СПИСОК ЛИТЕРАТУРЫ
1. Бубенчиков А.М., Щербаков Н.Р. Математическое моделирование динамики нового вида зацепления в передаточных механизмах // Известия Томского политехнического университета. - 2009. - № 5. - С. 241-243.
2. Пат. 2338105 РФ. МПК8 F16H 55/08. Зацепление колес с криволинейными зубьями (варианты) и планетарная передача на его основе / В.В. Становской, С.М. Казакявичюс, Т.А. Ремнёва,
В.М. Кузнецов. Заявлено 09.07.2007; опубликовано 10.11.2008, Бюл. № 31.
Поступила 24.02.2009. Печатается в авторской редакции без учета мнений рецензентов
УДК 514.85
КОМПЬЮТЕРНАЯ МОДЕЛЬ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ЗУБЧАТОЙ РЕЕЧНОЙ ПЕРЕДАЧИ С ЗАЦЕПЛЕНИЕМ НОВОГО ВИДА
Н.Р. Щербаков
Томский государственный университет E-mail: [email protected]
Построена математическая модель работы реечной передачи, преобразующей вращательное движение в поступательное и использующей эксцентриково-циклоидальное зацепление. Механизм состоит из червячного элемента, выполняющего роль генератора, и выходной детали (рейки), построенной на базе циклоиды. Предложенный новый вид зацепления обладает повышенными силовыми характеристиками и позволяет получать не высокие скорости перемещения рейки. Создана компьютерная программа, иллюстрирующая кинематически согласованное движение идеальных геометрических фигур - торцевых сечений работающего механизма и позволяющая находить необходимые для конструирования числовые характеристики, а так же находить оптимальные режимы функционирования рассматриваемых систем.
Ключевые слова:
Математическое моделирование, реечное зацепление, оптимизация.
Введение
Рассматриваемый передаточный механизм относится к зубчатым кинематическим парам, а более конкретно, к реечным передачам, преобразующим вращательное движение в поступательное и наоборот. Известные реечные передачи - цилиндрические, [1. С.381] червячные и др. имеют либо недостаточную нагрузочную способность, либо низкий КПД. Предлагаемый механизм имеет повышенную нагрузочную способность зацепления при тех же габаритах, а также возможность получения не высоких скоростей перемещения рейки независимо от габаритов вращающегося колеса (а зависящих только от углового шага рейки). Устройство может быть использовано вместо обычных реечных механизмов в линейных приводах станков, в устройствах рулевого управления автомобилей, а также в грузоподъемной технике (реечные домкраты и т. п.).
Геометрическая модель механизма
На рис. 1 изображён фрагмент реечной передачи в районе зацепления её составных элементов.
Передача состоит из колеса - винтового эксцентрика и зубчатой рейки. Идеальная поверхность винтового эксцентрика получается как геометрическое место точек окружности, центр которой перемещается по винтовой линии вокруг оси вращения колеса. Следовательно, в каждом сечении винтового эксцентрика, перпендикулярном его оси вращения, мы имеем окружность радиуса р, центр которой смещён относительно оси на эксцентриситет е. В таком же сечении рейки получается эквидистанта трохоиды [2] (укороченной циклоиды), удалённая по нормалям к трохоиде на величину р. Таким образом, поверхность рейки получается смещением такой эквидистанты вдоль оси эксцентрика с одновременным смещением её в на-
правлении, перпендикулярном этой оси. Для обеспечения непрерывного контакта червяка и рейки необходимо, чтобы при повороте окружности, образующей поверхность винтового эксцентрика, на угол в, эквидистанта сместилась на расстояние fir, где r=p+e - радиус окружности, образующей исходную циклоиду. Длина арки циклоиды («шаг» по длине) равна 2 nr.
На рис. 2 изображены кривые, участвующие в построении поверхностей деталей реечной передачи: 1 - циклоида, образованная при качении круга 4 радиуса r по оси OY; 2 - трохоида, вычерчиваемая точкой 6, удалённой от центра круга 4 на е; 3 - экви-дистанта трохоиды, удалённая от неё по нормалям на расстояние р; 5 - плоское сечение винтового эксцентрика с центром в точке 6. Кривые 2, 3, 5 изображены в сечении, отвечающим значению f=90°.
Параметрические уравнения трохоиды 2 имеют вид [2]:
[ х(т) = -е cost + r, [ у(т) =-esinT+rT.
Параметрические уравнения эквидистанты трохоиды 3 имеют вид:
X(т) = х(т) + р п1(т),
Y (т) = у(т) + рщ(т),
где и1(т), п2(т) - координаты единичного вектора нормали в точке трохоиды. Если ось OZ параллельна оси винтового эксцентрика, то поверхность рейки может быть задана в виде:
Xr (т, в) = X (т), Yr (т, в) = Y (т) -fr,
Z (т, f) = f.
