Труды БГТУ, 2018, серия 2, № 1, с. 81-85
81
УДК 691.32:666.972.16
О. Е. Хотянович
Белорусский государственный технологический университет
КОМПЛЕКСНАЯ ХИМИЧЕСКАЯ ДОБАВКА ДЛЯ БЕТОНА
В статье представлены результаты по разработке комплексной химической добавки для бетона, обладающей эффектами пластифицирования и ускорения твердения. Выполненные исследования позволили установить оптимальный состав комплексной химической добавки, основными компонентами которой являются суперпластификатор С-3 и ускоритель твердения - отход производства полиамидного волокна. Введение указанной добавки в состав смеси способствует увеличению предела прочности при сжатии в марочном возрасте на 35-70%, снижению водопо-глощения на 15-20%, повышению морозостойкости на 60-70 циклов по сравнению с контрольным образцом. Проведенные исследования показали возможность использования комплексной химической добавки для повышения эксплуатационных свойств инженерных сооружений, возводимых как из сборного, так и монолитного бетона.
Ключевые слова: бетон, химическая добавка, суперпластификатор, ускоритель твердения, прочность, морозостойкость, водопоглощение.
O. E. Khotyanovich
Belarusian State Technological University
COMPLEX CHEMICAL ADDITIVE FOR CONCRETE
The article presents the results on the development of a comprehensive chemical additives for contone, has the effect of accelerating the hardening and ductility. Completed the Exploration allowed to establish the optimal composition of complex chemical additive, bases-governmental components are superplasticizer C-3 and hardening accelerator - waste production of polyamide fiber. Introducing said additive into the mixture increases in compressive strength at age vintage 35-70%, reduce water absorption by 15-20%, for improving the frost resistance 60-70 cycles compared with con-controlling pattern. Studies have shown the use of complex chemical additives to improve performance properties of engineering constructions erected from both precast and monolithic concrete.
Key words: concrete, chemical additive, supersoftener, hardening accelerator, strength, frostresistance, water absorption.
Введение. Бетон является одним из самых массовых строительных материалов. Вместе с тем, это сложный искусственный композиционный материал, который может обладать совершенно уникальными свойствами. Он находит широкое применение в самых разных эксплуатационных условиях и имеет сравнительно низкую стоимость. К этому следует добавить доступность технологии его изготовления, возможность широкого использования местного сырья и утилизации техногенных отходов при его производстве, малую энергоемкость и эксплуатационную надежность. Именно поэтому бетон остается основным конструкционным материалом и в ближайшем будущем альтернативы ему не предвидится.
Бетон третьего тысячелетия - это модифицированный бетон. В современной технологии бетона химические добавки являются таким же обязательным компонентом бетонной смеси, как вяжущее вещество, заполнители и вода. Как показала практика, использование добавок позволяет получить ощутимый технико-экономический эффект и повысить долговечность бе-
тонных конструкций и инженерных сооружений, возводимых как из сборного, так и монолитного бетона. Вводимые в небольших количествах - десятых и сотых долях процента от массы цемента - они существенно влияют на химические процессы гидратации и твердения цемента и бетона, обеспечивая повышение его технологических и улучшение комплекса физико-механических свойств. Опыт применения модификаторов бетона показывает, что наиболее перспективным является использование комплексных добавок, поскольку монодобавки могут оказывать не только положительное влияние на свойства бетонов и растворов, но и отрицательное, что снижает их эффективность. В связи с этим, для повышения эффективности применения однокомпонентных модификаторов различного назначения требуется введение компонентов, которые могли бы локализовать отрицательное действие монодобавок или усилить желаемый эффект.
Основная часть. Потребность в комплексных химических добавках в нашей стране покрывается за счет импорта из Чехии, Китая,
США, Германии и других стран, поскольку спектр добавок отечественного производства невелик. Однако данные химические добавки широкого распространения не получили по причине высокой стоимости.
В связи с вышесказанным, целью исследований является разработка комплексной химической добавки, обеспечивающей пластифицирующий эффект без замедления сроков схватывания бетонных и растворных смесей и изучение физико-механических свойств модифицированных бетонов.
В составе комплексной добавки полифункционального действия был использован суперпластификатор С-3, являющийся эффективным разжижителем бетонных смесей и получивший широкое распространение в строительной практике. Однако, как показывает опыт, пластифицирующие добавки существенно замедляют сроки схватывания бетонных и растворных смесей, в связи с чем большинство импортных полифунциональных модификаторов содержат ускоритель твердения либо специально подобранную смесь ускорителей. В настоящей работе для ускорения темпов набора прочности цементного камня использовали отход производства полиамидного волокна филиала «Завод Химволокно» ОАО «Гродно Азот», который образуется в результате очистки технологического оборудования и представляет собой обезвоженную смесь карбоната и нитрита натрия (табл. 1) [1, 2]. Нитрит-карбонатный отход в настоящее время практического применения не имеет.
