с этим требуется проведение дополнительных экспериментальных и клинических исследований в данном направлении, основанных на уже имеющихся фундаментальных достижениях и знаниях.

В настоящее время доказана возможность регулируемого функционирования некоторых ксеногенных клеток в организме реципиента в зависимости от уровня

определенных метаболитов: гепатоциты - сывороточный холестерин; допаминергические клетки - допамин; ост-ровковые клетки - глюкоза; паратироциты - кальций.

Иммунологические барьеры

Отдельной проблемой, препятствующей нормальному функционированию пересаженных ксеногенных клеток, является отторжение трансплантата. Клеточная трансплантация в определенной степени уменьшает, но полностью не устраняет актуальность проблем, связанных с отторжением чужеродных тканей. Например, длительность функционирования ксеногенных островковых трансплантатов напрямую зависела от продолжительности реакции иммунного отторжения [78, 105], в то время как иммунопротекция или пересадка свиных П-клеток иммуносупрессированным мышам позволили значительно увеличить период их функциональной активности [79, 80]. Как было показано, пересадка свиных остро-вковых клеток человеку сопровождалась повышением титра антител к ксенотрансплантату в организме реципиента [106], при этом признаки реакции отторжения отсутствовали [107]. В отличие от органных ксенотранс-плантатов, повышению резистентности свиных клеток к реакции отторжения способствуют, по меньшей мере, два фактора: 1) отсутствие сосудов в клеточных трансплантатах, которые запускают механизм отторжения ксе-нотрансплантата, и 2) возможность пересадки клеток в иммунологически выгодные зоны [108-110].

Первым фактором, который повышает устойчивость ксеногенных клеточных трансплантатов к отторжению, является низкое содержание или отсутствие сосудистых эндотелиальных клеток, которые принимают участие в развитии сверхострого иммунного ответа. Предсуще-ствующие антитела реципиента «атакуют» прежде всего □ -связанную галактозу, прикрепленную на свиных эндо-телиальных клетках, в результате чего происходит запуск реакции сверхострого отторжения в течение нескольких минут после трансплантации [111-113]. Далее наблюдается активация эндотелиальных клеток [111, 114], обусловленная индукцией комплемент-опосредованного иммунного ответа. Следует отметить, что основным участ -ником сверхострого ксеноотторжения являются клетки сосудистого эндотелия, которые отсутствуют в клеточных трансплантатах, в связи с чем указанная проблема, строго ограничивающая органную ксенотранспланта-цию, не касается клеточной трансплантологии. Несмотря на то, что естественные антитела и комплемент могут напрямую участвовать в разрушении клеток in vitro [113, 115], большинством экспериментальных исследований была доказана устойчивость ксеногенных клеток к сверхострому отторжению в случае элиминации эндотелиальных клеток [116]. Как было показано, изолированные свиные островки Лангерганса с сохраненной ангиоархитек-тоникой очень быстро разрушались в организме реципиента, чего не наблюдалось после нескольких дней культивирования, в результате которого оставались лишь эндокринные клетки [18]. После трансплантации островковых клеток может отмечаться повышение титра анти-Gal антител [106], однако ускорение реакции отторжения происходит только при последующих пересадках тканей свиньи. Одним из способов, предупреждающих отторжение, опосредованное антителами к □-связанной галактозе, может быть блокирование экспрессии этого сахара путем сверхэкспрессии конкурентной гликозилтрансферра-зы у трансгенных животных [117]. При этом образуется H-антиген, который блокирует экспрессию П-связанной галактозы.

Таким образом, острое сосудистое отторжение не является проблемой при пересадке клеток, полученных из ксеногенных источников. В то же время серьезные трудности возникают в результате развития отсроченного T- клеточного отторжения, которое принимается во внимание всеми протоколами по трансплантации. Для

предупреждения реакции отторжения ксенореактивны-ми T- клетками предпринимались разнообразные стратегические подходы, включающие блокирование ко-сти-муляции T- клеток CTLA4Ig и анти-СБ40 лигандом [118], антителами к MHC антигенам трансплантата [15, 35]. Кроме того, снижение выраженности иммунного ответа может быть достигнуто в процессе культивирования ксе-ногенных тканей путем элиминации антиген-представ-ляющих клеток I и II класса гистосовместимости, адгезивных и ко-стимулирующих молекул, что невозможно в случае пересадки органных ксенотрансплантатов, содержащих различные типы клеток. В связи с этим существующие в настоящее время протоколы иммуносупрессии могут быть в полной мере применимы для ксеногенной клеточной трансплантации.

Предположительно, гуморальный и клеточный иммунный ответ человека на ксенотрансплантаты имеет индивидуальные отличия, касающиеся колебаний титра человеческих предсуществующих антител [119] и попу-ляционной разнородности T-клеточного ответа к свиным клеткам [120].

Ксенотрансплантацияв иммунопривилегированные зоны

Вторым фактором, способствующим предупреждению реакции отторжения клеточных ксенотранспланта-тов, является возможность пересадки свиных клеток в иммунологически привилегированные зоны. Примерами таких локусов у человека могут быть центральная нервная система [11, 110, 121, 122], передняя камера глаза [109, 110], яичко [14, 108, 123], сосудистое русло [4, 5].

Как было показано, резистентность нейроцитов к иммунной системе реципиента была выше при их пересадке в головной мозг по сравнению с другими анатомическими областями, однако до настоящего времени инт-рацеребральная ксенотрансплантация не обходится без назначения иммуносупрессивной терапии [110, 124, 125]. С целью подавления иммунного ответа при пересадке свиных клеток крысам с индуцированной болезнью Хантингтона в качестве системного иммунодепрессанта некоторые авторы использовали циклоспорин, либо перед трансплантацией обрабатывали поверхность свиных донорских клеток p(ab^) фрагментом (антиген-связанным)

антител к антигенам I класса гистосовместимости [35, 94, 123]. При этом было проведено сравнение выживаемости трансплантата в трех группах реципиентов: первой группе назначали системный иммунодепрессант (циклоспорин); во второй группе донорские клетки обрабатывали F(ab^) , третья группа не получала какой-либо иммуносупрессивной терапии. Полученные результаты

подтвердили способность циклоспорина и F(ab^) продлевать жизнедеятельность трансплантата, в то время как исключение иммуносупрессии приводило к быстрому отторжению ксеногенных клеток [35]. Процент выживаемости трансплантатов был выше в группе циклоспорин-индуцированных животных, однако основным недостатком системной иммуносупрессии является развитие серьезных побочных эффектов. Полученные экспериментальные данные послужили основанием для проведения

торых получала стандартную иммуносупрессию циклоспорином. Положительная динамика неврологических симптомов была отмечена в обеих группах пациентов [126], что подтвердило эффективность обработки ксено-генных клеток для предупреждения реакции от-

Р(аЬ^) 2

торжения.

