DOI: 10.6060/ivkkt.20216406.6385
УДК: 677.021.122.62:537.52
КИНЕТИКА ИЗМЕЛЬЧЕНИЯ РАСТИТЕЛЬНОГО СЫРЬЯ ПРИ ЭЛЕКТРОРАЗРЯДНОМ ЭКСТРАГИРОВАНИИ
В.Т. Казуб, М.К. Кошелева, С.П. Рудобашта
Валерий Тимофеевич Казуб
Пятигорский медико-фармацевтический институт - филиал ВолгГМУ Минздрава России, просп. Калинина, 11, Пятигорск, Ставропольский край, Российская Федерация, 357532 E-mail: [email protected]
Мария Константиновна Кошелева *
Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство), Садовническая ул., 33, стр. 1, Москва, Российская Федерация, 115035 E-mail: [email protected] *
Станислав Павлович Рудобашта Российский государственный аграрный университет 49, Москва, Российская Федерация, 127550 E-mail: [email protected]
- МСХА им. К.А. Тимирязева, ул. Тимирязевская,
Изучено влияние степени измельчения частиц растительного сырья при электроразрядном экстрагировании на качество полученных экстрактов. Каждый разряд при электроразрядном экстрагировании способствует измельчению частичек сырья, что подтверждается гранулометрическим анализом. Крупность частиц сырья должна быть под контролем, так как при чрезмерном измельчении экстракты получаются мутные, трудно осветляемые и плохо фильтруемые. Предложена конструкция экстракционной камеры, в которой заземленный электрод выполнен в виде перфорированной пластины, называемой ложным дном, с оптимальными размером отверстий и их плотностью, что позволяет устранить переизмельчение частичек исходного сырья, которое приводит к получению мутных и трудно фильтруемых вытяжек. Поскольку экстрагирование сырья осуществляется при определенном соотношении фаз твердое-жидкость, то объем камеры от сита до дна существенного влияния на кинетику самого процесса экстрагирования не оказывает, поскольку предназначен для сбора мельчайших частиц обработанного сырья, масса которых не превышает 15-16% от загружаемой массы сырья. Устройство экстракционной камеры, за счет высокой турбулентности и интенсивного перемешивания суспензии под действием кавитации и ударных волн, инициируемых разрядом в жидкости, позволяет удалять из рабочей зоны камеры мелкие частички сырья размером менее 1 мм. Результаты исследования показывают, что экстракция целевых компонентов из различного сырья при помощи камеры с ложным дном позволяет существенно сократить содержание в экстракте мельчайших частичек сырья. Облегчается фильтрование экстракта, сокращается время фильтрования, значительно снижается вероятность помутнения раствора из-за взвеси, что повышает качество экстракта. Экспериментальные исследования разработанной электроразрядной камеры с ложным дном, проведенные с различными видами растительного сырья, подтверждают эффективность экстрагирования в камере предложенной конструкции.
Ключевые слова: электрический разряд, экстрагирование, электроразрядная камера, измельчение, гранулометрический анализ, перфорированный электрод, ложное дно
Для цитирования:
Казуб В.Т., Кошелева М.К., Рудобашта С.П. Кинетика измельчения растительного сырья при электроразрядном экстрагировании. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 6. С. 76-82 For citation:
Kazub V.T., Kosheleva M.K., Rudobashta S.P. Kinetics of grinding of vegetable raw materials during electric discharge extraction. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 6. P. 76-82
KINETICS OF GRINDING OF VEGETABLE RAW MATERIALS DURING ELECTRIC DISCHARGE EXTRACTION
V.T. Kazub, M.K. Kosheleva, S.P. Rudobashta
Valery T. Kazub
Pyatigorsk Medical and Pharmaceutical Institute-Branch of the Volga State Medical University of the Ministry of Health of Russia, Kalinina ave., 11, Pyatigorsk, Stavropol region, 357532, Russia E-mail: [email protected]
Maria K. Kosheleva*
Kosygin Russian State University (Technology, Design, Art), Sadovnicheskaya st., 33, bld. 1, Moscow,
115035, Russia
E-mail: [email protected] *
Stanislav P. Rudobashta
Russian State Agrarian University - Timiryazev Moscow Agricultural Academy, Timiryazevskaya st., 49, Moscow, 127550, Russia E-mail: [email protected]
The influence of the degree of grinding of the particles of growing raw materials during electric discharge extraction on the quality of the obtained extracts was studied. Each discharge during electro-discharge extraction contributes to the grinding of a part of the raw material, which is confirmed by granulometric analysis. The particle size of the raw material should be controlled, since excessive grinding of the extracts results in cloudy, difficult to clarify and poorly filtered. The design of the extraction chamber is proposed, in which the grounded electrode is made in the form of a perforated plate, called a false bottom, with the optimal size of the holes and their density, which eliminates the over-grinding of the raw material particles, which leads to the production