2п
(1)
хс (в) = -ecos в + r, Ус (в) =-esin Р,
а поверхность эксцентрика имеет параметрические уравнения:
Xc (а, в) = хс (Р)+pcosa, Yc (а, в) = Ус (в)+piana,
Z {а, в) = 1в
2п
(2)
где I - задаваемая ширина рейки, в=0,..,2п, т=0,..,2пт (т - задаваемое число циклов - арок циклоиды). Проекции в плоскость ХОГцентров сечений винтового эксцентрика в начальный момент времени имеют координаты:
Математическое моделирование работы механизма
Математическая модель работы механизма позволяет проиллюстрировать кинематически согласованное движение геометрических фигур, составляющих контактирующие детали передачи. Другими словами, должна быть получена возможность изображать в каждый момент времени (т. е. для каждого угла поворота винтового эксцентрика) взаимное расположение этих деталей в зацеплении. Для этого нужно иметь уравнения семейств поверхностей (1) и (2), причём параметром этих семейств является угол поворота колеса - винтового эксцентрика. Уравнения таких семейств легко получаются, если повороту эксцентрика вокруг своей оси на угол Д будет соответствовать сдвиг рейки на величину (-гД).
Нахождение линии контакта
Как видно из схемы построения поверхностей (1) и (2) (см. рис. 2), профиль винтового эксцентрика в любом торцовом сечении представлен эксцентрично смещенной окружностью 5, а профиль рейки - смещённой эквидистантой 3. Окружность 5 в любом торцовом сечении имеет точку касания с соответствующей эквидистантой. Рассмотрим п торцевых сечений, получающихся при повороте окружности 5 на углы
вк =
2п (к -1)
к = 1,..., п.
(3)
Координаты точки контакта окружности 5 с эк-видистантой 3 находятся как сумма радиус-вектора центра 6 окружности 5 с вектором, направленным по нормали к этой окружности в точке контакта и имеющим длину р. Для нахождения этой нормали нет необходимости прибегать к дифференцированию - достаточно применить свойство циклоиды: нормаль в произвольной её точке проходит через полюс (нижняя точка катящегося круга, образующего циклоиду [2. С. 241]. В данной конструкции полюс неподвижен и находится в начале координат, а искомая нормаль идёт по направлению радиус вектора точки 6. Учитывая это, нетрудно найти значение параметра на соответствующей эквиди-станте, при котором получается точка контакта:
тк (А) = Д + в. (4)
Линия контакта строится с помощью встроенной в пакете МаШСаё функции интерполяции массива точек контакта, соответствующих близким торцевым сечениям. Полученная при этом вектор-функция КДв) точек линии контакта даёт возможность дифференцирования с помощью символьного процессора пакета МаШСаё с целью нахождения кривизны в каждой точке этой линии в любой момент времени. Эта кривизна оказывается не постоянной, т. е. линия контакта не является винтовой.
При всех достоинствах предлагаемое реечное зацепление достаточно сложно в изготовлении, требует наличия многокоординатных станков с ЧПУ. Эта же идея зацепления может быть реализована в другом варианте, более простом в изготовлении. Обратимся к схеме образования винтового профиля эксцентрика, изображенного на рис. 1. Если этот профиль получать не непрерывным поворотом и смещением эксцентричной окружности относительно оси вращения, а разделить эти два движения, то получим ступенчатый профиль, образованный отдельными, повернутыми друг относительно друга одинаковыми венцами 3, 3', 3'', 3''' (см. рис. 3).
Каждый венец 3 образован цилиндром с эксцентрично смещенной окружностью в сечении. Соседние венцы 3, 3'... повернуты друг относительно друга на угол, равный угловому шагу колеса 1, деленному на число венцов п, а венец с номером к=1,..,п повёрнут по отношению к первому на угол вк, определённый формулой (3).
На рис. 3 угловой шаг составляет 360°, число венцов равно 6. Следовательно, соседние венцы 3 будут повернуты друг относительно друга на 60 градусов. Изготавливать такой ступенчатый профиль колеса можно либо из отдельных венцов, жестко скрепляемых вместе, либо выполняя колесо со сту-
пенчатым профилем в виде единой детали, наподобие коленчатого вала. Аналогично строится и составной зубчатый профиль рейки 2, только отдельные венцы 4, 4', 4", 4"', ... сдвинуты друг относительно друга вдоль рейки на расстояние, равное шагу рейки, деленному на число венцов. В общем случае про венцы составного колеса и составной рейки можно сказать, что они смещены друг относительно друга по фазе, и смещение равно шагу соответствующего венца, деленному на число венцов. Каждая пара венцов 3 и 4 колеса 1 и рейки 2 контактируют по прямой линии, и общая линия контакта профилей представляет собой кусочно-непрерывную ломаную кривую. Следует отметить, что, увеличивая число венцов в зацеплении, мы будем приближаться к первому варианту зацепления с косыми винтовыми зубьями. В свою очередь, зацепление с косыми зубьями можно рассматривать как зацепление ступенчатых профилей, где число венцов бесконечно велико, а смещение по фазе между соседними венцами бесконечно мало. Учитывая это, дальнейшие расчёты достаточно провести для варианта зацепления с п составными венцами.
