УДК 622.331:53.043
Ефимова Е.С.
Ефимова Елена Сергеевна, студентка 3-го курса специальности «Горное дело» Тверского государственного технического университета. 170023, Тверь, ул. Академическая, 12.
Пухова О.В.
Пухова Ольга Владимировна, к. т. н., доцент кафедры геотехнологии и торфяного производства Тверского государственного технического университета. 170023, Тверь, ул. Академическая, 12. [email protected]
ИЗМЕНЕНИЕ ВОДНОФИЗИЧЕСКИХ СВОЙСТВ ТОРФЯНОГО СЫРЬЯ ПРИ МЕХАНИЧЕСКОЙ ПЕРЕРАБОТКЕ И СУШКЕ
Аннотация. Дано представление об основном показателе, характеризующем исходное состояние торфа. Представлены результаты экспериментов по механической переработке торфа, в процессе которой изменяются не только структурно-механические, но и физико-химические свойства торфяной продукции. Показано изменение величины полной влагоемкости формованного торфа при его обезвоживании при различных режимах сушки (конвективном, радиационно-конвективном) и различной дисперсности.
Ключевые слова: торф, сушка торфа, переработка торфа.
Efimova E.S.
Efimova Elena S., 3rd year student majoring «Mining» Tver State Technical University. 170023, Tver, Acade-micheskaya, 12.
Pukhova O.V.
Pukhova Olga V., Ph.D., Associate Professor, Department of Geotechnology and peat production Tver State Technical University. 170023, Tver, Academicheskaya, 12. [email protected]
CHANGE WATER-PHYSICAL PROPERTIES OF PEAT RAW MATERIALS IN MECHANICAL PROCESSING AND DRYING
Abstract. Given the idea of the main indicators characterizing the initial state of peat. The experimental results of the mechanical processing of peat, during which changed not only the structural and mechanical, but the physico-chemical properties of peat production. Shows the change in the total water capacity molded peat when dehydration at different modes of drying (convective, radiative-convective) and different particle sizes.
Key words: peat, drying of peat, peat processing.
Первостепенное место при добыче торфяного сырья занимают процессы, связанные с удалением значительного количества воды на различных стадиях производства и его диспергированием [1]. Способность торфа поглощать влагу связана с содержанием в нем волокнистых грубодисперсных частиц, которые имеют крупные полости, способные поглощать и удерживать большое количество воды. Диспергирование уменьшает объем таких полостей.
Типовая схема организации добычи фрезерного торфа с применением бункерных уборочных машин с механическим принципом сбора со складированием торфяного сырья в укрупненных штабелях вне торфяного месторождения позволяет организовать круглогодичную поставку торфяного сырья потребителю [2]. Однако применение скребкового ковшового элеватора приводит к изменению крупности торфяных частиц и засоренности готовой продукции.
Таблица. Содержание фракций торфяного сырья
Table. Content of fractions of peat materials
Место отбора проб Фракционный состав от общей массы, %
50-10 мм 10-3 мм менее 3 мм
В расстиле перед уборкой 50-60 25-30 15-20
После уборки механическим способом 45-55 20-35 20-25
После уборки пневматическим способом 40-50 20-35 25-30
Анализ данных табл. показывает, что как при пневматической, так и при механической уборке происходит измельчение частиц и возрастание содержания мелких фракций.
При нахождении торфа в неосушенной торфяной залежи вода в нем представлена категориями воды слабой связи, механического и осмотического удерживания. Максимальное количество воды, отнесенное к массе сухого вещества, которое может удерживаться в торфе за счет сил различной природы (молекулярных, осмотических и др.), определяет его полную влагоемкость Wп. Для торфа одного и того же вида и степени разложения, но с различными значениями кислотности значения
Wп неодинаковы, так как сказывается возраст торфяного месторождения. При проведении экспериментов с торфяным моховым сырьем верхового типа степенью разложению 10% и кислотностью pH 3,05 значение полной вла-гоемкости равно 18,5, а при pH 2,9 Wп = 18,8 и при pH 2,85 Wп = 19,9, то есть с понижением pH величина Wп растет.
Проведены лабораторные исследования по изучению влияния механической переработки на водные свойства торфяного сырья верхового торфа различной степенью разложения.
Анализ экспериментальных данных (рис. 1) показывает, что диспергирование влияет на значения полной влагоемкости, и эта зависимость носит нелинейный характер. До 5 = 350 м2/кг значения полной влаго-емкости уменьшаются незначительно за счет частичного измельчения волокнистых грубодисперсных фракций.
Рис. 1. Зависимость изменения полной влагоемкости торфа Wn от степени его переработки S (м2/кг) верхового магелланикум торфа степенью разложения R = 20 (1), 25 (2),
30 (3), 35 (4), 45 (5), 50 (6)%
Fig. 1. Dependence of the total water capacity of peat Wp on the degree of processing of S (m2/kg) oligotriphic peat (magellanicum) degree of decomposition R = 20 (1), 25 (2), 30 (3), 35 (4), 45 (5), 50 (6)%
Механическая переработка до 5 = 500 м2/кг приводит к резкому снижению полной влаго-емкости из-за практически полного разрушения грубодисперсных фракций. На третьем участке 5 >500 м2/кг значения величины полной влагоемкости изменяются незначительно.