of turbid and difficult-to-filter extracts. Since the extraction of raw materials is carried out at a certain ratio of solid-liquid phases, the volume of the chamber from the sieve to the bottom does not significantly affect the kinetics of the extraction process itself, since it is intended for collecting the smallest particles ofprocessed raw materials, the mass of which does not exceed 15-16% of the loaded mass of raw materials. The device of the extraction chamber, due to the high turbulence and intensive mixing of the suspension under the action of cavitation and shock waves initiated by the discharge in the liquid, allows you to remove small particles of raw materials less than 1 mm in size from the working area of the chamber. The results of the study show that the extraction of target components from various raw materials using a chamber with a false bottom can significantly reduce the content of the smallest particles of raw materials in the extract. It facilitates the filtration of the extract, reduces the filtration time, significantly reduces the likelihood of turbidity of the solution due to suspension, which improves the quality of the extract. Experimental studies of the developed electric discharge chamber with a false bottom, conducted with various types of plant raw materials, confirm the effectiveness of extraction in the chamber of the proposed design.
Key words: electric discharge, extraction, electric discharge chamber, grinding, particle size analysis, perforated electrode, false bottom
INTRODUCTION Increasing the energy efficiency of the pro-
It is known that the effect of electric dis- cess of extracting various components from vegeta-
charges allows to significantly intensify the process of ble fibrous and other types of raw materials unto the
extraction of target components from various starting ^uenre of ultrasomc and pulsed electric fields is an
materials, including from plant raw materials [1-7]. It urgent taskk Of scientific novelty and practical interest
is also known that the quality of the obtained extracts is the improvement of the design of extraction devices
is significantly affected by the degree of grinding of and the °perating parameters of the intensified extrac-
the plant material particles, including during electric tion processes with high quality of the target products, discharge extraction [5-8] the established relationship between the action of
electric discharges and the granulometric composition of the growing raw materials.
The aim of the work is to study the effect of the degree of grinding of plant raw materials during electric discharge extraction on the quality of extracts.
The tasks and methods of the study were determined on the basis of the analysis of the mechanism of the effect of electric discharges in the liquid phase during extraction. The object of the study was the process of electric discharge extraction from vegetable raw materials.
An electric discharge in a liquid at the initial stage of development is accompanied by the nuclea-tion and collapse of cavitation bubbles. The compression-rarefaction waves formed in this process lead to the grinding of the particles of the processed material. In the final stage of the discharge, when the channel bridges the interelectrode gap, a sudden increase in the channel temperature occurs and a vapor-gas cavity is formed [3, 5-9].
Pulsations of the vapor-gas cavity create a hydrodynamic environment in the volume, which provides a sudden change in pressure and high turbulence of the suspension movement in the working chamber. This serves as a source of grinding of the solid phase and activates internal diffusion processes when extracting plant raw materials from the cell and intercellular space. Probably, due to high-frequency oscillations and high turbulence of the liquid flow in the mouths of the capillaries, the mass transfer rate will increase [6].
To increase the rate of extraction of the target components from the organic raw material, it is pre-crushed in order to increase the initial surface of the particles interacting with the extracting liquid.
This is a fairly energy-intensive process, since the raw materials are elastic-plastic materials, stored in conditions with a certain humidity and its grinding is carried out in a wet state. When dehydrated, the raw material becomes brittle and can easily be turned into powder, which will further complicate the extraction process. In electric discharge extraction, each discharge contributes to the grinding of raw material particles, which is confirmed by granulometric analysis. The particle size of the raw material should be controlled, since excessive grinding results in cloudy extracts, difficult to clarify and poorly filtered [9-16].