Таблица1
Химический состав нитрит-карбонатного отхода производства полиамидного волокна
Для проведения испытаний были изготовлены образцы-кубы с размером ребра 70 мм из бетонной смеси следующего состава, кг/м3: цемент - 350, щебень - 1220, песок - 750. Использовались портландцемент производства ОАО «Красносельскстройматериалы» марки ПЦ 500 - Д0 (ГОСТ 10178-85), кварцевый монофракционный песок (ГОСТ 8736-93), гранитный щебень (ГОСТ 8267-93) фракции 520 мм, водоцементное отношение в бетонной смеси составило 0,43. В качестве контрольного использовали образцы бетона без добавок. Химические добавки вводились в воду затворения.
Задача получения высокоэффективных комплексных модификаторов заключается в рациональном использовании особенностей влияния отдельных компонентов добавки на гидратацию цементной системы с целью достижения высоких многофункциональных эффектов. В связи с этим на первом этапе исследования изучали влияние монодобавок на предел прочности при сжатии цементно-песчаных образцов в разные сроки твердения. Результаты исследования представлены в табл. 2 и 3.
Таблица 2
Влияние пластифицирующих добавок на предел прочности при сжатии цементно-песчаных образцов
Содержание суперпластификатора С-3, % от массы цемента Предел прочности при сжатии, МПа, в возрасте, сут
1 3 7 28
0 (контрольный) 13,5 16,9 22,3 24,7
0,5 14,8 17,7 26,6 29,6
1,0 12,6 18,3 26,0 27,8
1,5 10,1 19,1 24,2 26,1
2,0 8,3 19,1 23,7 24,2
Таблица 3
Зависимость предела прочности при сжатии цементно-песчаных образцов от содержания ускорителя твердения
Содержание нитрит-карбонатного отхода, % от массы цемента Предел прочности при сжатии, МПа, в возрасте, сут
1 3 7
0 (контрольный) 13,5 16,9 22,3
0,1 20,1 23,1 33,7
0,5 16,2 21,3 31,1
1,0 15,6 17,3 20,7
1,5 14,9 15,6 14,8
2,0 14,9 15,1 15,0
Из табл. 2 видно, что с увеличением содержания пластифицирующей добавки С-3 (без корректировки воды затворения) предел прочности при сжатии цементно-песчаных образцов в раннем возрасте уменьшается по отношению к контрольному образцу. Очевидно, это связано с тем, что молекулы поверхностно-активных веществ, содержащихся в суперпластификаторе С-3, адсорбируясь на поверхности цементных частиц и гидратных новообразований, «блокируют» их активные участки, замедляя начальные процессы гидратации и, как следствие, твердения цемента. Особенно это выражено у цементно-песчаных образцов суточного возраста. Однако уже в более поздние сроки твердения наблюдается существенный рост прочности
Наименование компонента Содержание, мас. %
Карбонат натрия (№2С03 • 10Н20) 68-71
Нитрит натрия (МаМ02) 28-31
Водонерастворимые соединения менее 1
по сравнению с контрольным образцом, что согласуется с литературными источниками [3-5]. Наибольший прирост механической прочности в возрасте 28 сут (15-20%) достигается при содержании добавки С-3 в количестве 0,5-1,0% по сравнению с контрольным образцом.
Из табл. 3 видно, что оптимальным количеством является содержание отхода производства полиамидного волокна 0,1-0,5% от массы цемента, которое приводит к существенному росту прочности в начальные сроки твердения (1 сут).
Цемент является чрезвычайно сложной системой, на процессы гидратации и твердения в которой оказывают влияние химические добавки, вводимые даже в незначительных количествах. Известно, что добавки органического происхождения в большинстве своем не изменяют состава продуктов гидратации цементных минералов и влияют в основном на скорость кристаллизационных и конденсационных процессов и структуру гидратов, в то время как неорганические модификаторы влияют на изменение фазового состава продуктов гидратации цементного камня. Так, исследуя гидратацию клинкерных минералов в присутствии солей, авторы [4-9] отмечают, что при гидратации 3СаО • 8Ю2 и р-2СаО • 8Ю2 в водных растворах карбоната и нитрита натрия образуется гидросиликат кальция С8Н (II), переходящий со временем в С8Н (I). Причем, карбонат натрия в данном случае существенно ускоряет гидратацию белитовой фазы. Кроме того, в результате взаимодействия №2СО3 с выделяющимся в результате гидратации алита Са(ОН)2, образуется карбонат кальция, который кольматирует поры цементного камня, что положительно сказывается на его физико-механических свойствах.