Наряду с центральной нервной системой, другим иммунологически выгодным местом для трансплантации является передняя камера глаза [108-110], слабая выраженность иммунного ответа в которой обусловлена секрецией цитокинов-ингибиторов и РаБ-лиганда [127], отсутствием антиген-представляющих клеток и лимфатического дренажа [124, 127]. В связи с этим была изучена возможность использования передней камеры глаза для гетеротопической трансплантации пигментных эпителиальных клеток сетчатки и фоторецепторных клеток в субретинальное пространство с целью реиннервации сетчатки [51, 120,127].

Яичко также относится к иммунологически привилегированным зонам, где экспрессия РаБ-лиганда клетками Сертоли позволяет предотвратить Т-клеточное отторжение трансплантата [20, 108, 128-130]. Иммунопротек-тивные свойства клеток Сертоли были подтверждены при пересадке островков Лангерганса, миобластов, хромаф-финных клеток надпочечника. Вместе с тем, в процессе иммунного отторжения и гибели клеток принимают участие не только лимфоциты, что ставит под сомнение эффективность описанного подхода [131-133].

В то же время в отечественной и зарубежной литературе имеются сообщения об эффективности клеточной трансплантации в артерио-венозную фистулу, сформированную из подвздошных артерии и вены, кубитальной вены и плечевой артерии [4]. К основным недостаткам описанной методики авторы относят необходимость хронической антикоагулянтной терапии и возможный риск осложнений ангиохирургического вмешательства. Вместе с тем, опираясь на результаты собственных исследований, можно утверждать, что артериальное сосудистое русло, как место для имплантации инкапсулированных тироцитов и паратироцитов, обладает достаточными иммунопротективными свойствами, поскольку неповрежденная интима является мощным гистогематическим барьером, который обеспечивает нестандартный иммунный ответ на пересаженную ткань, что, в конечном итоге, позволяет длительно сохраняться чужеродной ткани в организме реципиента [154].

Пересадка ксеногенных клеток может приводить к временному нарушению иммунной привилегированности, в процессе восстановления которой защиту трансплантата может обеспечить иммуномодуляция Р(аЬ^) - фрагментами. Нарушения проницаемости гематоэнце- фалического барьера можно избежать путем использо- вания микропипеток для инфузионного введения клеток [134].

Ксенотрансплантация в иммунологически

непривилегированные зоны

клинических исследований по пересадке F(ab^) -обработанных донорских свиных клеток пациентам, часть из ко-

О Несмотря на очевидные преимущества трансплантации клеток в иммунопривилегированные зоны, была доказана возможность ксеногенной пересадки в имму-нологически непривилегированные локусы [2]. С целью предупреждения реакции отторжения в настоящее время разрабатываются протоколы трансплантат-специфической иммуносупрессии, позволяющие продлить сроки функционирования трансплантата и, вместе с тем, сохранить противоопухолевый и инфекционный иммунитет реципиента [15, 118, 130, 135]. В основе наиболее

эффективных режимов иммуносупрессии лежит торможение активности трансплантат-специфических T-лим-фоцитов путем блокирования ко-стимулирующих сигналов CTLA4Ig и анти-СБ40 лигандами [136-138]. Комбинированное применение CTLA4Ig и анти-СБ40 лигандов позволило значительно увеличить период жизнедеятельности почечных аллотрансплантатов, ксеногенных сердца и кожи [132, 139]. Таким образом, большинство подходов направлено на индукцию апоптоза или анергии трансплантат-специфических T-клеток, включая изменение продукции Th1-Th2-цитокинов [140] или пептидных лигандов [141, 142] иммунокомпетентными клетками; использование растворимых пептидов, взаимодействующих с рецепторами MHC-T клеток, а также антител к молекулам главного комплекса гистосовместимости [143, 144].

Помимо опосредованного T- клетками иммунного ответа, реализация отторжения ксенотрансплантата обусловлена большим количеством других механизмов с участием естественных клеток-киллеров, которые распознают свиные клетки вследствие отсутствия отрицательных регулирующих последовательностей в молекулах главного комплекса гистосовместимости свиньи [145-148]. Пересадка определенных типов клеток может приводить краз-витию острого воспалительного ответа. Выраженная ней-трофильная инфильтрация наблюдалась вокруг имплантированных островковых клеток; по ходу инъекционного тракта в головном мозге было отмечено присутствие макрофагов [105]. В то же время, внутрипеченочная трансплантация гепатоцитов на фоне адекватной имму-носупрессии не вызывала воспалительного ответа [62, 105]. Применение глюкокортикостероидов при пересадке ксеногенных клеток, а также имплантация в геном животных иммуносупрессорных генов будут способствовать решению проблемы иммунного отторжения. Применение одного протокола иммуносупрессии или их комбинации с большой долей вероятности позволит в полной мере использовать терапевтический потенциал ксе-ногенной клеточной трансплантации, даже в иммуноло-гически непривилегированные зоны.

Последние достижения и области применения ксеногенной клеточной терапии

К настоящему времени широкие перспективы ксе-ногенной клеточной терапии подтверждены целым рядом экспериментальных и клинических исследований (таблицы 1 и 2). В таблицах представлены сведения, касающиеся исследований по пересадке клеток человеку и животным, при этом отдельно изучены возможности ксеногенной клеточной трансплантации.

В первой таблице приводится список вариантов ал-логенной и ксеногенной клеточной терапии, прошедшей клинические испытания. В последние годы активно изучается эффективность пересадки свиных фетальных клеток нервной ткани в лечении болезней Паркинсона и Хантингтона, эпилепсии. Предварительные клинические результаты свидетельствуют о способности пересаженных свиных нейронов облегчать симптомы болезни Пар-кинсона [126]. Сохранение жизнеспособности свиных нервных клеток и их интеграции в ткань головного мозга [23] через 8 месяцев после пересадки было выявлено при аутопсийном иммуногистохимическом исследовании одного из 12 пациентов с болезнью Паркинсона, который умер от легочной эмболии (не связанной с клеточной трансплантацией) [149, 150]. Кроме того, была отмечена минимальная выраженность лимфоцитарной инфильтрации и экспрессии MHC-антигенов II класса у

циклоспорин-индуцированного реципиента.

Hillaire et al. [151] были представлены предварительные данные, полученные в результате 1 фазы клинических испытаний по изучению безопасности D-аминомас-ляной кислоты (ГАМК)-продуцирующих фетальных свиных нейронов на 12 пациентах для лечения болезни Хантингтона. Следует отметить, что до настоящего времени не разработаны какие-либо методы лечения этой неврологической патологии - применение ГАМК-ергических агонистов оказалось неэффективно для купирования симптомов заболевания [152], поэтому трансплантация фетальных нервных клеток явилась попыткой восстановления утраченной функции нейронов striatum [33, 35, 153, 89]. Через 6 месяцев после трансплантации ГАМК-продуцирующих клеток [101] каких-либо неблагоприятных побочных эффектов, так же как и терапевтических, зафиксировано не было. Вместе с тем, учитывая медленное прогрессирование заболевания, требуется более продолжительный период наблюдения за пациентами, а полученные предварительные результаты свидетельствуют о необходимости продолжения клинических испытаний.

