Научная статья на тему 'История создания насосов и механика жидкости (посвящается столетию кафедры Э10 МГТУ имени Н. Э. Баумана)'

История создания насосов и механика жидкости (посвящается столетию кафедры Э10 МГТУ имени Н. Э. Баумана) Текст научной статьи по специальности «Механика и машиностроение»

CC BY
1642
223
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЦЕНТРОБЕЖНЫЙ НАСОС / ОСЕВОЙ НАСОС / ГИДРОМЕХАНИКА / ИСТОРИЯ НАУКИ И ТЕХНИКИ / ПОРШНЕВОЙ НАСОС / РОТОРНЫЙ НАСОС / НАСОСЫ ТРЕНИЯ

Аннотация научной статьи по механике и машиностроению, автор научной работы — Шейпак А. А.

Статья посвящена истории создания основных типов насосов в связи с развитием механики жидкости. Описан логический путь от первых простейших объемных и динамических насосов, созданных по подсказке природы до современных машин, оптимальные размеры которых определяются законами механики жидкости. Рассмотрена история разработки основных объемных насосов: поршневых и роторных. Динамические насосы центробежные, осевые и дисковые потребовали для своего развития большего применения приемов научного познания и научного творческого мышления. В статье также представлен ряд технических решений, сделанных на уровне изобретений, что является важным для будущих специалистов в области гидравлических машин и гидропневмоагрегатов. Знание истории развития науки и техники позволяет развивать приемы научного познания и научного творческого мышления

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «История создания насосов и механика жидкости (посвящается столетию кафедры Э10 МГТУ имени Н. Э. Баумана)»

НАУЧНОЕ ИЗДАНИЕ МГТУ ИМ. И. Э. БАУМАНА

НАУКА и ОБРАЗОВАНИЕ

Эл № ФС77 - 48211. ISSN 1994-0408

приложение

История создания насосов и механика жидкости

(посвящается столетию кафедры Э10

МГТУ имени Н.Э. Баумана)

# 05, май 2015

DOI: 10.7463/0515.0776292

Шейпак А. А.1*

УДК: 621.398-582

^Россия, ФГБОУ ВПО «МГИУ» sheypak. anat oly ffiy andex.ni

Первые машины и устройства для подачи воды

Первым устройством для переноса (подачи) воды было, по всей вероятности, кожаное или деревянное ведро. Или, может быть, - корзина из прутьев, обмазанная глиной. В древнем Египте или Месопотамии придумали колодезный журавль с противовесом (на востоке - шадуф). Люди, стоящие гуськом и передающие друг другу ведра, могли создать поток воды. Другой древний способ создания потока воды сейчас применяется в Средней Азии, когда группа людей подает воду по каналам (арыкам) с помощью лопат. А машина для создания потока жидкой среды называется на русском языке насосом. Этот термин придумал великий М.В. Ломоносов, хотя еще долго использовался термин «помпа».

Неизвестно имя гениального изобретателя, который догадался прикрепить ведра к периферийной части деревянного колеса, которое могли вращать люди (чаще всего рабы) или животные. Эта машина была выдающимся сооружением и применялась с глубокой древности почти до наших дней (рис. 1, а). Водоподъемные колеса могли подавать до 10 кубических метров воды в час на высоту 3 -4 метра.

Следующим шагом было создание так называемой нории (исп. norria от арабск. на-ора водокачка), которая представляла собой веревку или цепь с ковшами (рис. 1, б). Затем кто-то заметил, что если норию пропустить через вертикальный или наклонный желоб с водой, то вместо ковшей или ведер можно использовать диски или шары: поток воды при этом можно было сделать более равномерным при меньшем усилии. Так появился второй основной тип насоса - динамический (рис. 2, а). Отметим, что когда человек гонит лопатой или доской воду по канаве, он тоже использует динамический принцип работы гид-

равлической машины. С помощью норий в Древнем Египте подавали воду из колодцев глубиною до 100 метров. Исследователи древнего Китая полагают, что неизвестные мастера провели в этой стране одно из первых исследований на оптимальность (по максимальной подаче воды или по минимальной затраченной работе) и установили, что оптимальный угол наклона такого насоса равен 40 градусам.

