Научная статья на тему 'Конечное преобразование Радона'

Конечное преобразование Радона Текст научной статьи по специальности «Математика»

CC BY
118
20
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНЕЧНЫЕ МНОЖЕСТВА / БУЛЕАН / ПРЕОБРАЗОВАНИЕ РАДОНА / ГРАФЫ / FINITE SETS / BOOLEAN / RADON TRANSFORM / GRAPHS

Аннотация научной статьи по математике, автор научной работы — Кольцова Светлана Васильевна

Изучается преобразование Радона на булеане и конечных графах

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Finite Radon transform

The Radon transform on the Boolean and on finite graphs is studied

Текст научной работы на тему «Конечное преобразование Радона»

УДК 519.1

КОНЕЧНОЕ ПРЕОБРАЗОВАНИЕ РАДОНА

© С. В. Кольцова

Ключевые слова: конечные множества; булеан; преобразование Радона; графы.

Аннотация: Изучается преобразование Радона на булеане и конечных графах.

Для конечного множества X обозначим через L(X) линейное пространство функций на X со значениями в C. Размерность его равна количеству элементов в X.

Пусть X и Y -два конечных множеств а, пусть Q - отношение, т. е. Q С X х Y. H a Q накладываются некоторые условия, например, оно имеет полные проекции на X и Y. Вместо (x, у) G Q мы будем писать x ^ y. Преобразование R есть линейный оператор L(X) ^ L(Y), определяемый следующим образом:

(Rf )(y) = E f (x)-

x^y

R

тивен (ядро состоит только из нуля), то найти формулу обращения.

Нам удалось решить эти задачи для следующих случаев.

(1) Пусть M - конечное множество с п элементами, пусть B - множество его подмножеств (булеан), оно распадается на множества Bo, Bi,..., Bn множество Bk состоит из к-элементных подмножеств множества M. Отношение x ^ y означает x С у. Мы берем X = Bk и Y = B¡, где к ^ n/2, k + l = n.

(2) При тех же условиях, что ив (1), мы берем X = Bk и Y = UB¡, где суммирование берется по l = к + 1,... ,п.

(3) Пусть Г - граф с множеством вершин V и множеством ребер E. Мы берем X = V и Y = E. Отношение x ^ у означает, что вершина x принадлежит ребру у.

Abstract: The Radon transform on the Boolean and on finite graphs is studied.

Keywords: finite sets; Boolean; Radon transform; graphs.

Кольцова Светлана Васильевна к. ф.-м. н., доцент

Тамбовский государственный университет им. Г.Р. Державина Россия, Тамбов

e-mail: [email protected]

Svetlana Koltsova

candidate of phys.-math. sciences,

senior lecturer

Tambov State University named after G.R. Derzhavin Russia, Tambov

e-mail: [email protected]

1 Работа поддержана грантами: научной программой "Развитие научного потенциала высшей школы" РНП 2.1.1/1474 и Темпланом 1.5.07.

i Надоели баннеры? Вы всегда можете отключить рекламу.