В группе, состоящей из 10 пациентов, изучалась эффективность лечения сахарного диабета путем трансплантации свиных островковых клеток (таблица 1). В течение 2 лет после пересадки была отмечена секреция свиного C-пептида, однако клинически значимой продукции инсулина не наблюдалось. Морфологическое исследование биоптатов подтвердило выживаемость свиных островков Лангерганса, имплантированных под капсулу почки пациентам с сахарным диабетом [2].

В таблице 2 представлены сведения, касающиеся пересадки различных типов клеток для лечения заболеваний человека в экспериментах на животных ( гепатоциты - врожденные ферментопатии; нейроны - нейродегене-ративные заболевания; пигментные эпителиальные клетки сетчатки - ретинопатии; миоциты - сердечная недостаточность; хондроциты - внутрисуставные повреждения; тироциты - гипотиреоз). Данные, полученные в результате собственных клинико-экспериментальных исследований, позволили доказать возможность длительного (12 и более месяцев) функционирования ксеногенных и аллогенных клеток щитовидной и паращитовидной желез, островков Лангерганса в организме реципиента без применения медикаментозной иммуносупрессии [4, 104, 154]. Предтрансплантационное культивирование донорской ткани, клеточная макроинкапсуляция, криоконсер-вирование и имплантация ксено- и аллотрансплантатов в иммунологически выгодную зону (артериальное сосудистое русло) явились определяющими факторами, позволившими достичь стойкого положительного клини-ко-лабораторного эффекта у реципиентов с гипотиреозом, гипопаратиреозом и сахарным диабетом. Другим перспективным направлением, позволяющим продлить сроки функционирования клеточных трансплантатов, а также улучшить степень их интеграции и регуляции в организме реципиента, является получение донорского материала от трансгенных животных.

Ограничения и опасности клеточной терапии

Несмотря на очевидные преимущества ксеногенной клеточной терапии, существуют ограничения и опасности, связанные с ксенотрансплантацией, которые включают инфекционную трансмиссию, хирургические осложнения, иммунное отторжение, первичную дисфункцию трансплантата. В настоящее время особое внимание уделяется изучению инфекционных рисков, связан-

ных с использованием тканей животных для трансплантации человеку [155-159]. В отличие от человеческой органной трансплантологии, опасности клеточной ксе-нотрансплантации изучены недостаточно. В частности, на II Всемирной консультации ВОЗ, посвященной вопросам регулирования клинических испытаний по ксенот-рансплантации, широко обсуждался возможный риск передачи свиного ретровируса или новой формы ретро-вируса, образованной в результате рекомбинации между свиной и человеческой эндогенной последовательностью [157, 158, 160-162]. Несмотря на то, что опасность ксеногенных инфекционных рисков несколько преувеличена, тем не менее, случаи зооноза были зафиксированы как in vitro [158], так и in vivo [163]. В связи с этим в 2000 году Всемирной организацией здравоохранения был объявлен мораторий на проведение неконтролируемых клинических испытаний по ксенотрансплантации. Вместе с тем, ранее проведенные исследования по пересадке свиной кожи и инсулин-продуцирующих клеток не выявили случаев инфицирования реципиентов. По данным других авторов, свиньи не являются носителями прионов, следовательно, отсутствует риск заболевания губчатой энцефалопатией [164-166]. Метод полимеразной цепной реакции позволил исключить трансмиссию свиного рет-ровируса реципиентам после пересадки свиных клеточных трансплантатов по поводу болезни Паркинсона [23], Хантингтона [101], сахарного диабета [167], а также после перфузии крови пациентов с печеночной и почечной недостаточностью через свиные печень и почку [168, 169].

Заключение

Анализ литературных данных последних лет, а также результаты собственных экспериментально-клинических исследований свидетельствуют о возможности использования ксеногенной клеточной трансплантации для лечения целого ряда неизлечимых ранее заболеваний. К основным преимуществам ксеногенной клеточной терапии относятся возможность адекватной интеграции и функционирования чужеродных клеток в организме реципиента, преодоление дефицита аллогенного донорского материала, создание популяции трансгенных животных со сниженными иммуногенными свойствами определенных типов тканей, используемых для трансплантации. Вместе с тем, главным препятствием на пути широкого внедрения клеточной ксенотрансплантации в клиническую практику по-прежнему являются реакция отторжения и трансплантат-ассоциированные инфекционные риски. В настоящее время в этом направлении активно проводятся доклинические исследования, которые, по мнению большинства исследователей, позволят в недалеком будущем в полной мере реализовать весь терапевтический потенциал ксеногенной клеточной трансплантации.

Литература

1. G ibson, T. Zoografting - A cu rious chapter in the history of plastic surgery / T. Gibson // Br. J. of Plast. Surg. - 1955. - Vol. 8. - P. 234-242.

2. Transplantation of porcine fetal pancreas to diabetic patients / C.G. Groth [et al.] // Lancet. - 1994. - Vol. 344. - P. 1402-1404.

3. Mixed xenogeneic chimerism (mouse + rat to mouse) to induce donor-specific tolerance to sequential or simultaneous islet xenografts / H. Li [et al.] // Transplantation. - 1994. - Vol. 57. - P. 592-598.

4 . Long- term norma liza tion of diabetes mellitu s a fter xenotransplantation of fetal pancreatic islet cells into the blood stream withou t immu nosu ppressive therapy / A.V. Prochorov [et a l.] // Transplantation Proceedings. - 2004. - Vol. 36. - P. 2855-2856.

5. Ксенотрансплантация тканей в сосудистое русло / А.В. Шотт [и соавт.] // Здравоохранение Белоруссии. - 1989. - № 11. - С. 28-32.

6. Fishman, J. Miniature swine as organ donors for man: Strategies for prevention of xenotransplant-associated infections / J . Fishman // Xenotransplantation. - 1994. - Vol. 1. - P. 47-57.

7. Fine, A. Human fetal tissue research: Practice, prospects, policy / A. Fine // Cell Transplant. - 1994. - Vol. 3. - P. 113-145.

8 . Lindvall, O . Upda te in feta l tra nspla nta tion: T he Swedish experience / O. Lindvall // Move. Disord. - 1998. - Vol. 13 (Suppl. 1).

- P. 83-87.

9. Autotransplantation of dispersed pancreatic islet tissue combined with total or near-total pancreatectomy for treatment of chronic pancreatitis / A.C. Farney [et al.] // Surgery. - 1991. - Vol. 110. - P. 427-439.

10. The immunologically privileged site for islet cell transplantation / M. Gotoh [et al.] // Transplant. Proc. - 1989. - Vol. 21. - P. 2691-2692.

11 . Allotra nspla ntation of rat islets into the cisterna ma gna of streptozotocin- indu ced dia betic ra ts / H .C. Lee [et a l.] // Transplantation. - 1992. - Vol. 53. - P. 513-516.