а) б)

Рис. 1. Ступальный привод для подачи воды (а) и нориа с емкостями (б)

Винт Архимеда

Очень давно люди стали использовать еще одну машину для подачи воды: винт или улитку Архимеда (Archimedes, 287-212 до н.э.) (рис. 2, б). Правда, винтовая линия и винтовая поверхность были известны до Архимеда, их открытие связывают с именем Архита Тарентского (Archytas of Tarentum, 428-365 до н.э.) - математика школы Пифагора. Известно также, что Архимед ездил в Египет, в Александрию и там знакомился с достижениями науки и техники эллинизма. По всей вероятности, Архимед усовершенствовал уже известную машину, но сделал это столь искусно, что именно он считается изобретателем водоподъемного винта. Действие водоподъемного винта основано на свойстве винтовой поверхности, которая противодействует силе тяжести. Винт устанавливается в деревянной трубе (обшивке) наклонно к плоскости горизонта под углом, меньшим угла наклона винтовой линии. При этом условии забранная порция воды будет перемещаться по винтовой поверхности снизу вверх. Нетрудно заметить, что описанная улитка (кохлея) аналогична цепочке ведер. Сохранилась помпейская фреска, на которой изображен архимедов винт с приводом от человека, переступающего ногами по обшивке машины.

а) б)

Рис. 2. Нориа с дисками (а) и винт Архимеда (б)

Только в 20-х годах прошлогого столетия демонтировали архимедов винт для откачки соляного раствора в Крыму. Архимедов винт диаметром 4,11 метра использовался на Чикагской магистрали еще в начале XX века, при частоте вращения 52 об/мин он подавал 1,73 кубических метров воды в секунду на высоту 10,6 метров. Коэффициент быстроходности этой машины равен 42. Это на порядок меньше, чем рекомендуется для осевых динамических насосов.

Очень удобным оказался водоподъемный винт для откачки воды из рудников. Винты очень хорошо вписывались в наклонные выработки и могли практически полностью вывести всю воду на поверхность. Преимущества архимедова винта обеспечили ему широкое применение в течение многих столетий для различного применения. В частности он применялся в первых водопроводах Европы: в немецком городе Аугсбурге, в польском городе Фромберге (здесь все работы проводились под руководством великого астронома Коперника). По конструкции они часто отличались от античных. Появились многоступенчатые винты, расположенные по вертикали с промежуточными резервуарами. Это позволило уменьшить размеры по длине, сделать установку более компактной, удешевить изготовление винта. Далее винт стали изготавливать из спиральной трубы, надетой на деревянный вал.

Поршневые насосы

Выдающийся инженер античности Герон из Александрии (Hero (Heron) of Alexandria), умерший приблизительно в 70 году до н.э., оставил после себя трактаты, в которых описал много различных механизмов и машин. Он первым упомянул о поршневом насосе, изобретенным его учителем. Ктесибием (Ctesibius), который жил примерно в 100 году до н.э. С подобной машиной знакомы сейчас все велосипедисты. Ее основными деталями являются цилиндр и входящий в него с небольшим зазором поршень, который вытесняет из цилиндра воду или воздух. Очевидно, что подобное устройство следует отнести к объемным машинам, причем для своего функционирования оно должно иметь еще один узел: клапан.

Клапан - это устройство, которое может изменять проходную площадь, пропускающую поток жидкости или газа под воздействием рабочей среды. Если проходное сечение изменяется под воздействием внешних сил, то устройство в России называется дросселем, краном, задвижкой. Правда и в этом случае иногда используют термин клапан, оставляя за собственно клапаном дополнительное пояснение: Например, самодействующий клапан.

Кроме клапанов насос Ктесибия имел запорное устройство в виде трубы с двумя отверстиями, которая могла перекрывать выходные отверстия цилиндров или соединять их с выходной конической трубой для создания сильной струи воды. Насос Ктесибия столь совершенен, что безусловно его нельзя считать первой машиной подобного типа. Это ясно и из описания Герона, в котором говорится о том, что пожарный насос изготавливается подобно колодезным (рис. 3, а).