ЗСаО • АЬОз и 4СаО • АЬОз • Ре2О3 в растворах с добавкой карбонатов и нитритов щелочных металлов гидратируются с образованием гидрокарбоалюмината кальция ЗСаО • А12О3 • СаСО3 • пН2О и гидронитриалю-мината кальция 3СаО • А12О3 • Са(КО2)2 • пН2О. Соли натрия и калия, при условии поступления в жидкую фазу гидроксида кальция, в результате реакции присоединения образуют наряду с основным продуктом и побочный -щелочь [4-9]:
3СаО • А12О3 + Са(ОН)2 + 2Ка2СО3 + 12Н2О ^ ^ 3СаО • А12О3 • СаСО3 • 12Н2О + 2№ОН
В результате указанных процессов происходит быстрое формирование первичного структурного каркаса, который заполняется образующимися гидросиликатами кальция, что приводит к его уплотнению и способствует повышению прочности цементного камня.
В более поздние сроки твердения (7 сут) разница между пределом прочности при сжатии цементно-песчаных образцов в присутствии нитрит-карбонатного отхода и контрольным (без добавки) значительно меньше, а в отдельных случаях прочность последнего выше. Очевидно, выделяющийся гидроксид натрия снижает скорость гидратации алита, что приводит к замедленному темпу набора прочности в поздние сроки твердения [4, 8].
На основании полученных результатов выбраны составы комплексной добавки, которые использовались для определения предела прочности при сжатии цементно-песчаных образцов. Результаты исследования представлены в табл. 4.
Таблица 4
Влияние комплексной химической добавки на предел прочности при сжатии цементно-песчаных образцов
Вид и содержание компонента добавки, Предел прочности при сжатии, МПа,
№ п/п % от массы цемента в возрасте, сут
Супер-пластификатор С-3 Нитрит-карбонатный отход 1 3 7 28
1 Контрольный образец (без добавки) 13,5 16,9 22,3 28,5
2 0,5 0,1 25,8 31,6 34,3 30,6
3 0,5 0,3 28,1 36,5 43,3 36,3
4 0,5 0,5 30,5 38,2 51,9 42,1
5 1,0 0,1 22,0 28,5 42,0 30,1
6 1,0 0,3 23,7 29,8 43,6 37,1
7 1,0 0,5 25,0 30,3 44,6 39,8
8 1,5 0,1 20,9 33,6 39,6 39,4
9 1,5 0,3 25,3 34,5 40,3 42,5
10 1,5 0,5 28,8 40,4 50,8 50,2
Из приведенных результатов видно, что оптимальными составами являются № 4, 8-10, поскольку они обеспечивают значительный прирост прочности и в ранние сроки твердения и в марочном возрасте по сравнению с контрольным образцом.
Оптимальные составы комплексных химических добавок использовались для изучения свойств цементного теста и камня: начала схватывания, морозостойкости и водопогло-щения. Результаты исследования представлены в табл. 5.
В результате выполненных исследований установлено, что начало схватывания цементного теста, содержащего пластификатор С-3, наступает через 240 мин, что объясняется замедлением процессов гидратации и твердения цемента прежде всего вследствие экранирования
его зерен адсорбционными слоями [3]. Разработанные комплексные добавки не только компенсируют нежелательный эффект - увеличение времени схватывания, но и значительно сокращают его (табл. 5). Так наименьшее значение начала схватывания цементного теста составляет 110 мин для состава № 3, однако оно в полной мере соответствует требованиям ГОСТ 10178 и СТБ БК 197.
Таблица 5
Свойства цементного теста и камня, содержащих комплексную химическую добавку
Номер состава Начало схватывания, мин Водопо- глощение, % Морозостойкость, циклы
1 180 7,3 76
3 110 5,7 140
8 140 6,0 139
9 140 6,1 137
10 150 5,8 143
Исследования показали, что структура це-ментно-песчаных образцов с комплексными добавками, формирующими первичный струк-
турный каркас, характеризуется более высокими физико-механическими свойствами (предел прочности при сжатии в ранние сроки и марочном возрасте на 35-70% выше, чем у контрольного) и пониженной пористостью за счет образования труднорастворимых соединений, уплотняющих цементный камень. Так, водопо-глощение, косвенно характеризующее пористость цементного камня, на 15-20% ниже контрольных образцов, что приводит к увеличению морозостойкости.
Заключение. На основании полученных экспериментальных данных установили, что оптимальный состав комплексной химической добавки включает 1,5% С-3 и 0,5% нитрит-карбонатного отхода производства полиамидного волокна. Введение указанной добавки в состав смеси способствует увеличению предела прочности при сжатии в марочном возрасте на 35-70%, снижению водопоглощения на 1520%, повышению морозостойкости на 60-70 циклов по сравнению с контрольным образцом. Кроме того, использование в составе комплексной добавки нитрит-карбонатного отхода позволит не только снизить стоимость продукта, но и решить важную экологическую проблему.