12. McEvoy, R.C., Leung, P.E. Transplantation of fetal rat islets into the cerebral ventricles of alloxan-diabetic rats. Amelioration of diabetes by syngeneic but not allogeneic islets / R.C. McEvoy, P.E. Leung // Diabetes. - 1983. - Vol. 32. - P. 852-857.

13. Intrauterine transplantation of isogenic pancreatic islets in experimental diabetic rats / I. Sakonju // J. Vet. Med. Sci. - 1994. -Vol. 56. - P. 729-733.

14. Selawry, H.P., Whittington, K.B., Forster, H.G. Intratesticular islet xenograft survival in relation to tissue cyclosporine levels / H.P. Selawry, K.B. Whittington, H.G. Forster // Am. J. Med. Sci. - 1988. -Vol. 295. - P. 497-502.

15. Faustman, D., Coe, C. Prevention of xenograft rejection by masking donor HLA class I antigens / D. Faustman, C. Coe // Science.

- 1991. - Vol. 252. - P. 1700.

16. P.; Marlier, L.; Privat, A.; Mallet, J. Behavioral effect of engineered cells that synthesize L-DOPA or dopamine after grafting into the rat neostriatum / P. Horellou [et al.] // Eur. J. Neurosci. -1990. - Vol. 2. - P. 116-119.

17. Lafferty, K.J., Prowse, S.J., Simeonovic, C.J. Immunobiology of tissue transplantation: A return to the passenger leukocyte concept / K.J. Lafferty, S.J. Prowse, C.J. Simeonovic // Annu. Rev. Immunol.

- 1993. - Vol. 1. - P. 143-173.

18. The effect of islet cell culture in vitro at 24 °C on graft survival and MHC antigen expression / J.F. Markmann [et al.] // Transplantation. - 1990. - Vol. 49. - P. 272-277.

19. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease / J.A. Wolff [et al.] // Proc. Natl. Acad. Sci. USA. - 1989. - Vol. 86. - P. 9011-9014.

20. Korbutt, G.S., Elliott, J.F., Rajotte, R.V. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression / G.S. Korbutt, J.F. Elliott, R.V. Rajotte // Diabetes. - 1997. - Vol. 46. - P. 317-322.

21 . Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice / H.T. Lau [et al.] // Science. -1996. - Vol. 273. - P. 109-112.

22. Selawry, H.P., Cameron, D.F. Sertoli cell-enriched fractions in successful islet cell transplantation / H.P. Selawry, D.F. Cameron /

/ Cell Transplant. - 1993. - Vol. 2. - P. 123-129.

23. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease / T. D eacon [et al.] // Nat. Med. - 1997. - Vol. 3. - P. 350-353.

24. Xenotransplantation of porcine feta l ventral mesencepha lon in a rat model of Parkinson's disease: Functional recovery and graft morphology / W.R. Galpern [et al.] // Exp. Neurol. - 1996. - Vol. 140. - P. 1-13.

2 5 . Intra stria tal tra nspla nta tion of cross-species fetal stria tal cells reduces abnormal movements in a primate model of Huntington's disease / P. Hantraye [et al.] // Proc. Natl. Acad. Sci. USA. - 1982. -Vol. 89. - P. 4187-4191.

26 . Tra nspla nted xenogeneic neu ra l cells in neurodegenera tive disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial axonal fibers / O. Isacson [et al.] // Nat. Med.

- 1995. - Vol. 1. - P. 1189-1194.

27. Bengzon, J., Kok aia, Z., Lindvall, O. Specific functions of grafted locus coeruleus neurons in the kindling model of epilepsy / J. Bengzon, Z. Kokaia, O. Lindvall // Exp. Neurol. - 1993. - Vol. 122.

- P. 143-154.

28 . Bengzon, J ., Lindvall, O . Transplantation in experimental epilepsy. Lindvall, O., ed. In: Basic and clinical aspects of neuroscience: Restoration of brain function by tissue transplantation / J. Bengzon,

O. Lindvall // Berlin: Springer Verlag. - 1993. - P. 39-50.

29. Bjorklund, A. Neural transplantation - An experimental tool with clinical possibilities / A. Bjorklund // Trends Neurosci. - 1991. -Vol. 14. - P. 319-322.

30. Fine, A., Meldrum, B.S., Patel, S. Modulation of experimenta lly indu ced epilepsy by intra cerebra l gra fts of feta l G ABAergic neu rons / A. Fine, B.S. Meldru m, S. Patel // Neuropsychology. - 1990. - Vol. 28. - P. 627-634.

3 1. Neuropathological evidence of graft survival and striatal reinnervation after the transplanta tion of fetal mesencephalic tissue in a patient with Parkinson's disease [see comments] / J.H. Kordower [et al.] // N. Engl. J. Med. - 1995. - Vol. 332. - P. 1118-1124.

32. O lanow, C.W., Kordower, J.H., Freeman, T.B. Fetal nigral transplantation as a therapy for Parkinson's disease / C.W. Olanow, J.H. Kordower, T.B. Freeman // Trends Neursci. - 1996. - Vol. 19. -P. 102-109.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

33. Deacon, T.W., Pakzaban, P., Isacson, O. The lateral ganglionic eminence is the origin of cells committed to stria ta l phenotypes: Neural tra nsplantation and developmenta l evidence / T.W. D eacon, P. Pakzaban, O. Isacson // Brain Res. - 1994. - Vol. 668. - P. 21121 9.

34. Dunnett, S.B. Functional repair of striatal systems by neural transplants: Evidence for circuit reconstruction / S.B. Dunnett // Behav. Brain Res. - 1995. - Vol. 66. - P. 133-142.

3 5. A novel mode of immunoprotection of neural xenotransplants: Masking of donor major histocompatibility complex class I enhances transplant survival in the central nervous system / P. Pakzaban [et al.] // Neuroscience. - 1995. - Vol. 65. - P. 983-996.

36. Bunge, M.B. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord / M.B. Bunge // J. Neurol. - 1994. - Vol. 242(Suppl. 1). - P. 36-S39.

37. Wu, Z.G., Shi, Z.Q., Lu, Z. In vitro culture and transplantation of encapsulated human fetal islets as an artificial endocrine pancreas

/ Z.G. Wu, Z.Q. Shi, Z. Lu // ASAIO Trans. - 1989. - Vol. 35. - P. 736-738.

3 8 . A stu dy of ca daveric fetal a drenal u sed for a drenal tra nsplantation to treat Addison's disease. Thirteen cases reported / Z.B. Yan [et al.] // Transplant. Proc. - 1990. - Vol. 22. - P. 280-282.

39. Mito, M., Kusano, M. Hepatocyte transplantation in man / M. Mito, M. Kusano // Cell Transplant. - 1993. - Vol. 2. - P. 65-74.

40. Hepatocyte transplantation as a bridge to orthotopic liver tra nspla ntation in termina l liver fa ilu re / S.C. Storm [et a l.] // Transplantation. - 1997. - Vol. 63. - P. 559-569.