Самый простой поршневой насос с одним клапаном до сих пор применяется в водоснабжении, в том числе на садовых участках. В поршне имеется отверстие, закрытое пластиной, которая может поворачиваться вокруг оси, открывая проход воде при движении поршня вниз. При движении поршня вверх клапан закрывается весом воды. Поршень своей верхней поверхностью вытесняет воду в выходную трубу, а цилиндр заполняется водой вплоть до нижней поверхности поршня под действием атмосферного давления (рис. 3, б).

В античные времена принцип действия поршневого насоса объясняли не так. По мнению одного из первых ученых Аристотеля (Aristotle, 384-322 до н.э.) "природа питает отвращение к пустоте", поэтому вода следует за движущимся поршнем. Неправильное объяснение принципа действия насоса до некоторого времени не мешало их производству. Применялись они главным образом не в водоснабжении, а для тушения пожаров. Такие насосы изготавливались из бронзы, имели всасывающие и нагнетательные клапаны и два цилиндра: когда один цилиндр засасывал воду, другой подавал ее через нагнетательный клапан и сужающийся насадок с большой скоростью. Кроме описаний сохранились остатки поршневых насосов древнеримского периода. Так, археологические раскопки на территории нынешней Испании позволили найти 13 деревянных и 8 бронзовых поршневых насосов. Поршневые насосы различной конструкции в зависимости от назначения производятся уже более 2000 лет и продолжают оставаться одной из самых распространенных энергетических машин и настоящее время.

а) б)

Рис. 3. Насос Ктесибия (а) всасывающий насос Аристотеля (б)

Очевидно, что эффективность работы поршневого насоса определяется в первую очередь величиной зазора между цилиндром и поршнем. При большом зазоре вода будет идти не только в выпускную трубу, но и во впускную, создавая обратный поток или утечки. Поэтому в насосах стали использовать для уплотнения кожаную манжету. Если манжету установить с натягом, то придется затрачивать дополнительную мощность для привода насоса. Наличие герметичных клапанов дало насосу возможность подавать воду на большую высоту. Теоретически герметичный объемный насос может создать на выходе давление любой величины (напомним, что давление - это сила сжатия, приходящаяся на единицу площади). Давление можно измерять высотой подъема жидкости. Так атмосферное давление эквивалентно примерно 10 метрам воды или 750 миллиметрам ртути. Максимальное давление, полученное с помощью поршневого насоса, достигало 30000 атмосфер. Такой насос мог бы поднять воду в фонтане на 300 километров.

Знаменитый фонтан в Женеве (Швейцария) с располагаемой мощностью в 1360 л. с. подает воду с уровня озера на высоту 140 метров (скорость около 200 км/час) с величиной подачи свыше 5000 л/с. (рис. 4).

Рис. 4. Женевский фонтан. Высота - 140 м, скорость струи - 200км/ч

На жителей Лондона большое впечатление производил в XVI веке насос голландского инженера Петера Мориса (Peter Morice), подававший при испытании струю воды выше шпиля церкви святого Магнуса вблизи одного из лондонских мостов. Привод насоса осуществлялся от водяного колеса, установленного на пароме в проеме моста. Морис получил пожизненное право беспошлинно использовать часть пространства на мосту.

Во времена Средневековья поршневой насос стал основным средством для подачи воды и откачки ее из шахт. Тогда обратили внимание на то, что вода не поднимается за поршнем, если входная труба имеет длину более 8-9 метров. Это позволило великому ученому, создателю современной физики, Галилео Галилею (Galileo Galilei, 1564 -1642) высказать такой афоризм: природа боятся пустоты, но только до определенного предела. Однако ему не удалось объяснить непонятное явление. Эту задачу решили позднее его ученики и последователи. Они убедительно доказали, что в обычных условиях вода не может находится при величине абсолютного давления ниже атмосферного, эквивалентного 10 метрам водяного столба или 760 мм ртутного столба. Интересно, что великий Паскаль, как истинный француз, использовал для измерения атмосферного давления и красное вино: у стены его дома некоторое время находился барометр, показывающий величину давления по высоте этого традиционного для его страны напитка (порядка 14 метров).