Литература
1. Кондрашова Г. С., Лещик Д. С., Тетерятников В. В. Изучение состава отработанного нитрита натрия - побочного продукта производства полиамидного волокна и возможности его использования в машиностроении // Энерго- и материалосберегающие экологически чистые технологии: тезисы докладов 6-й Междунар. науч.-техн. конф. Гродно, 2005. С. 118-119.
2. Сафончик Д. И. Химический состав модификатора цементных систем, полученного в условиях ПТК «Химволокно» // Вестник Брестского государственного технического университета. Сер. Строительство и архитектура. 2013. № 1. С. 86-88.
3. Зоткин А. Г. Суперпластификаторы в бетоне // Популярное бетоноведение. 2009. № 3. С. 65-68.
4. Добавки в бетон / В. С. Рамачандран [и др.]. М.: Стройиздат, 1988. 575 с.
5. Эффективные высокопрочные и обычные бетоны / под общ. ред. В. И. Калашникова. Пенза: Приволжский Дом знаний, 2015. 148 с.
6. Тараканов О. В., Пронина Т. В., Тараканова Е. О. Комплексные добавки в производстве цементных растворов и бетонов // Технологии бетонов. 2008. № 11. С. 8-12.
7. Тараканов О. В., Тараканова Е. О. Влияние ускорителей твердения на формирование начальной структуры цементных материалов // Региональная архитектура и строительство. 2009. № 2. С. 56-64.
8. Касторных Л. И. Добавки в бетоны и строительные растворы. Ростов н/Д: Феникс, 2007. 221 с.
9. Ратинов В. Б., Розенберг Т. И. Добавки в бетон. М.: Стройиздат. 1973. 208 с.
References
1. Kondrashova G. S., Leshchik D. S., Teteryatnikov V. V. The study of composition the spent of sodium nitrite - by-product of the polyamide fiber and possibilities use in mechanical engineering. Ener-go- i materialosberegayushchie ekologicheski chistye tekhnologii: tezisy dokladov 6-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Energy and material-environmentally friendly technologies: thesis of reports of the 6th International Scientific and Technical Conference]. Grodno, 2005, pp. 118-119 (In Russian).
2. Safonchik D. I. Chemical composition of the modifier of cement systems obtained under the conditions of ITC "Khimvolokno". Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Stroitel'stvo i arkhitektura [Bulletin of the Brest State Technical University. Ser. Construction and architecture], 2013, no. 1, pp. 86-88 (In Russian).
3. Zotkin А. G. Supersoftener in concrete. Populyarnoe betonovedenie [Popular concrete], 2009, no. 3, pp. 65-68 (In Russian).
4. Ramachandran V. S., Fel'dman R. F., Kollepardi M., Mal'khotra V. M., Dolch V. L., Mekhta P. K., Okhama I., Ratinov V. B., Rozenberg T. I., Mailvaganam N. P. Dobavki v beton [Additives in concrete]. Moscow, Stroyizdat Publ., 1988. 575 p.
5. Effektivnye vysokoprochnye i obychnye betony [Effective high-strength and conventional concretes]. Penza, Privolzhskiy Dom znaniy Publ., 2015. 148 p.
6. Tarakanov O. V., Pronina T. V., Tarakanova E. O. Complex additives in the production of cement mortars and concretes. Tekhnologii betonov [Concrete Technology], 2008, no. 11, pp. 8-12 (In Russian).
7. Tarakanov O. V., Tarakanova E. O. Effect of hardening accelerators on the formation of the primary structure of cement materials. Regional'naya arhitektura i stroitel'stvo [Regional architecture and construction], 2009, no. 2, pp. 56-64 (In Russian).
8. Dobavki v betony i stroitel'nye rastvory [Additives in concrete and mortar]. Rostov n/D, Feniks Publ., 2007. 221 p.
9. Ratinov V. B., Rozenberg T. I. Dobavki v beton [Concrete admixtures]. Moscow, Stroyizdat Publ., 1973. 208 p.
Информация об авторe
Хотянович Оксана Евгеньевна - кандидат технических наук, доцент кафедры химической технологии вяжущих материалов. Белорусский государственный технологический университет (220006, г. Минск, ул. Свердлова, 13а, Республика Беларусь). E-mail: [email protected]
Information about the author
Khotyanovich Oksana Evgen'evna - PhD (Engineering), Assistant Professor, the Department of Chemical Technology of Binding Materials. Belarusian State Technological University (13a, Sverdlova str., 220006, Minsk, Republic of Belarus). E-mail: [email protected]
Поступила 23.10.2017