4 1 . Percu ta neous hepatocyte tra nspla ntation (PH T ) in liver failure / B.M. Bilir [et al.] // Hepatology. - 1997. - Vol. 26. - P. 252A.

4 2 . Trea tment of the Crigler- N ajjar syndrome Type I with hepatocyte transplantation / I.J. Fox [et al.] // N . Engl. J . Med. -1998. - Vol. 338. - P. 1422-1426.

43. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization / P.V. Algvere [et al.] // Graefe's Arch. Clin. Exp. Ophthalmol. - 1994. -Vol. 232. - P. 707-716.

44. Rando, T.A., Pavlath, G.K., Blau, H.M. The fate of myoblasts following tra nspla ntation into muscle / T.A. Ra ndo, G.K. Pa vlath, H.M. Blau // Exp. Cell Res. - 1995. - Vol. 220. - P. 383-389.

45. Pigment cell transplantation for the trea tment of vitiligo: A progress report / W. Lontz [et al.] // J. Am. Acad. Derm. - 1994. -Vol. 3. - P. 591-597.

46. Paddle-Ledinek, J.E., Cruiskshank, D.G., Masterton, J.P. Skin replacement by cultured keratinocyte grafts: An Australian experience / J.E. Paddle-Ledinek, D.G. Cruiskshank, J.P. Masterton // Burns. -1997. - Vol. 23. - P. 204-211.

47. Minas, T., Nehrer, S. Current concepts in the treatment of articular cartilage defects / T. Minas, S. Nehrer // Orthopedics. -1997. - Vol. 20. - P. 525-538.

4 8 . Soma tic cell cloned tra nsgenic bovine neu rons for transplantation in park insonia n ra ts / W.M. Zawada [et al.] // Na t. Med. - 1998. - Vol. 4. - P. 569-574.

49. Fine, A., Ault, B., Rapoport, S.I. Mouse trisomy 16 neurons, a model of human trisomy 21 (Down syndrome), can be maintained by intracerebra l tra nsplanta tion / A. Fine, B. Au lt, S.I. Rapoport // Neurosci. Lett. - 1991. - Vol. 122. - P. 4-8.

5 0. Nogradi, A., Vrobova, G. Improved motor function of denerva ted rat hindlimb muscles indu ced by embryonic spinal cord grafts / A. Nogradi, G. Vrobova // Eur. J. Neurosci. - 1996. - Vol. 8. -P. 2198-2203.

51. Transplantation of fetal neocortex ameliorates sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain

injury in rats / E.M. Jansen [et al.] // Exp. Neurol. - 1997. - Vol. 147.

- P. 487-497.

52. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic la teral sclerosis patients (published erratum appears in Nat. Med. 2:1041; 1996) / P. Aebischer [et al.] // Nat. Med. - 1996. - Vol. 2. - P. 696-699.

53. Sotelo, C., Alvarado-Mallart, R.M. Growth and differentiation of cerebella r suspensions transpla nted into the a dult cerebellu m of mice with heredodegenera tive a ta xia / C. Sotelo, R.M. Alva ra doMallart // Proc. Natl. Acad. Sci. USA. - 1986. - Vol. 83. - P. 11351139.

5 4 . T ria rhou, L.C. T he cerebellar model of neu ral grafting: Structural integration and functional recovery / L.C. Triarhou // Brain Res. Bull. - 1996. - Vol. 39. - P. 127-138.

55. Jacobs, S.E., Fine, A., Juliano, S.L. Cholinergic basal forebrain transplants restore diminished metabolic activity in the somatosensory cortex of rats with acetylcholine depletion / S.E. Jacobs, A. Fine, S.L. Juliano // J. Neurosci. - 1994. - Vol. 14. - P. 697-711.

56. Tsue, T.T., Oesterle, E.D., Rubel, E.W. Hair cell regeneration in the inner ear / T.T. Tsue, E.D. Oesterle, E.W. Rubel // Otol. Head Neck Surg. - 1994. - Vol. 111. - P. 281-301.

57. Eaton, M.J. Lumbar transplants of immortalized serotonergic neurons alleviate chronic neuropathic pa in / M.J . Ea ton [et al.] // Pain. - 1997. - Vol. 72. - P. 59-69.

58. Li, Y.J., Low, W.C. Intraretrosplenial cortical grafts of fetal cholinergic neurons and the restoration of spatial memory function / Y.J. Li, W.C. Low // Cell Transplantat. - 1997. - Vol. 6. - P. 85-93.

59. Estrogen as a growth factor to central nervous cells. Estrogen trea tment promotes development of a cetylcholinestera se- positive basal forebrain neurons transplanted in the anterior eye chamber / H. Honjo [et al.] // J. Steroid Biochem. Mol. Biol. - 1992. - Vol. 41. - P. 633-635.

60. Facilitated sexual behavior reversed and serotonin restored by raphe nuclei transplanted into denervated hypothalamus / V.N . Luine [et al.] // Science. - 1984. - Vol. 226. - P. 1436-1439.

6 1 . Kola rik, J., N a dvornik , P. T he first tra nspla ntation of embyonic tissu e into the bra in in schizophrenia / J . Kola rik , P. Nadvornik // Cek. Neurol. Neurochir. - 1989. - Vol. 52. - P. 95-97.

6 2. Reduction of serum cholesterol inWatanabe rabbits by xenogeneic hepatocellular transplantation / J.R. Gunsalus [et al.] // Nat. Med. - 1997. - Vol. 3. - P. 48-53.

6 3 . H u man liver cell tra nspla ntation: Prolonged fu nction in athymic- G u nn a nd a thymic- analbu minemic hybrid rats / A.D. Moscioni [et al.] // Gastroenterology - 1989. - Vol. 96. - P. 15461551.

64. Di Lorento, D., Del Cerro, C., D el Cerro, M. Cyclosporine treatment promotes survival of human fetal neural retina transplanted to the subretinal space of the light-damaged Fischer 344 rat / D. Di Lorento, C. Del Cerro, M. Del Cerro // Exp. Neurol. - 1996. - Vol. 140. - P. 37-42.

65. Formation of nascent intercalated disks between grafted and host myocardium / M.H. Soonpaa [et al.] // Science. - 1994. - Vol. 264. - P. 98-101.

66. Satellite cells transplantation for myocardial repair: Labeling techniques / D. Greentree [et al.] // Transplant. Proc. - 1994. - Vol. 26. - P. 3357.

67. Mayer, N.J., Rubin, S.A. Molecular and cellular prospects for repair, augmentation, and replacement of the failing heart / N.J. Mayer, S.A. Rubin // Am. Heart J. - 1997. - Vol. 134. - P. 577-586.

6 8 . G u elinckx, P.J ., Sinsel, N .K. Muscle tra nspla ntation for reconstru ction of a smile a fter facial pa ra lysis. Pa st, present, and future / P.J. Guelinckx, N.K. Sinsel // Microsurgery. - 1996. - Vol. 17.