Отметим, что трехцилиндровый насос имеет более равномерную подачу, чем четырехцилиндровый. Создано много разновидностей возвратно-поступательных насосов, одинаковых по принципу действия с поршневыми: плунжерный, мембранный....

Очень интересную конструкцию имеет плунжерно-мембранный насос для подачи вредных жидкостей (рис. 5, а). Рабочая полость ограничена цилиндрическим корпусом с клапанами и мембраной. Нейтральная жидкость вытесняется через отверстия, расположенные равномерно в цилиндре плунжерного насоса при прямом ходе и поступает обратно при увеличении объема.

Первые роторные насосы

Человек при вращательном движении механизма может развить мощность на 35 процентов больше, чем при возвратно-поступательном: в среднем 66 и 49 ватт, соответственно. Поэтому раньше или позже должен был бы найтись изобретатель насоса с вращательным движением основных рабочих деталей (профессионалы называют их рабочими органами). Первое описание таких машин среди многих других появилось в книге Аго-стино Рамелли (Ramelli, 1530-1560), инженера христианнейшего короля Франции и Польши (Генрих III - сын Генриха II и знаменитой Екатерины Медичи). Книга вышла в 1588 году в Париже на средства автора. Автор получил образование "в математике и высших науках", к которым относилось тогда и инженерное дело, в школе Леонардо да Винчи под руководством одного из его учеников - маркиза Мариньяно.

Рассмотрим только две конструкции роторных насосов из книги Рамелли, которые почти без изменения применяются и в настоящее время. Первая - пластинчатый насос. Это цилиндрический ротор с четырьмя вырезами, установленный концентрично в цилиндрическом корпусе, погруженном в воду. В вырезы ротора вставлены пластины, которые при вращении прижимаются под действием центробежной силы к внутренней цилиндрической поверхности корпуса. Таким образом, в корпусе образуются серповидные камеры (рабочие камеры). При вращении ротора вблизи входного отверстия объем рабочей камеры увеличивается и она заполняется жидкостью. Затем камера замыкается, становясь за-

крытой, до тех пор, пока не подойдет к выходному отверстию. После этого объем рабочей камеры уменьшается, и вода из нее вытесняется через выходное отверстие в выходную трубу. Очевидно, что по принципу действия рассмотренный насос относится к объемным, пластины аналогичны поршню, а герметичность обеспечивается фазой замыкания, а не клапанами. Такие насосы имеют меньшую, чем у поршневых насосов, величину напора, но при равных подачах обладают преимуществом по габаритам и массе. Судя по рисунку пластинчатые насосы изготавливались из металла (рис. 5, б). Пластинчатые насосы применяются в настоящее время главным образом для подачи масла в станкостроении, авиации, системах гидроавтоматики.

Другой тип роторного насоса Рамелли с замыкателем и ротором из дерева, имевшим несколько выступов, устанавливался в корпус с внутренней цилиндрической поверхностью концентрично с малым зазором. Замыкатель имел возможность возвратно-поступательного движения и под действием своего веса прижимался к ротору, создавая рабочую камеру. Машины с замыкателем используются и в наше время и имеют различное конструктивное исполнение в зависимости от области применения (рис. 5, в). Так, известны паровая машина Юля (1836 год) и паровая машина Холла (1869 год), которые аналогичны описанному насосу, но имеют на роторе только один выступ. По такой же схеме выполнен вакуумный насос с катящимся ротором. Одно из последних изобретений в этой области - роторная машина с замыкателем, которая может быть и насосом и двигателем внутреннего сгорания.