Радиусы кривизны и расчёт усилий в точках контакта
Для нахождения контактных напряжений в точках соприкосновения составных венцов колеса 1 и рейки 2 необходимо знать радиус кривизны той линии Ок на рейке, которая получается торцевым сечением, соответствующим углу поворота вк, в точке касания этой линии с окружностью этого же торцевого сечения венца колеса 1. Эта линия является результатом смещения исходной линии 01 на величину (-г(вк+Д)), где Д - угол поворота генератора. Радиусы кривизны вычисляются по обычной формуле
Я(к, Д) = -
(X '(т (Д))2 + У '(тк (Д))2)
(5)
¿д/(X(т(Д)) - г)2 + У(т (Д))2 81И2(7(/, Д))
Выходное усилие и расчёт потерь мощности на трение
При определении силового воздействия со стороны колеса по формуле (5) выходное усилие (тангенциальное воздействие на рейку) может быть определено следующим образом:
п
Рых = ¿(^ (¿,Д), е).
1=1
Здесь вектор Дг,Д) направлен по общим нормалям к касающимся кривым, е — единичный вектор, направленный вдоль рейки.
Следуя принципу Лагранжа, при статистическом нагружении системы мы должны иметь
(6)
М®0 = ^вых^рей '
где М- входной момент, а ю0 и урей - пока ещё виртуальные (которые, конечно же, могут совпадать с парой реальных) угловая скорость колеса и скорость поступательного перемещения рейки. В динамических же условиях, т. е. при наличии в системе движения, соотношение (6), следуя принципу Даламбера-Лагранжа, можно обобщить следующим образом:
М®0 = ^ых^ей'
где 0тр - потери входной мощности на трение.
Величину потерь входной мощности на трение определяем следующим образом:
£р = к £ Р (г, Д)(Ду, Г) .
X' (т (Д))У '' (т (Д)) - X'' (т, (Д))У' (тк (Д))
где Х(тк(Д)), У(тк(Д)) - координаты точки контакта на линии Бк.
Формула для расчёта усилий в точках контакта при угле поворота колеса Д имеет вид:
Р (г, Д) = = М 8т(7(/, Д))
где М - входной момент на колесе, а у(/,Д) - угол между радиус-вектором точки контакта и общей нормалью к касающимся кривым (окружность и эквидистанта). Суммирование ведётся по половине всех номеров торцевых сечений, соответствующих «рабочим» венцам колеса 1 (испытывающим силовую нагрузку). Номера «рабочих» венцов зависят от Д и определяются с помощью специальной подпрограммы.
Здесь к - коэффициент трения, t - единичный вектор касательной в точке контакта, Ду=у—рей, у1=гк-а0, гк - радиус-вектор точки контакта относительно оси вращения винтового эксцентрика, урей -вектор скорости перемещения рейки.
Оптимизация параметров
Принципиальная схема нахождения оптимальных параметров линейчатой передачи сводится к следующему. Численно моделируется движение элементов системы в реальном времени, а именно, в каждый момент времени определяются новые положения поверхностей взаимодействия и новые совокупности точек контакта, новые усилия в местах контакта и локальные значения потерь входной мощности на трение. Перемещение по времени заканчивается с завершением полного цикла движения системы. Такой расчёт составляет первичный вариант для данного зацепления. Последовательными расчётами строится система базовых вариантов, позволяющая получить поверхности КПД и контактного напряжения. После чего проводится оптимизация по схеме, предложенной для редуктора с эксцентриково-циклоидальное зацеплением [3].
Таким образом, построена математическая модель нового вида зубчатого зацепления с криволинейными зубьями, обладающего высоким передаточным отношением при минимальных габарит-
п
г=1
3
п
г=1
ных размерах. На основании этой модели создана компьютерная программа, иллюстрирующая кинематически согласованное движение идеальных геометрических фигур - торцевых сечений работающего механизма и позволяющая находить необходимые для конструирования числовые характеристики, а так же находить оптимальные значения параметров передачи.
СПИСОК ЛИТЕРАТУРЫ
1. Крайнев А.Ф. Словарь-справочник по механизмам. - М.: Машиностроение, 1987. - 451 с.
2. Савёлов А.А. Плоские кривые. - М.: ГИФМЛ, 1960. - 294 с.
3. Щербаков Н.Р. Оптимизация параметров нового зацепления колёс с криволинейными зубьями // Известия Томского политехнического университета. - 2009. - № 5. - С. 244-246.
Построенная математическая модель использовалась при конструировании разработки, на которую подана заявка на изобретение RU 2008115365 «Реечное зацепление для линейного привода (варианты)», авторы Становской В.В., Казакявич-юс С.М., Ремнева Т.А., Кузнецов В.М., Бубенчиков А.М., Щербаков Н.Р. (решение о выдаче патента от 24.12.2008).
Поступила 24.02.2009.
Печатается в авторской редакции без учета мнений рецензентов