- P. 391-401.

69. Lane, J.M. Osteoporosis. Medical prevention and treatment / J.M. Lane // Spine (Suppl.). - 1997. - Vol. 22. - P. 32S-37S.

7 0 . T ra nsplantation of immortalized, nontu morigenic parotid acinar cells into the allogenic rat parotid gland and oral suabmucosa / G.E. Krause [et al.] // Proc. Soc. Exp. Bio. Med. - 1996. - Vol. 212.

- P. 160-164.

71. Functional and morphometric study of cryopreserved human parathyroid tissue transplanted into nude mice / Y. Tanaka [et al.] // World J. Surg. - 1996. - Vol. 20. - P. 692-699.

72. Fetal grafts containing suprchiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats / A. Cai [et al.] // Am. J. Physiol. - 1997. - Vol. 273. - P. R1764-R1770.

73. What nature's knockout mice teaches us about GnRH activity: Hypogonadal mice and neuronal mice / M.J. Gibson [et al.] // Horm. Behav. - 1997. - Vol. 31. - P. 212-220.

74. Enhancement of testosterone secretion by normal adult human leydig cells by co-culture with enriched preparations of normal human Sertoli cells / H. Lejeune [et al.] // Int. J. Androl. - 1993. - Vol. 16. -P. 27-34.

75. Gender-linked brain injury in experimental stroke / N.J. Alkayed [et al.] // Stroke. - 1998. - Vol. 29. - P. 159-165.

76. Woodruff, M.F.A. The transplantation of tissues and organs. Springfield, IL: C.C. Thomas; 1960.

77. Cell transplantation for central nervous system disorders / T.K. Koutouzis [et al.] // Crit. Rev. Neurobiol. - 1994. - Vol. 8. - P. 125-162.

78. Production of marked prolongation of islet xenograft survival (rat to mouse) by local release of mouse and rat antilymphocyte sera at transplant site / P. Aebischer [et al.] // Diabetes. - 1991. - Vol. 40.

- P. 482-485.

79. Xenotranspla ntation of canine, bovine, and porcine islets in diabetic rats without immunosupression / R.P. Lanza [et al.] // Proc. Natl. Acad. Sci. USA. - 1991. - Vol. 88. - P. 11100-11104.

80. Porcine islets for xenotransplantation / T. Maki [et al.] // Transplantation. - 1996. - Vol. 62. - P. 136-148.

81. Treatment of chronic postoperative otorrhea with cultured keratinocytes sheets / T. Somers [et al.] // Ann. Otol. Rhinol. Laryngol.

- 1997. - Vol. 106. - P. 15-21.

82 . The fetal fibrobla st: The effector cell of scarless feta l sk in repair / H.P. Lorenz [et al.] // Plast. Reconstruct. Surg. - 1995. - Vol. 96. - P. 1251-1259.

83. Formation of hair follicles from a single-cell suspension of embryonic rat skin by a two-step procedure in vitro / S. Ihara [et al.] // J. Clin. Pharmacol. - 1991. - Vol. 36. - P. 1081-1092.

84. Temporomandibular joint disc replacement made by tissue-engineered growth of cartila ge / W.C. Puela cher [et al.] // J . Oral Maxil. Surg. - 1994. - Vol. 52. - P. 1172-1177.

85. Enterocyte transplantation using cell-polymer devices to create intestinal epithelial-lined tubes / G.M. Organ [et al.] // Transplant. Proc. - 1993. - Vol. 25. - P. 998-1001.

86. Holland, E.J. Epithelial tra nsplantation for the management of severe ocular surface disease / E.J. Holland // Trans. Am. Ophthalmol. Soc. - 1996. - Vol. 94. - P. 677-743.

87. Clinch, T.E., Goins, K.M., Cobo, L.M. Treatment of contact lens-related ocular surface disorders with a utologous conjunctival transplantation / T.E. Clinch, K.M. Goins, L.M. Cobo // Opthalmology.

- 1992. - Vol. 99. - P. 634-638.

88. Myelination of the canine central nervous system by glial cell transplantation: A model for repair of human myelin disease / D.R. Archer [et al.] // Nat. Med. - 1997. - Vol. 3. - P. 54-59.

8 9. Isacson, O ., Deacon, T.W. Specific a xon gu idance fa ctors persist in the a dult brain a s demonstra ted by pig neu roblasts transplanted to the rat / O. Isacson, T.W. Deacon // Neuroscience. -1996. - Vol. 75. - P. 827-837.

9 0 . Cross- species intra cerebra l gra fting of embryonic swine dopaminergic neurons / T.B. Freeman [et al.] // Prog. Brain Res. -1988. - Vol. 78. - P. 473-477.

91 . Xenografting of fetal pig ventral mesencephalon corrects motor asymmetry in the rat model of Parkinson's disease / T.K. Huffaker [et al.] // Exp. Brain Res. - 1989. - Vol. 77. - P. 329-36.

92. Fetal hu man and pig mesencepha lon xenografts have equal effectiveness in beha vioral restora tion of damaged rat brain / O.V. Kopyov [et al.] // Transplant. Proc. - 1992. - Vol. 24. - P. 547-548.

93. Effect of coherent blue light on fetal pig xenotransplants / O.V. Kopyov [et al.] // Transplant. Proc. - 1992. - Vol. 24. - P. 549550.

94. Cytoarchitectonic development, axon-glia relationships, and long dista nce a xon growth of porcine stria ta l xenogra fts in rats / T.W. Deacon [et al.] // Exp. Neurol. - 1994. - Vol. 130. - P. 1511 6 7.

95 . Survival of implanted fetal dopamine cells and neu rologic improvement 12 to 4 6 months after transplantation for Parkinson's disease / C.R. Freed [et al.] // N. Engl. J. Med. - 1992. - Vol. 327. - P. 1549-1555 .

96. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease / T.B. Freeman [et al.] // Ann. Neurol.

- 1995. - Vol. 38. - P. 379-388.

97. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease / O. Lindvall [et al.] // Science. -1990. - Vol. 247. - P. 574-577.

98. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease / O. Lindvall [et al.] // Ann. Neurol. - 1994. - Vol. 35. - P. 172-180.

99. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia / M. G rossman [et a l.] // N at. Genet. - 1994. - Vol. 6. - P. 335-341.

100. Li, L. Optimal conditions for long-term photoreceptor cell rescue in RCS rats: The necessity for healthy RPE transplants / L. Li, J.E. Turner // Exp. Eye Res. 1991. - Vol. 52. - P. 669-679.

101. Transplantation of pancreatic islets in diabetic nonhuman primates / D. Steele [et al.] // Transplant. Proc. - 1994. - Vol. 26. -P. 3317-3318.

102 . Immune response of diabetic patients against transplanted porcine fetal islet cells / M. Kumagai-Braesch [et al.] // Transplant. Proc. - 1992. - Vol. 24. - P. 679-680.

