ИЗВЕСТИЯ
ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ. С. М. КИРОВА 1 =
Том 295
К РАСЧЕТУ СУХИХ ТРАНСФОРМАТОРОВ
И. Д. КУТЯВИН, В. Н. КОЛЬЕВ
(Представлена научным семинаром кафедры электрических станций)
Вопросу оптимального расчета и проектирования сухих трансформаторов П-ГП габаритов в настоящее время в литературе не уделяется должного внимания. Между тем сухие трансформаторы данных габаритов обладают рядом преимуществ по сравнению с масляными: взрывобезопасность, удобство эксплуатации, да и в экономическом отношении стоимость сухих трансформаторов, если и превышает стоимость масляных, то весьма незначительно.
Расчет и оптимизация сухих трансформаторов обладают отличительными особенностями по сравнению с масляными. И в первую очередь это связано с вопросами теплообмена. Непосредственно вопросу расчета и исследования тепловых процессов в сухих трансформаторах в советской и зарубежной литературе посвящено очень мало работ.
Наиболее распространенной в настоящее время при расчете сухих трансформаторов является методика Л. М. Шницера [1]. Л. М. Шни-цер рассматривает тепловой процесс в сухих трансформаторах, учитывая теплообмен между поверхностями и охлаждение в каналах. Между превышением температуры и удельными тепловыми нагрузками рекомендуется зависимость
© = 0,2<т°'89,
где в —среднее превышение температуры, град\
¿7 — плотность теплового потока, Вт/м2. Для внутренних поверхностей (в охлаждающих каналах) вводится коэффициент эффективности меньший единицы, учитывающий геометрию канала. Предлагаемые зависимости носят эмпирический характер и отличаются сравнительно невысокой точностью. Ряд работ, появившихся позже, можно считать дальнейшим развитием метода теплового расчета, предложенного Л. М. Шницером. Это работы Ш. И. Лапидуса, Г. Б. Фридмана и Н. Ю. Рустамова.
Тепловой расчет представляет самостоятельную задачу, когда служит для оценки уже имеющейся конструкции. Однако возможен и другой подход, противоположный, когда, исходя из оценки теплового режима, выбирается геометрия и удельные нагрузки трансформатора с тем, чтобы получить более удовлетворительную конструкцию. Очевидно, при оптимальном проектировании сухих трансформаторов более приемлемой оказывается вторая точка зрения.
Уз 9 Заказ 12785
117
Нами для определения теплового потока с открытой поверхности обмотки й с поверхности вентиляционного канала взяты зависимости, рекомендованные в [2]:
где 6 — ширина канала, мм; /г — высота канала, мм.
Любая конструкция, в том числе и трансформатор, должна отвечать определенным техническим требованиям. При проектировании трансформатора будем считать заданными следующие величины:
1) мощность трансформатора 5;
2) напряжение низшей стороны и и
3) напряжение высшей стороны £/2;
4) схему соединения обмоток;
5) допустимый перегрев для данного класса изоляции;
6) изоляционные расстояния и размеры изоляционных конструкций;
7) потери в меди Як.3. и потери в стали Рх.х. для оптимального варианта не должны превышать значений, соответствующих ГОСТу.
В процессе расчета необходимо определить оптимальные значения
размеров проводников Х\ Хч, у\, у2>
плотностей токов Д1 и Дг,
диаметра стержня
высоты обмотки Л,
индукции В,
перегрева обмотки ©,
напряжения к.з. £/к
и выбрать материал и конструктивное выполнение обмотки. Так как задача проектирования трансформатора, как и всякая оптимизационная задача, имеет неизвестных больше, чем число ограничивающих уравнений, часть из них задается до начала расчета, часть принимается за независимые переменные.
Исходя из практики трансформаторостроения, на первом этапе расчета из числа неизвестных величин можно исключить индукцию В и конструктивное выполнение обмотки, в частности для многослойной обмотки — число параллельных проводников в обмотке, число слоев и количество охлаждающих каналов. При необходимости остается возможность дискретного варьирования этими величинами.
В качестве независимых переменных принимаем диаметр сердечника ё, расчетную температуру перегрева 0, напряжение к.з. ик .
При, составлении ограничивающих уравнений и алгоритма расчета введены допущения:
1. Неучет намагничивающего тока, ир~ик .
2. При расчете не учтены допустимые механические напряжения. В литературе достаточно полно обосновано это допущение, например,
3. Добавочные потери учитываются постоянными коэффициентами, а не переменными, вследствие значительного и неоправданно возрастающего усложнения расчета.
4. Не учтен теплообмен между обмотками и между обмотками и магнитопроводом.
5. Не учтена дискретность размеров и сечений проводов.
¿7=9,80 1>1;
[3].
Критерием оптимальности варианта выбран минимум целевой функции расчетных затрат Зр =!((!, ©, ик). Согласно [4] функция расчетных затрат имеет вид
Зр—3т+3с+3„+3н, где
Зт —расчетная цена трансформатора с амортизационными отчислениями;
Зс — расчетная стоимость добавочной мощности, необходимая для покрытия потерь в трансформаторе в период максимальной нагрузки в системе;
Зл — расчетная стоимость потерь электроэнергии в трансформаторе;
Зн —затраты на компенсации реактивной мощности.
В основу нахождения критерия оптимальности положено решение уравнения
Л=/(с?, ©, ик).