RESULTS AND THEIR DISCUSSION
Fig. 1 shows the device of the extraction chamber for electro-discharge extraction of target components from the initial plant raw materials, developed at the Pyatigorsk Medical and Pharmaceutical Institute.
Discharge chana
4
Fig. 1. Extraction chamber for electric discharge extraction 1 - highvoltage electrode; 2-extractor cover; 3-polyethylene body of the extraction chamber; 4-grounded electrode; 5-raw materials in the
extraction process; 6-extractant Рис. 1. Экстракционная камера для электроразрядного экстрагирования 1 - высоковольтный электрод; 2 - крышка экстрактора; 3 - полиэтиленовый корпус экстракционной камеры; 4 -заземленный электрод; 5 - сырье в процессе экстрагирования; 6 - экстрагент
Numerous studies have shown that the disadvantages of this device of the electric discharge chamber are the over-grinding of raw material particles as they are extracted, since the smallest particles are not removed from the core of the chamber, as a result of which the extracts are cloudy and difficult to filter [5-10].
The authors developed the design of the extraction chamber, which allows to eliminate this drawback. For this purpose, the grounded electrode is made in the form of a perforated plate, hereinafter referred to as a false bottom with a hole size of 1 mm and a hole density of 16 pieces/cm2. The electrode is installed at a distance of 3 cm from the bottom of the extraction chamber.
The false bottom extraction chamber is shown in Fig. 2.
Fig. 2. Extraction chamber for electric discharge extraction with a false bottom 1 - high-voltage electrode; 2 - extraction chamber cover; 3 - extraction chamber body; 4 - perforated ground electrode - false bottom; 5 - raw material particles less than 1 mm in
size; 6 - feedstock; 7 - extractant Рис. 2. Экстракционная камера для электроразрядного экстрагирования с ложным дном 1 - высоковольтный электрод; 2 - крышка экстракционной камеры; 3 - корпус экстракционной камеры; 4 - перфорированный заземленный электрод - ложное дно; 5 - частички сырья размером менее 1 мм; 6 - исходное сырье; 7 - экстрагент
Since the extraction of raw materials is carried out with a solid-liquid phase ratio of 1: 10-1:15, the volume of the chamber, from the sieve to the bottom, does not significantly affect the kinetics of the extraction process itself, since it is designed to collect the smallest particles of the processed raw materials, the mass of which does not exceed 15-16% of the total loaded mass of raw materials.
Such a device of the extraction chamber, due to the high turbulence and intensive mixing of the suspension under the action of cavitation and shock waves initiated by the discharge in the liquid, allows you to remove raw material particles of less than 1 mm in size from the working area of the chamber. This, in the end, facilitates the subsequent filtration of the extract and reduces the time for its implementation, significantly reduces the possibility of turbidity of the solution due to suspension, which improves the quality of the extract.
Tables 1-4 show the data that substantiate the proposed design of the extraction chamber with a false bottom. The extraction was carried out from the fruits of Sophora japonica in the chamber shown in Fig. 1 and in the chamber shown in Fig. 2, with the same working parameters. The number of discharges, the mass of raw materials, and the phase ratio were the same.
Before extraction, the size of the feedstock was analyzed. Then the raw material was loaded into the extraction chamber at a certain ratio with the ex-tractant and extracted under the action of electric discharges. After the extraction process was completed, the raw materials were dried and subjected to granu-lometric analysis, the results of which are presented in Table 1.
The results of the granulometric analysis show that the number of particles with a size of less than 1 mm increased from 2.75% (in the initial state) to 15.44% after a series of discharges, i.e. by 5.6 times. And since the extraction processes are carried out three times with a change of extractant in each batch, the number of tiny particles in the extraction chamber will increase many times, which ultimately leads to additional costs for filtering and clarifying the extract.
From the same batch of plant raw materials, a sample was taken and placed in an extraction chamber for electric discharge extraction with a false bottom. The results of the study are shown in Table 2.
As follows from the table. 2 the total number of particles of 0.5 and 1.0 mm in size after extraction in the chamber with a false bottom decreased by more than 7 times.