103. Kinetics and character of xenoantibody formation in diabetic patients transplanted with fetal porcine islet cell clusters / M. Satake [et al.] // Xenotransplantation. - 1994. - Vol. 1. - P. 24-35.

104. Хрыщанович, В.Я. Технология макроинкапсуляции при трансплантации тироцитов и паратироцитов без иммуносупрес-сивной терапии / В.Я. Хрыщанович, С.И. Третьяк, А.Н. Харламова // Вести НАН Беларуси (серия медицинских наук). - 2011. -№2. - С. 42-48.

105. Simeonovic, C.J. Effect of GK1.5 monoclonal antibody dosage on survival of pig proislet xenografts in CD41 T cell-depleted mice / C.J. Simeonovic, C. Rhodri, J.D. Wilson // Transplantation. -1990. - Vol. 49. - P. 849-856.

106. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters / U. Galili [et al.] // Transplantation. - 1995. - Vol. 59. - P. 1549-1556.

I 0 7 . Immu nologica l cha ra cteristics of islet cell xenotransplantation in humans a nd rodents / M. Sa ta k e [et a l.] // Immunol. Rev. - 1994. - Vol. 141. - P. 192-210.

108. A role for CD95 ligand in preventing graft rejection / D. Bellgrau [et al.] // Nature. - 1995. - Vol. 377. - P. 630-632.

109. Benson, J.L. Immune privilege in the anterior chamber of the eye: Alloa ntigens a nd tu mour- specific antigens presented into the anterior chamber simultaneously induce suppression and activation of delayed hypersensitivity to the respective antigens / J.L. Benson, J.Y. Niederkorn // Immunology. - 1992. - Vol. 77. - P. 189-195.

II 0. Survival of transplanted porcine neu ral cells trea ted with F(ab9)2 antibody fragments directed against donor MHC class-I in a rodent model / J.H. Dinsmore [et al.] // Transplant. Proc. - 1996. -Vol. 28. - P. 817-818.

111. Barriers to xenotransplantation / F.H . Bach [et al.] // Nat. Med. - 1995. - Vol. 1. - P. 869-873.

112. Galili, U. Interaction of the natural anti-Gal antibody with alpha-gala ctosyl epitopes: A major obstacle for xenotransplanta tion in humans / U. Galili // Immunol. Today. - 1993. - Vol. 14. - P. 480482.

113. LaVecchio, I.L. Enzymatic remova l of alpha - ga lactosyl epitopes from porcine endothelial cells diminishes the cytotoxic effect of natural antibodies / I.L. LaVecchio, A.D . Dunne, A.S.B. Edge // Transplantation. - 1995. - Vol. 60. - P. 841-847.

114. Delayed xenograft rejection / F.H. Bach [et al.] // Immunol. Today. - 1996. - Vol. 17. - P. 379-384.

11 5. Protection of pig kidney (PK1 5) cells from the cytotoxic effect of anti-pig antibodies by ?- galactosyl oligosaccha rides / F.A. Neethling [et al.] // Transplantation. - 1994. - Vol. 57. - P. 959963.

116. Intact pig pancreatic islet function in the presence of human xenoreactive natu ral antibody binding and complement activa tion / V. Mirenda [et al.] // Transplantation. - 1997. - Vol. 63. - P. 14521462.

1 17 . Enzyma tic remodelling of the carbohydra te su rfa ce of a xenogenic cell su bstantia lly reduces huma n a ntibody binding and complement-mediated cytolysis / M.S. Sandrin [et al.] // Nat. Med. -

1995. - Vol. 1. - P. 1261-1267.

118 . Long-term acceptance of skin and cardia c allografts after blocking CD40 and CD28 pathways / C.P. Larsen [et al.] // Nature. -

1996. - Vol. 381. - P. 434-438.

119. Antibody-dependent cell-mediated cytoxicity against porcine endothelium induced by a majority of human sera / A.F.M. Schaapherder [et al.] // Transplantation. - 1994. - Vol. 57. - P. 1376-1382.

120. Yamada, K. Human anti-porcine xenogeneic T cell response. Evidence for a llelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition / K. Yamada, D.H. Sachs, H. DerSimonian // J. Immunol. - 1955. - Vol. 155. - P. 52495256.

121. Gill, T.J.D. Implantation of tissue into the brain. An

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

immunologic perspective / T.J.D. Gill, R.D. Lund // JAMA. - 1989. -Vol. 261. - P. 2674-2676.

122. Tze, W.J . Successfull intracerebral allotransplantation of pancreatic endocrine cells in spontaneous diabetic BB rats without immunosupression / W.J. Tze // Metabolism. - 1994. - Vol. 33. - P. 785.

123. Dinsmore, J.H. Immunoprivileged sites for allo- and xenotransplantation. In: Cooper, D.K.C., ed. Xenotransplantation New York: Springer Verlag; 1998.

1 24 . Edge, A.S.B. Xenotra nsplantation in the centra l nervou s system / A.S.B. Edge, J. Dinsmore // Xenotransplantation. - 1997. -Vol. 5. - P. 23-25.

1 25. Pakzaban, P. Neural xenotransplantation: Reconstruction of neuronal circuitry across species barriers / P. Pakzaban, O. Isacson // Neuroscience. - 1994. - Vol. 62. - P. 989-1001.

1 2 6 . Fetal porcine ventral mesencephalic tra nspla nta tion for Parkinson's Disease: Preliminary results / S.A. Ellias [et al.] // Move. Disord. - 1997. - Vol. 12. - P. 839-840.

127. Streilein, J.W. Unraveling immune privilege / J.W. Streilein // Science. - 1995. - Vol. 270. - P. 1158-1159.

128. Fas ligand-induced apoptosis as a mechanism of immune privilege [see comments] / T.S. Griffith [et al.] // Science. - 1995. -Vol. 270. - P. 1189-1192.

129. The testis-derived cultured Sertoli cell as a natural Fas-L secreting cell for immunosuppressive cellular therapy / P.R. Sanberg [et al.] // Cell Transplant. - 1997. - Vol. 7. - P. 191-193.

130. Microcarrier enhanced survival of human and rat fetal ventral mesencephalon cells implanted in the rat striatum / S. Saporta [et al.] // Cell Transplant. - 1997. - Vol. 6. - P. 579-584.

13 1. Transgenic expression of CD 95 liga nd on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts / J. Allison [et al.] // Proc. Natl. Acad. Sci. USA.

- 1997. - Vol. 94. - P. 3943-3947.

132. FAS ligand expression in Islets of Langerhans does not confer immune privilege a nd instea d targets them for rapid destruction / S.M. Kang [et al.] // Nat. Med. - 1997. - Vol. 3. - P. 738-743.

133. Adenovirus-mediated expression of FAS ligand induces hepatic apoptosis after systemic administration and apoptosis of ex-vivo infected pancreatic islet allografts and isografts / D.A. Muruve [et al.] // Hum. Gene Ther. - 1997. - Vol. 8. - P. 955-963.

