Научная статья на тему 'Компьютерная обработка изображения в методе определения коэффициента поверхностного натяжения жидкости по форме поверхности капли'

Компьютерная обработка изображения в методе определения коэффициента поверхностного натяжения жидкости по форме поверхности капли Текст научной статьи по специальности «Физика»

CC BY
304
67
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИЗМЕРЕНИЕ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ / ПАРАМЕТРЫ ФОРМЫ КАПЛИ / КОМПЬЮТЕРНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЯ / SURFACE TENSION / LIQUID DROP / DROP SHAPE / IMAGE PROCESSING

Аннотация научной статьи по физике, автор научной работы — Речкалов Виктор Григорьевич, Ушаков Владимир Леонидович, Пызин Георгий Петрович, Бескачко Валерий Петрович

Предлагается метод повышения точности измерения поверхностного натяжения жидкости по форме свободной поверхности капли, основанный на технологии компьютерной обработки изображения.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Речкалов Виктор Григорьевич, Ушаков Владимир Леонидович, Пызин Георгий Петрович, Бескачко Валерий Петрович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

COMPUTER-DRIVEN PROCESSING OF THE LIQUID DROP SHAPE IMAGE FOR DETERMINATION OF SURFACE TENSION COEFFICIENT

We propose a method to improve the accuracy of measurement of surface tension of the liquid, using data on the shape of the free surface of the drop and technology of computer image processing.

Текст научной работы на тему «Компьютерная обработка изображения в методе определения коэффициента поверхностного натяжения жидкости по форме поверхности капли»

УДК 532.6

КОМПЬЮТЕРНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЯ В МЕТОДЕ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ ПО ФОРМЕ ПОВЕРХНОСТИ КАПЛИ

В.Г. Речкалов, В.Л. Ушаков, Г.П. Пызин, В.П. Бескачко

Предлагается метод повышения точности измерения поверхностного натяжения жидкости по форме свободной поверхности капли, основанный на технологии компьютерной обработки изображения.

Ключевые слова: измерение поверхностного натяжения, параметры формы кати, компьютерная обработка изображения.

Метод измерения коэффициента поверхностного натяжения по форме свободной поверхности капли имеет два существенных преимущества перед другими методами.

1. Физическая простота явления, лежащего в его основе. Еще в 1806 г. Лаплас получил точное дифференциальное уравнение для свободной поверхности жидкости, используя которое можно определить значение коэффициента поверхностного натяжения на основании только обмера формы поверхности капли без каких-либо дополнительных гипотез.

2. Метод является бесконтактным. Чаще всего обмер формы поверхности капли осуществляется по ее оптическому изображению (фотографии).

Благодаря второму обстоятельству метод широко используется в исследованиях высокотемпературных и химически агрессивных жидкостей. В прочих же случаях он не особенно популярен в связи со множеством причин, препятствующих точному определению формы капли. Из них отметим, во-первых, что поверхность любой жидкости всегда находится в движении вследствие теплового движения (капиллярные волны), вибраций подложки или подвеса, обусловленных сейсмическим шумом, и подобными причинами. На рис. 1 показан сильно увеличенный фрагмент нижней части висящей капли с волной, возбужденной сейсмическим шумом.

Рис. 1. Волна на поверхности капли, возбужденная Рис. 2. Дифракционная картина у поверхности капли сейсмическим шумом

Во-вторых, граница капли на фотографии представляется не как граница геометрической тени, а в виде дифракционной картины, состоящей из ряда полос (рис. 2).

В наших экспериментах используется система защиты капли от вибрационных помех, которая в завершенном виде будет иметь три ступени. Для учета дифракционных эффектов применяется специальная компьютерная обработка цифрового изображения капли, на которой мы остановимся подробнее.

Алгоритм выделения контура капли. Выделение контура капли из ее цифрового изображения выполняется в три этапа. На первом этапе находится грубый контур по заданному пороговому значению интенсивности света на границе. В результате мы получаем массив координат размером приблизительно в 7 тыс. точек. На следующем этапе определяется сглаженный контур при помощи скользящей кубической параболы, покрывающей небольшой фрагмент контура и содержащий от 100 до 200 точек в зависимости от размера массива координат. На этом этапе мы получаем массив координат и углов наклона касательной к контуру, содержащий 3-4 тысячи то-

g-Є

/

«і1:

• '4

чек. Следующий, третий этап, является наиболее сложным. Для каждой точки сглаженного контура снимается функция интенсивности (зна-™ чений пикселей) вдоль направления нормали

к поверхности контура (рис. 3).