In the next series of experiments for the extraction were taken roots of scorzonera Spanish. The
fineness of the scorzoner root crops after electric discharge extraction in the extraction chamber Fig. 1, is shown in Table 3.
Table 1
Change in the content of small particles of japanese sophora in the raw material after extraction in the extraction chamber for electric discharge extraction Таблица 1. Изменение содержания мелких частиц софоры японской в сырье после экстракции в экстракционной камере для электроразрядного экстра-
гирования
Diameter of Particle content in the Particle content in
the screw raw material before the raw material after
hole, d, mm extraction, Ado, % extraction, A d, %
0.50 1.24 6.29
1.00 1.51 9.16
2.00 17.51 27.83
3.50 65.22 49.34
3.75 14.52 7.38
Table 2
Change in the content of small particles of japanese sophora in the raw material after extraction in the extraction chamber for electric discharge extraction with a false bottom Таблица 2. Изменение содержания мелких частиц софоры японской в сырье после экстракции в экстракционной камере для электроразрядного экстра-
гирования с ложным дном
Diameter of Particle content in the Particle content in
the screw raw material before the raw material after
hole extraction extraction
d, mm Ado, % Ad, %
0.50 1.24 0.22
1.00 1.51 0.17
2.00 17.51 24.79
3.50 65.22 67.31
3.75 14.52 7.52
Table 3
Change in the content of small particles of spanish scorzoner root crops in the raw material after extraction in the extraction chamber for electro-discharge extraction (a sieve was added with a cell size of 1.25 mm) Таблица 3. Изменение содержания мелких частиц корнеплодов скорцонера испанского в сырье после экстракции в экстракционной камере для электроразрядного экстрагирования (добавлено сито
с размером ячейки 1,25 мм)
Diameter of Particle content in Particle content in
the screw hole the raw material be- the raw material after
d, mm fore extraction Ad), % Extraction Ad, %
0.50 2.50 4.50
1.00 4.50 19.17
1.25 10.50 18.83
2.00 10.83 20.83
3.50 64.17 32.50
3.75 7.50 4.17
The results show that the total content of particles smaller than 1 mm increased from 7% to 23.67%, i.e. increased by 3.38 times.
The change in the size of the scorzoner root crops after elec-tror-row extraction in the extraction chamber with a "false bottom" is shown in Table 4.
Table 4
Change in the content of small particles of the spanish scorzoner root crops in the raw material after extraction in the extraction chamber for electro-discharge
extraction with a false bottom Таблица 4. Изменение содержания мелких частиц корнеплодов скорцонера испанского в сырье после экстракции в экстракционной камере для электроразрядного экстрагирования с ложным дном
The data in Table 4 show that the extraction of the target components from the root crops of the
ЛИТЕРАТУРА
1. Салова Т.Ю., Громова Н.Ю. Теоретические аспекты получения биологически активных веществ из растительного и животного сырья. Усп. соврем. естествозн. 2016. № 3. С. 39-43.
2. Саламатин А.А., Хазиев Р.Ш., Макарова АС., Иванова С.А. Кинетика экстракции биологически активных веществ из растительного сырья кипящим растворителем. Теор. Осн. Хим. технол. 2015. Т. 49 № 2. С. 206-213. DOI: 10.7868/S0040357115020116.
3. Кудимов Ю.Н., Казуб В.Т., Голов Е.В. Кинетика электроразрядного процесса экстрагирования растительного сырья. Изв. вузов. Химия и хим. технология. 2002. Т. 45. Вып. 1. С. 23-25.
4. Петрова С.Н., Кантан А.Д., Яргунова Ю.В. Получение и свойства густых экстрактов листьев красной смородины. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 7. С. 66-71. DOI: 10.6060/tcct.2017607.5444.
5. Казуб В.Т., Кошкарова А.Г. Интенсификация процессов экстрагирования импульсным электриче-ским полем высокой напряженности. Вестн. Тамбов. гос. Тех. Ун-та. 2014. Т. 20. № 3. С. 496-501.