1 3 4. Improved graft survival a nd striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model / G. Nikkhah [et al.] // Brain Res. - 1994. - Vol. 633. - P. 133-143.

13 5. Inhibition of transplant rejection by pretreatment of xenogeneic pancreatic islet cells with anti-ICAM-1 antibodies / Y. Zeng [et al.] // Transplantation. - 1994. - Vol. 58. - P. 681-689.

136. Bluestone, J.A. New perspectives of CD28-B7-mediated T cell costimulation / J.A. Bluestone // Immunity. - 1995. - Vol. 2. - P. 555-559.

137. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates / A.D. Kirk [et al.] // Proc. Natl. Acad. Sci. USA.

- 1997. - Vol. 94. - P. 8789-8794.

138. Sun, J. Interaction between CD8 and major histocompatibility complex (MHC) class I media ted by multiple conta ct surfaces that include the alpha-2 and alpha-3 domains of MHC class I / J. Sun, D.J. Leahy, P.B. Kavathas // J. Exp. Med. - 1995. - Vol. 182. - P. 12751 2 80 .

1 3 9. Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade / E.T. Elwood [et al.] // Transplantation. - 1998. - Vol. 65. - P. 14221428.

140. Constant, S.L. Induction of T h1 and T h2 CD41 T cell responses: The alternative approaches / S.L. Constant, K. Bottomly // Annu. Rev. Immunol. - 1997. - Vol. 15. - P. 297-322.

141 . An altered peptide liga nd media tes immune deviation and prevents au toimmune encephalomyelitis / L.B. N icholson [et al.] // Immunity. - 1995. - Vol. 3. - P. 397-405.

142. Sloan-Lancaster, J. Induction of T-cell anergy by altered T- cell-receptor ligand on live antigen-presenting cells / J . Sloa n-Lancaster, B.D. Evavold, P.M. Allen // Nature. - 1993. - Vol. 363. -P. 156-159.

143. Inhibition of T cell activation by a monoclonal antibody reactive against the a3 domain of human MHC class I molecules / D.M. Smith [et al.] // J. Immunol. - 1994. - Vol. 153. - P. 1054.

14 4. Modula tion of MHC cla ss I antigen decreases pa ncreatic islet immunogenicity / P.G. Stock [et al.] // J. Surg. Res. - 1989. - Vol. 46. - P. 317-321.

14 5. Hu ma n natural killer cells accou nt for non-MH C cla ss I restricted cytolysis of porcine cells / C.E. D onnelly [et al.] // Cell. Immunol. - 1997. - Vol. 175. - P. 171-178.

1 4 6 . Tra nspla ntation tolerance induced by CTLA4 - Ig / T.C. Pearson [et al.] // Transplantation. - 1994. - Vol. 57. - P. 17011706.

147. Raulet, D.H. Natural killer cell receptor: The offs and ons of NK cell recognition / D.H. Raulet, W. Held // Cell. - 1995. - Vol. 82.

- P. 697-700.

14 8. Analysis of polymorphism in porcine MHC class I genes. Alterations in signals recognized by huma n cytotoxic lymphocytes / J.A. Sullivan [et al.] // J. Immunol. - 1997. - Vol. 159. - P. 23182326.

1 4 9 . Porcine repea t element D N A: In situ detection of xenotransplanted cells / H.F. Oettinger [et al.] // Cell Transplant. -1995. - Vol. 4. - P. 253-256.

150. Species specific detection of porcine xenografts with a monoclonal antibody against a novel epitope of the lymphocyte homing receptor CD44 / H.F. Oettinger [et al.] // Xenotransplantation.

- 1997. - Vol. 4. - P. 252-261.

151. Transplantation of fetal porcine striatal cells in Huntington's disease: Preliminary safety and efficacy results / M. St. Hillaire [et al.] // Neurology. - 1998. - Vol. 50(Suppl. 4). - S10.008.

152. Gouras, P. Retinal cell transplantation in the macula: New techniques / P. Gouras, P. Algvere // Vision Res. - 1996. - Vol. 36. - P. 4121-4125.

153. Isacson, O. Neural transplantation studies reveal the brain's capacity for continuous reconstruction / O. Isacson, T. Deacon // Trends Neurosci. - 1997. - Vol. 20. - P. 477-482.

154. Аллотрансплантация макроинкапсулированных парати-реоцитов в лечении послеоперац ионного гипопаратиреоза: кли-ни ческое н аблюдени е / В.Я. Хрыщан ович [и соавт.] // Вестн ик трансплантологии и искусственных органов. - 2011. - № 4. - С. 60-65.

155. Bach, F.H. Call for moratorium on xenotransplants / F.H. Bach, H.V. Fineberg // Nature. - 1998. - Vol. 391. - P. 326.

156. Uncertainty in xenotransplantation-individual benefit versus collective risk / F.H. Bach [et al.] // Nat. Med. - 1998. - Vol. 4. - P. 141-144.

157. Two sets of human-tropic pig retrovirus / P. LeTissier [et al.] // Nature. - 1997. - Vol. 389. - P. 681-682.

1 58 . Pa tience, C. Infection of huma n cells by a n endogenou s retrovirus of pigs / C. Patience, Y. Takeuchi, R.A. Weiss // Nat. Med.

- 1997. - Vol. 3. - P. 282-286.

159. Weiss, R.A. Transgenic pigs and virus adaptation / R.A. Weiss // Nature. - 1998. - Vol. 391. - P. 327-328.

160. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine / D.E. Akiyoshi [et al.] // J. Virol. -1998. - Vol. 72. - P. 4503-4507.

161 . Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells / U. Martin [et al.] // Lancet. - 1998. - Vol. 352. - P. 692-694.

162. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells / C.A. Wilson [et al.] // J. Virol. - 1998. - Vol. 72. - P. 3082-3087.

163. Xenotransplantation and xenogeneic infections / L. Chapman [et al.] // N. Engl. J. Med. - 1995. - Vol. 333. - P. 1498-1501.

1 6 4 . Primary pa renteral transmission of bovine spongiform encephalopathy to the pig / M. Dawson [et al.] // Vet. Rec. - 1990. -Vol. 127 (13). - P. 338.

165. Pruisner, S.B. The prion diseases / S.B. Pruisner // Sci. Am. -1995. - Vol. 272 (1). - P. 48-57.

166. Pruisner, S.B. Prion diseases and neurodegeneration / S.B. Pruisner, S.J. DeArmond // Annu. Rev. Neurosci. - 1994. - Vol. 17. -P. 311-339 .

167. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts / W. Heheine [et al.] // Lancet. - 1998. - Vol. 352. - P. 695-699.

168. Treatment of hepatic failure with ex-vivo pig-liver perfusion followed by liver transplantation / R.S. Chari [et al.] // N. Engl. J. Med. - 1994. - Vol. 331. - P. 234-237.

169. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys / C. Patience [et al.] // Lancet. 1998. - Vol. 352. - P. 699-701.

Поступила 17.01.2012

i Надоели баннеры? Вы всегда можете отключить рекламу.