Несколько иной характер исследуемой зависимости наблюдается для торфа высокой степени разложения (рис. 1, кривые 5 и 6). Можно выделить только два участка, на которых происходит вначале резкое снижение, а затем незначительное изменение величины полной влагоемкости торфа в зависимости от его степени дисперсности. Изменение водно-физических свойств торфа происходит уже на уровне его коллоидной фракции. Следовательно, изменение полной влагоемкости должно приводить и к варьированию характеристик структурообразования.
Кривая 6 получена для верхового торфа степенью разложения 50%. До 5 «500 м2/кг кривая плавно снижается, а затем происходит при незначительном изменении дисперсности заметное уменьшение полной влагоемкости. Водно-физические свойства торфа изменяются на уровне его коллоидной фракции. Для того чтобы получить хотя бы небольшое приращение дисперсности, исследуемый материал неоднократно пропускали через шнековый механизм, снабженный дополнительными ножами и решетками.
Многократная переработка торфяного сырья приводит к его механическому уплотнению и уменьшению содержания волокнистых грубодисперсных фракций и значительному увеличению количества тонкодисперсных. Высвобождается большое количество слабосвязанной влаги, превращая ее в капиллярную. Это увеличивает пластичность и улучшает деформационные свойства торфяной массы. В работе [3] показано, что механическое воздействие в аттриторном механизме приводит не только к изменению структуры торфа, но и вызывает изменение его группового и химического состава. Так, при диспергировании торфа сокращается содержание трудногидролизуемых соединений, что свидетельствует о механодеструкции целлюлозных молекул, и повышается содержание редуцирующих веществ в составе легкогидролизуемой фракции. Выход щелочно-растворимых веществ увеличивается на 35...70%, а гуминовых кислот - на 75...130%.
Экспериментально установлено, что при активном механическом воздействии шнеко-
вым механизмом на торф возникают свободные ассоциаты при разрушении более крупных макроагрегатов и агрегатов, из которых состоит торф [4]. Они имеют большее количество свободных функциональных групп, чем до диспергирования.
Существенное влияние на значение полной влагоемкости оказывают необратимые процессы, протекающие в коллоидно-высокомолекулярной составляющей торфа при его сушке. Из верхового торфа R = 25% с начальной влагой ~80% и дисперсностью 362, 460, 550 м2/кг формовали методом экструзии цилиндрические образцы с начальным размером 3 см и длиной 4,5 см. На рис. 2 показано изменение величины полной влагоемкости формованного торфа в зависимости от степени обезвоживания материала, обусловленное структурными колебаниями. Процесс сушки начинается с набухшего состояния торфа, при котором ассоциаты находятся в объемно-растянутом состоянии.
Рис. 2. Изменение величины полной влагоемкости Wn верхового формованного торфа R = 25% при его обезвоживании в конвективном (1, 2, 3), радиационно-конвективном (1', 2', 3') режимах сушки и различной дисперсности:
362 (1, 1'), 460 (2, 2'), 550 (3, 3') м2/кг
Fig. 2. Change in the total water capacity Wp oligotrophic peat molded R = 25% when in the convective dehydration (1, 2, 3), radiative-convective (1', 2', 3') and drying modes with different particle: 362 (1, 1'), 460 (2, 2'), 550 (3, 3') m2/kg
Из анализа рис. 2 следует, что процесс сушки с самого начала необратимо изменяет структуру торфяных образцов. Особенно режим сушки влияет на водно-физические свойства торфа. При более жестком режиме обезвоживания степень необратимости водопоглотительных свойств торфа выше. Так, например, для торфа с S =362 м2/кг начальная величина полной влагоемкости равнялась 13,5 кг/кг. После сушки торфяных образцов до влагосодержа-ния 1 кг/кг при мягком режиме Wn составила 9 кг/кг, а жестком - 8,2 кг/кг. В этом состоянии функциональные полярные группы полностью гидратированы, а полости между макромолекулами и их агрегатами заполнены влагой. При удалении ее происходит усадка торфа, растет плотность и снижается его проницаемость, что осложняет перемещение молекул влаги из ассоциатов. Поэтому наблюдается своеобразное удерживание молекул влаги в ассо-циатах, что требует дополнительных затрат энергии на их удаление из торфа. Молекула воды перемещается там, где возникают свободные полости, соизмеримые или большего их размера. Число молекулярных связей между элементами структуры торфа возрастает при усадке и снижается при набухании.
Таким образом, из проведенных экспериментов следует, что механическая переработка
торфяного сырья изменяет не только структурно-механические, но и физико-химические его свойства. Величину полной влагоемкости можно использовать в качестве одного из основных показателей, определяющих совокупность различных характеристик торфяного сырья.
Библиографический список
1. Лиштван И.И. Физико-химические основы технологии торфяного производства. Мн.: Наука и техника, 1983. 232 с.
2. Яблонев А.Л., Пухова О.В. Особенности транспорта торфа к конечному потребителю в г. Твери // Горный информационноаналитический бюллетень (научно-технический журнал). 2010. № 1. С. 34-35.
3. Кашинская ТЯ. Изменение физико-химических свойств торфа при механическом воздействии / ТЯ. Кашинская, А.П. Гаврильчик и др. // Органическое вещество торфа: Тез. докл. Международного симпозиума. Мн.: ИПИПРЭ, 1995. С. 15-16.
4. Пухова О.В. Сравнительный анализ процессов сушки различных видов торфяной продукции / О.В. Пухова, Е.Ю. Исаева. Горный информационно-аналитический бюллетень. М.: МГГУ 2006. Т. 11. С. 225-230.