6. Кудимов Ю.Н., Казуб В.Т., Мартиросян К.В., Смоленская Г.В. Измельчение сырья в процессе экстрагирования под воздействием электрического разряда. Вестн. Тамбов. гос. Тех. Ун-та. 2006. Т. 12. № 4-1. С. 994-998.
scorzoner using a chamber with a false bottom reduces the content of the smallest particles of raw materials in the extract by more than 5.6 times.
The intensification and increase of the energy resource efficiency of the extraction process of various components from plant, fiber and other raw materials under the influence of physical fields, including pulsed electric fields, as can be seen from publications and review materials presented in journals and proceedings of international conferences, is modern and promising [16-18]. Research and development of mathematical models of the extraction process and methods of its calculation are carried out. An important direction is to improve the designs and operating parameters that allow us to improve the quality of the target products [17-20].
CONCLUSIONS
The studied electric discharge chamber with a false bottom allows to remove from the working area, due to high turbulence and intensive mixing of the suspension under the action of cavitation and shock waves initiated by the discharge, raw material particles with a size of less than 1 mm, which consequently eliminates turbidity of the extract due to over-grinding, lightens and reduces the time for filtration, resulting in an increase in the quality of the extract.
REFERENCES
1. Salova T.Yu., Gromova N.Yu. Theoretical aspects of obtaining biologically active substances from plant and animal raw materials. Usp. Sovr. Estestvozn. 2016. N 3. P. 39-43 (in Russian).
2. Salamatin A.A., Khaziev R.Sh., Makarova A.S., Ivanova
S.A. Kinetics of extraction of biologically active substances from vegetable matter by boiling solvent. Teor. Osn. Khim. Tekhnol. 2015. V. 49. N 2. P. 206-213 (in Russian). DOI: 10.7868/S0040357115020116.
3. Kudimov Yu.N., Kazub V.T., Golov E.V. Kinetics of the electrosurface extraction process of plant raw materials. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2002. V. 45. N 1. P. 23-25 (in Russian).
4. Petrov S.N., Kantan A.D., Yargunova Yu.V. Preparation and properties of GU-grained extracts of leaves of red currant. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2017. V. 60. N 7. P. 66-71 (in Russian). DOI: 10.6060/tcct.2017607.5444.
5. Kazub V.T., Koshkarova A.G. Intensification of extraction processes by a high-intensity pulsed electric field. Vestn. Tambov. Gos. Tekhn. Un-ta. 2014. V. 20. N 3. P. 496-501 (in Russian).
6. Kudimov Yu.N., Kazub V.T., Martirosyan K.V., Smo-lenskaya G.V. Grinding of raw materials in the extraction process under the influence of electric discharge. Vestn. Tambov. Gos. Tekhn. Un-ta. 2006. V. 12. N 4-1. P. 994-998 (in Russian).
Diameter of Particle content in Particle content in
the screw the raw material the raw material
hole before extraction after extraction
d, mm Ad0, % Ad, %
0.50 2.50 0.51
1.00 4.50 3.17
1.25 10.50 23.92
2.00 10.83 26.34
3.50 64,17 41.89
3.75 7.50 4.17
7. Kosheleva M.K., Tsintsadze M.Z. The influence of physical fields on kinetic coefficients in the process of extracting contaminants from fabric. Вестн. Тамбов. гос. Тех. Ун-та. 2020. Т. 26. № 2. С. 254-261. DOI: 10.17277/vestnik.2020.02.pp.254-261.
8. Казуб В.Т., Рудобашта С.П., Кошкарова А.Г. Исследование кинетики экстрагирования под воздей-ствием импульсного электрического поля. Вестн. МГАУ им.
B.П. Горячкина. 2016. № 5 (75). С. 49-55.
9. Казуб В.Т., Рудобашта С.П., Кошкарова А.Г. Водное экстрагирование сырья под воздействием импульсного электрического поля высокой напряженности. Между-нар. науч.-техн. Форум «Первые междунар. Косыгин-ские чтения «Современные задачи инженерных наук»». Москва. 11-12 октября 2017. С. 185-189.
10. Казуб В.Т., Рудобашта С.П., Кошкарова А.Г. Особенности кинетики процесса экстрагирования под воздействием импульсного поля высокой напряженности. Вестн. Тамбов. гос. Тех. Ун-та. 2018. № 1 (25). С. 134-140. DOI: 10.17277/vestnik.2018.01.pp.134-139.