Полученная функция аппроксимируется рядом Фурье и находится, при каком значении аргумента ее значение совпадает с расчетной интенсивностью света, отвечающей границе геометрической тени от поверхности капли. Эта точка и принимается за граничную точку.

Полученные координаты граничных точек выводятся в файл, который используется следующей программой для анализа и вычисления поверхностного натяжения. Определение поверхностного натяжения. Форма свободной поверхности жидкости описывается уравнением Лапласа

Рис. 3. Функция значений пикселей в направлении нормали к контуру капли. По оси х отложено расстояние от граничной точки по нормали к контуру капли, измеренное в пикселях. По оси у - значения пикселей

Р = <7

1 1

R

(1)

-2 У

Если капля висит, то минимальное давление жидкости будет в нижней ее части. Обозначим это давление Ро, а радиус кривизны в вершине капли г0. Тогда можем записать:

Ро=~- (2)

Совместив начало системы координат с вершиной капли и направив ось у вверх, мы можем написать Р = Р0+ р%у. С учетом этого уравнение (1) принимает вид

pgy+-

2(7

■ а

1 1

v*i

R

или

Pg „2 У

+ 2--

Щ/г0

/г0

Pg

(3)

(4)

зависит только от природы с для воды дает

Отношение — (капиллярный коэффициент) при данном g а

жидкости. Его размерность [с] = 1/м2. Оценка

се *1000-9,801/0,073» 134260 1/м2 .

Безразмерные величины у/г{), К\/г{1 и Л2/^о, следуя за Адамсом [1], будем далее обозначать как у, и Т?2- Если величину поверхностного натяжения измерять в мН/м, а радиус кривизны капли в ее вершине в мм, тогда в уравнении (4) появляется безразмерный коэффициент 10 3:

10

-з pg „2

а

гйУ + 2 =

J_ _1_ R, R-j

(5)

В нашей программе используется уравнение Лапласа в форме (5). Расчетные значения координат профиля капли по уравнению (5) вычисляются с использованием алгоритма Адамса [1]. Задавшись некоторыми значениями коэффициента поверхностного натяжения и радиуса кривизны в вершине капли, мы можем рассчитать массив значений координат точек на контуре капли. Затем этот массив сравнивается с экспериментальным, полученным на этапе обработки фотографии. Если массивы совпадают, то мы можем считать, что капиллярный коэффициент нам известен и мы можем рассчитать величину коэффициента поверхностного натяжения. Если массивы не совпадают, то следует задать новые значения для г0 и с и выполнить сравнение заново. Осталось уточнить, каким образом будут сравниваться массивы координат.

Процедура сравнения контуров. Программа, назовем ее Adams, вычисляет координаты точек, начиная с вершины капли. Всего вычисляется от 30 до 50 тысяч точек (ха[/], ул[г\) вдоль одной половины профиля капли. Точки на второй половине определяются из соображений симмет-

рии и имеют координаты (-ха[г], уаМ)- Точки (х[/'], у [г]), полученные в эксперименте, покрывают весь контур. Их число колеблется от двух до пяти тысяч, так что полное число участвующих в расчете точек имеет порядок 105.

Затем производится сравнение экспериментального и расчетного массивов. Для каждой точки из экспериментального массива вычисляется ее расстояние до расчетного профиля. Это расстояние берется со знаком «+», если экспериментальная точка лежит снаружи от расчетного профиля; в противном случае расстояние берется со знаком «-».

Найденные значения расстояний возводятся в квадрат, суммируются по всему экспериментальному массиву и вычисляется их среднеквадратичная величина, являющаяся мерой уклонения расчетного профиля от экспериментального. Она принимается в качестве целевой функции Т7 в процедуре минимизации, где варьируемыми параметрами являются величины г0 и с.

В предварительных численных экспериментах выяснилось, что целевая функция Г'(г0,с) имеет форму сильно вытянутого «оврага», слегка изогнутая ось которого наклонена по отношению к осям координат. В центральной области, близкой к экстремуму, линии уровня ^ практически совпадают с эллипсами (рис. 4). На рис. 5 показано поведение F в малой окрестности, непосредственно примыкающей к экстремуму.