Для ¿о, ©о и икв находится Н0. При известных й, ©, 11к и к достаточно просто определяются все остальные параметры и характеристики трансформатора: числа витков, размеры и сечения проводов обмотки, плотности токов, потери в меди и стали, веса меди и стали, значения целевых :функций потерь, веса активных материалов и расчетных затрат. Все вышеназванные характеристики и параметры выдаются на печать. Далее путем дискретного варьирования возможных значений диаметра йу температуры перегрева 0 и напряжения к.з. 11К
йъ^й^-йтах ;
^коик иктах
определяется область возможных конструктивных выполнений трансформатора. Выбор оптимального варианта производится проектировщиком путем графического или табличного нахождения минимума целевой функции расчетных затрат.
Предложенный алгоритм расчета удобен на стадии эскизного проектирования, но несколько громоздок по обработке машинного счета.
С использованием данного метода был произведен расчет сухих трансформаторов III габарита мощностью 1000 и 1600 кВА. Так как выводы по результатам исследований трансформаторов обеих мощностей практически совпадают, то для удобства все графики в дальнейшем будут приведены лишь для трансформатора мощностью 1000 кВА. В процессе расчета и исследования для трансформатора каждой мощности рассматривались два наиболее конкурентоспособных варианта:
1) обмотка низшего напряжения выполнена из голой шины;
2) обмотка низшего напряжения выполнена из металлической ленты, причем ширина ленты равна высоте обмотки; в дальнейшем эту обмотку будем называть рулонной.
Обмотка высшего напряжения для обеих вариантов — многослойная из прямоугольного провода.
Как уже указывалось выше, критерием оптимальности выбран минимум целевой функции расчетных затрат. На рис. 1 представлены графики расчетных затрат в функции от температуры Зр =/(0) при оптимальных значениях диаметра стержня магнитопровода к—¿/опт и по-
И9
Рис. 1. Влияние экономических коэффициентов на положение и величину минимума целевой функции Зр=/:(9) при й = й опт
и £/к = 5,5%.
Рис. 2. Изменение целевой функции расчетных затрат для различного материала обмоток при Ук =5,5% и й = (1 опт.
стоянном значении напряжения к.з.- £/к =5,5% и при различных экономических коэффициентах |3 и Кт *• Обмотка низшего напряжения выполнена по варианту 1, обмоточный материал — медь. Оказалось, что при такой постановке вопроса очень важно знать действительное зна-чение этих коэффициентов. Из графиков следует, что экономические коэффициенты влияют не тЬлько на абсолютную величину, а что самое главное — на положение минимума целевой функции расчетных затрат. При изменении р от 2 до 3,5 и Кт от 0,7 до 1,1 диапазон рабочих оптимальных температур перегрева меняется от 60 до 110°. С увеличением экономических коэффициентов минимум целевой функции смещается. в область более высоких температур. Следовательно, при большей стоимости трансформатора целесообразно увеличивать рабочую темпера-ТУРУ (плотности токов), при малой стоимости активных материалов надо выбирать режим работы с малыми плотностями токов, так как в этом случае стоимость потерь электроэнергии начинает превалировать над стоимостью конструкции.
С точки зрения экономичности сухого трансформатора представляет интерес и такой вопрос, что применять в качестве обмоточного материала — медь, алюминий или использовать их комбинированно, т. е. обмотку низшего напряжения выполнять из меди, а обмотку высшего напряжения — из алюминия. В ряде литературных источников сообщается, что алюминий как обмоточный материал вполне конкурентоспособен меди. Принципиально новых выводов нами не получено. Как следует из рис. 2, для трансформатора мощностью 1000 кВА более выгодной оказалась конструкция с обмотками из алюминия, затем с комбинированными обмотками и, наконец, с обмотками из меди. Результаты не меняются при различном конструктивном выполнении обмоток. Вполне вероятно, что этот вывод окажется справедливым и для всей серии сухих трансформаторов данного габарита.
При сравнении двух типов обмотки по варианту 1 и по варианту 2 второй тип обмотки оказался предпочтительнее и по расчетным затратам, примерно на 5% меньшим, и по тепловому режиму (рулонный материал исключает возможность возникновения местных перегревов).
Выводы
1. Предложенная методика может быть использована на стадии эскизного проектирования для расчета сухих трансформаторов новых серий.
2. При проектировании технически рациональных и экономичных трансформаторов необходимо знать действительные значения экономических коэффициентов р и Кт в целевой функции расчетных затрат и наиболее вероятную нагрузку трансформатора.
3. Алюминий как обмоточный материал для трансформаторов данного габарита предпочтительнее меди за исключением специфичных и особых случаев.
4. Весьма перспективен новый тип обмотки из рулонной меди (алюминия) и заслуживает более тщательного рассмотрения.
* р — отношение удельной расчетной стоимости меди к стоимости стали в изделии;
Дт — расчетная удельная цена трансформатора в руб/кг.
ЛИТЕРАТУРА
1. Л. М. Шницер. Тепловой процесс в сухом трансформаторе. «Электричество», 1948, № 4.
2. 3. Н. Кязим-3 а де, Н. Ю. Рустам о в. Методика расчета сухого трансформатора на нагрев при установившемся режиме. «Электротехника», 1969, № 3.
3. К. К. Балашов. Трансформаторы с алюминиевыми обмотками. «Вестник электротехнической промышленности», 1958, № 5.
4. И. Д. К у т я в и н. К определению оптимальных размеров трехфазных двухоб-моточных трансформаторов. Известия ТПИ, т. 130, Томск, изд-во ТГУ, 1964.