11. Борисов А.Г., Оробинская В.Н., Казуб В.Т. Кинетика процессов экстрагирования полисахаридов из корнеплодов скорцонера испанского под воздействием электрического разряда. Вестн. Тамбов. гос. Тех. Ун-та. 2011. Т. 17. № 2.
C. 410-416.
12. Казуб В.Т. Измельчение сырья в процессе экстрагирования под воздействием электрического разряда. Вестн. Тамбов. гос. тех. ун-та. 2006. Т. 12. С. 994-997.
13. Казуб В.Т., Кошкарова А.Г., Рудобашта С.П. Особенности кинетики процесса экстрагирования под воздействием импульсного поля высокой напряженности. Вестн. Тамбов. гос. Тех. Ун-та. 2018. Т. 24. № 1. С. 134-139. DOI: 10.17277/vestnik.2018.01.pp.134-139.
14. Казуб В.Т., Рудобашта С.П. Исследование кинетики электроразрядных экстракционных процессов. В сб.: Сушка, хранение и переработка продукции растениеводства. Сб. науч. Тр. Междунар. науч.-техн. семинара, посв. 175-летию со дня рожд. К.А. Тимирязева. 2018. С. 213-218.
15. Kosheleva M., Tsintsadze M. Intensification of the process of extracting alkali from cotton fabrics after their merceriza-tion. В сб.: Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ - 2020. Сб. науч. Тр. 7 Междунар. науч.-практ. конф., посв. 110-летию со дня рожд. Акад. А.В. Лыкова. 2020. С. 211-214.
16. Гуляев Ю.В., Белгородский В.С., Кошелева М.К.
Обзор материалов симпозиума "Вторые международные Косыгинские чтения "Энергоресурсоэффективные экологически безопасные технологии и оборудование", приуроч. к 100-летию РГУ им. А.Н. Косыгина" Теор. осн. хим. технологии. 2020. Т. 54. № 3. С. 392-396. DOI: 10.31857/S0040357120030057.
17. Сажин Б.С., Федосов С.В., Кошелева М.К. Формирование научных направлений и отражение научных достижений в области повышения эффективности тепло-массообменных процессов, экологической и производственной безопасности текстильных производств в разделе "Экологическая и производственная безопасность. Промтеплоэнергетика". Изв. вузов. Технол. текстил. пром-ти. 2018. № 4 (376). С. 116-122.
7. Kosheleva M.K., Tsintsadze M.Z The influence of physical fields on kinetic coefficients in the process of extractiing contaminants from fabric. Vestn. Tambov. Gos. Tekhn. Unta. 2020. V. 26. N 2. P. 254-261. DOI: 10.17277/ vest-nik.2020.02. P. 254-261 (in Russian).
8. Kazub V.T., Rudobashta S.P., Koshkarova A.G. Investigation of the kinetics of extraction under the influence of a pulsed electric field. Vestn. FGBOU VPO "MGAU named after V. P. Goryachkin ". 2016. N 5 (75). P. 49-55 (in Russian).
9. Kazub V.T., Rudobashta S.P., Koshkarova A.G. Water extraction of raw materials under the influence of a high-intensity pulsed electric field. Internat. Sci. and Techn. Forum "The first International Kosygin Readings "Modern problems of engineering sciences"". Moscow. October 1112. 2017. P. 185-189 (in Russian).
10. Kazub V.T., Rudobashta S.P., Koshkarova A.G. Features of the kinetics of the extraction process under the influence of a high-intensity pulsed field. Vestn. Tambov. Gos. Tekhn. Un-ta. 2018. N 1 (25). P. 134-140 (in Russian). DOI: 10.17277/vestnik.2018.01. P. 134-140.
11. Borisov A.G., Orobinskaya V.N., Kazub V.T. Kinetics of polysaccharide extraction processes from Spanish scorzoner root crops under the influence of an electric discharge. Vestn. Tambov. Gos. Tekhn. Un-ta. 2011. V. 17. N 2. P. 410-416 (in Russian).