Рис. 4. Вид целевой функции F в области Рис. 5. Вид функции F в малой окрестности

экстремума. Использована специальная система экстремума

координат, оси которой совпадают с полуосями одного из эллипсов

Из этих рисунков видно, что целевая функция имеет ярко выраженный воронкообразный острый минимум. Его положение с высокой точностью можно определить стандартным методом Нелдера-Мида [2].

Работоспособность программы была проверена в численных экспериментах, где в качестве «экспериментального» профиля использовался расчетный, промодулированный гауссовым шумом с различной величиной дисперсии. Оказалось, что для вычисления коэффициента поверхностного натяжения с относительной погрешностью <5itj<0,01 % программа примерно 200 раз обращается к вычислению целевой функции (и, следовательно, к интегрированию уравнения Лапласа). Обнаружена линейная связь между стандартным отклонением коэффициента поверхностного натяжения S (а) и дисперсией SM в гауссовом распределении точек модельного профиля.

S(<r)*5SM.

При обработке фотографии капли приходится принимать во внимание, что кроме радиуса кривизны капли и коэффициента поверхностного натяжения жидкости, о которых мы уже говорили, неизвестными параметрами являются также координаты вершины капли х$,у$ и возможный угол в отклонения оси профиля капли от вертикали, связанный с неточной ориентацией фотокамеры. Эти три параметра могут быть определены в результате некоторой дополнительной обработки фотографии, и в этом случае они не входят в число варьируемых параметров целевой

функции, как и предполагалось выше. С другой стороны, если этого не сделано, мы можем считать и эти параметры варьируемыми, так что число аргументов целевой функции возрастет до пяти. Это означает, конечно, существенное увеличение объема вычислений.

Мы выполнили численный анализ точности определения коэффициента с в зависимости от числа и типа варьируемых параметров. На рис. 6 приведены его результаты. В случае (а) из числа варьируемых параметров исключены г0 и угол в, в случае (б) - г0 , в (в) - в , а в (г) - ни один из параметров не исключался.

О,«18 0.016 0,014 0,612 6,810 | 0,006 | 0,<Ю6 |

0,004 ! 0,002 ! ъ,т \

$х) = 1.85хч О

ода о,ви 0,002 аоаз адм мк с.ос® ш? о,яв алоэ г.зю

б)

Рис. 6. Зависимости стандартного отклонения коэффициента поверхностного натяжения (мН/м) от стандартного отклонения точек расчетного и экспериментального профилей капли (мм) при различном выборе варьируемых параметров. Функция /(*) - уравнение линейного тренда, показанного пунктиром

Видно, что во всех случаях, когда параметр г0 исключен из числа варьируемых (то есть определен независимо из других экспериментов), ошибка в определении коэффициента поверхностного натяжения оказывается наименьшей. Об этом свидетельствует малая величина углового коэффициента функции / (х), связывающей эту ошибку с (неизбежными) случайными ошибками в определении профиля капли. Этот коэффициент в случаях (рис. 6, а и б) в три с лишним раза меньше, чем в случаях (рис. 6, в и г). Исключение из числа варьируемых параметров угла в мало помогает повышению точности результатов, что позволяет, в принципе, не слишком заботиться о точной ориентации фотокамеры, если этот параметр будет «включен» в процедуру обработки.

Таким образом, для повышения точности определения поверхностного натяжения желательно определить радиус кривизны капли в ее вершине независимым способом и также с высокой точностью. Для этого можно использовать методы интерферометрии, подобные рассмотренным нами в [3] для случая «лежащей» капли. На рис. 7 показана принципиальная схема возможной реализации этого метода. «Висячая» капля, показанная на рисунке, условно повернута на 90° против часовой стрелки. Луч света от когерентного источника подается на полупрозрачное зеркало (пунктирная линия). Часть света, прошедшая через полупрозрачное зеркало, отразившись от опорного зеркала и снова от полупрозрачного, формирует плоскую опорную волну, которая собирается линзой в фокусе и дальше распространяется в виде сферической волны с радиусом кривизны А’о . Другая часть световой волны после отражения от полупрозрачного зеркала попадает на поверхность капли. Отраженный от нее свет распространяется в виде сферической (предметной) волны с центром в точке, находящейся на расстоянии г0/ 2 от ее поверхности. Предметная волна собирается линзой в некоторой точке на оси и в плоскости изображения имеет радиус кривизны К.

Рис. 7. Определение радиуса кривизны капли интерференционным методом

Опорная и предметная волны в плоскости изображения создают интерференционную картину, на основе анализа которой может быть определена с высокой точностью разность кривизн |ЛЛ| интерферирующих волн:

\м\-

2А(л-1)

2 2 Х„ -X!

(6)

1__1_

^ «о,

где Я - длина волны света; п - номер светлой интерференционной полосы; х, - координата центра соответствующей полосы.

Определив |М| на основании несложного геометрического расчета, мы можем найти радиус кривизны поверхности капли г в ее вершине:

1

-ГП

Г

- + ■

А

-а,

(7)

ЩЬ-/У Ъ-/

где / - фокусное расстояние объектива. Формула (7) упрощается, если оптическая схема точно сфокусирована на вершине капли. В этом случае мы имеем а = /й/(й-/). Следовательно, последние два слагаемых в формуле (7) взаимно уничтожаются. К сожалению, фокусировка не может быть осуществлена абсолютно точно и мы вынуждены записать, что а = /Ы{Ъ- /) + А а, где Аа - погрешность определения расстояния от поверхности капли до объектива. Подставляя полу-

/

ченное выражение для а в формулу (7) и учитывая, что отношение

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(*-/)

равно масштабу изо-

бражения т (величина обратная коэффициенту поперечного увеличения оптической системы), мы приходим к выражению:

1

т

-гп =-----1-Да.

2 0 Ак

(8)

Следовательно, радиус кривизны поверхности капли не может быть определен точнее, чем расстояние от вершины капли до объектива, а точное определение этого расстояния представляет собой самостоятельную сложную в техническом отношении задачу, подобную рассматриваемым нами в [3].

Заключение

Предложен метод компьютерной обработки цифрового изображения капли и расчета поверхностного натяжения по координатам ее профиля. Достоинством метода является учет всего профиля капли (до 104 точек на нем), а не отдельных его параметров. Методом компьютерного моделирования получена зависимость погрешности определения коэффициента поверхностного натяжения жидкости от ошибок в координатах профиля. Показано, что эта погрешность может быть существенно уменьшена, если известен радиус кривизны поверхности капли в ее вершине.

Работа выполнена при поддержке РФФИ, грант 10-03-00719-а.

Литература

1. Adams, J.C. An attempt to test the theories of capillary action / J.C. Adams. - Cambridge: Deighton, Bell and CO, 1883. - 60 p.

2. Банди, Б. Методы оптимизации. Вводный курс: пер. с англ / Б. Банди. - М: Радио и связь, 1988.- 128 с.

3. Определение радиуса кривизны в вершине лежащей капли по наблюдениям картин интерференции / Г.П. Пызин, B.JI. Ушаков, В.Г. Речкалов, В.П. Бескачко // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». - 2009. - Вып. 4. - № 22(155) - С. 91-96.

Поступила в редакцию 30 сентября 2010 г.

COMPUTER-DRIVEN PROCESSING OF THE LIQUID DROP SHAPE IMAGE FOR DETERMINATION OF SURFACE TENSION COEFFICIENT

We propose a method to improve the accuracy of measurement of surface tension of the liquid, using data on the shape of the free surface of the drop and technology of computer image processing. Keywords: surface tension, liquid drop, drop shape, image processing.

Rechkalov Viktor Grigorevich is Cand. Sc. (Education), Associate Professor, General and Theoretical Physics Department, South Ural State University.

Речкалов Виктор Григорьевич - кандидат педагогических наук, доцент, кафедра общей и теоретической физики, Южно-Уральский государственный университет.

e-mail: [email protected]

Pyzin Georgii Petrovich is Cand. Sc. (Engineering), Associate Professor, General and Theoretical Physics Department, South Ural State University.

Пызин Георгий Петрович - кандидат технических наук, доцент, кафедра общей и теоретической физики, Южно-Уральский государственный университет.

e-mail: [email protected]

Ushacov Vladimir Leonidovich is Assistant Professor, General and Theoretical Physics Department, South Ural State University.

Ушаков Владимир Леонидович - ассистент, кафедра общей и теоретической физики, Южно-Уральский государственный университет.

Beskachko Valeriy Petrovich is Dr. Sc. (Physics and Mathematics), Professor, General and Theoretical Physics Department, South Ural State University.

Бескачко Валерий Петрович - профессор, доктор физико-математических наук, кафедра общей и теоретической физики, физический факультет, Южно-Уральский государственный университет.

e-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.