12. Kazub V.T. Grinding of raw materials in the extraction process under the action of an electric discharge. Vestn. Tambov. Gos. Tekhn. Un-ta. 2006. V. 12. P. 994-997 (in Russian).
13. Kazub V.T., Koshkarova A.G., Rudobashta S.P. Features of the kinetics of the extraction process under the influence of a high-intensity pulsed field. Vestn. Tambov. Gos. Tekhn. Un-ta. 2018. V. 24. N 1. P. 134-139. DOI: 10.17277/vestnik.2018.01. P. 134-139 (in Russian).
14. Kazub V.T., Rudobashta S.P. Investigation of the kinetics of electric discharge extraction processes. In: Drying, storage and processing of crop production. Collection of scientific papers of the International Scientific and Technical Seminar dedicated to the 175th anniversary of the birth of K. A. Timiryazev. 2018. P. 213-218 (in Russian).
15. Kosheleva M., Tsintsadze M. Intensification of the process of extracting alkali from cotton fabrics after their merceriza-tion. In: Modern energy-saving thermal technologies (drying and thermal processes) SETT-2020. Collection of scientific papers of the Seventh International Scientific and Practical Conference dedicated to the 110th anniversary of the birth of Academician A.V. Lykov. 2020. P. 211-214.
16. Gulyaev Yu.V., Belgorodsky V.S., Kosheleva M.K. Review of the materials of the symposium " Second International Kosygin Readings "Energy-efficient environmentally safe technologies and equipment", dedicated to the 100th anniversary of the Kosygin Russian State University" Theoretical foundations of chemical technology. 2020. V. 54. N 3. P. 392-396 (in Russian). DOI: 10.31857/S0040357120030057.
17. Sazhin B.S., Fedosov S.V., Kosheleva M.K. Formation of scientific directions and reflection of scientific achievements in the field of improving the efficiency of heat and mass transfer processes, environmental and industrial safety of textile industries in the section "Environmental and industrial safety. Promteploenergetika". Izv. Vyssh. Uchebn. Zaved. Tekhnol. Tekstil. Prom. 2018. N 4 (376). P. 116-122 (in Russian).
18. Гуляев Ю.В., Белгородский В.С., Кошелева М.К. Аналитический обзор материалов симпозиума "Современные энерго- и ресурсосберегающие технологии" междунар. науч.-техн. форума "Первые международные Косыгинские чтения "Современные задачи инженерных наук". Теор. Осн. Хим. технологии. 2018. Т. 52. № 3. С. 361-364. Б01: 10.7868/80040357118030120.
19. Кошелева М.К., Рудобашта С.П., Казуб В.Т., Цин-цадзе М.З. Влияние электрических разрядов на кинетические коэффициенты в процессе промывки хлопчатобумажной ткани. Изв. вузов. Технол. текстил. пром-ти. 2020. № 1 (385). С. 166-171.
20. Рудобашта С.П., Кошелева М.К., Карташов Э.М. Моделирование экстрагирования целевого компонента из тел сферической формы в полунепрерывном процессе. Инж.-физ. журн. 2017. Т. 90. № 4. С. 841-849.
18. Gulyaev Yu.V., Belgorodsky V.S., Kosheleva M.K. Analytical review of the materials of the symposium "Modern energy and resource-saving technologies" of the international scientific and technical forum "First International Kosygin Readings" Modern problems of engineering Sciences". Te-oret. OsnovyKhim. Tekhnol. 2018. V. 52. N 3. P. 361-364 (in Russian). DOI: 10.7868/S0040357118030120
19. Kosheleva M.K., Rudobashta S.P., Kazub V.T., Tsintsadze M.Z Influence of electric discharges on kinetic coefficients in the process of washing cotton fabric. Izv. Vyssh. Uchebn. Zaved. Tekhnol. Tekstil. Prom-ty. 2020. N 1 (385). P. 166-171 (in Russian).
20. Rudobashta S.P., Kosheleva M.K., Kartashov E.M.
Modeling of target component extraction from spherical bodies in a continuous process. Inzh.-Fiz. Zhurn. 2017. V. 90. N 4. P. 841-849 (in Russian).
Поступила в редакцию 15.02.2021 Принята к опубликованию 05.04.2021
Received 15.02.2021 Accepted 05.04.2021