а) б) в)

Рис. 5. Мембранно-поршневой насос (а), роторный насос Рамелли (б), насос Рамелли с замыкателем (в)

Следующий важный шаг был сделан Иоганном Лейрехоном (Iogann Leirechon, 15711670), ректором иезуитского колледжа в городе Бар ле Дюк и духовником герцога Лотарингии. Лейрехон является автором книги "Математические задачи" (первое издание -1624 год), которая многократно переиздавалась книготорговцами Франции и Германии из-за большого спроса. В задаче 88 "О водяных насосах, гидравлических машинах и других опытах с водой и подобными жидкостями" описаны все известные машины и одна новая, явившаяся предтечей многих современных. Дадим слово автору. "Эта машина с зубчаты-

ми колесами, которые заключены в овальном кожухе так, что зубцы одного колеса захватывают зубцы другого, и так точно, что ни вода, ни воздух - ни в середине, ни по сторонам - не могут проникнуть в овальный кожух, ибо колеса так плотно прилегают к стенкам, что не остается свободного пространства. На каждом колесе имеется ось, так что его можно извне вращать рукояткой. Когда ручка колеса вращает его в одном направлении, то вследствие этого другое колесо вращается в обратном направлении, и в результате этого движения вода из пространства между зубьями колес направляется в обе стороны так, что при вращении колес вода принуждена подняться по трубе и вытечь." Кажется, что этот текст переписывался в течение сотен лет из первоисточника в учебники и монографии различных авторов (рис. 6, а). А между тем, несмотря на то, что машину Лейрехона описывают путешественники, видевшие ее в действии в городе Майнце (юго-запад Германии), этот насос изобретается заново несколько раз и описывается как насос Брама или Леклерка, как воздуходувка Рутса. И в настоящее время, когда идея роторного объемного насоса известна, ежегодно появляются сотни новых изобретений, каждое из которых в той или иной мере улучшает известную машину.

Наиболее распространенным типом роторного насоса является в настоящее время шестеренный (рис. 6, б), который имеет своим прототипом машину, созданную Лейрехо-ном. Шестеренный насос - это зубчатый насос с рабочими органами в виде шестерен, обеспечивающих передачу момента с ведущего звена на ведомое. Различают шестеренные насосы с внешним и внутренним зацеплением.

Рис. 6. Зубчатый насос Лейрехона (а), современный шестеренный насос наружного зацепления (б)

Первое устройство, имевшее 10 деревянных искривленных лопастей, относится историками к V веку. Оно было найдено в заброшенном медном руднике в Сан-Доминго (Португалия) в 1772 году. Однако пока не создана достаточно достоверная гипотеза его использования.

а)

б)

Центробежные насосы

Подача воздуха в металлургические печи с древнейших времен была одной из важнейших задач техники. Поэтому не удивительно, что в средние века появилась воздуходувная машина «Неssians», изобретенная неизвестным мастером. Она не получила широкого применения, так как требовала высокоскоростного привода, не существовавшего в то время. Воздуходувка имела ротор с четырьмя прямыми лопастями, ротор размещался с небольшим зазором в цилиндрическом корпусе. Входное отверстие размещалось в боковой стенке, через другую торцевую стенку выходил вал для вращения ротора, выходная труба постоянного сечения присоединилось к боковой поверхности корпуса. Подобную машину сейчас называют центробежным вентилятором или воздуходувкой в зависимости от величины напора.

Несколько эскизов центробежных машин сделано рукою великого Леонардо да Винчи. В 1657 г. описан насос Бланкино в виде двух вращающихся на общей раме наклонных трубок, нижние концы которых опущены в воду, а верхние расположены над круговым сосудом, куда стекает вода. Дени Папен (Denis Papin, 1647-1714), французский врач, физик и инженер, решил приспособить воздуходувку для подачи воды. После первой конструкции в 1689 году он усовершенствовал машину и в 1705 году создал насос, приближающийся по виду к современным. Папен применил спиральный кожух (рис. 7) с постепенно увеличивающимся по направлению вращения сечением. Нужно отметить, что и до Папена и после него изобретались заново и по всей вероятности независимо от него центробежные машины для подачи воздуха и воды менее удачные по конструкции. А одним из изобретателей был великий Леонард Эйлер (1707-1783), который впервые дал математический анализ рабочего процесса радиальной лопастной машины. В России первые центробежные машины для подачи воздуха и воды (под названием "водогон") были созданы инженером, генерал-лейтенантом А.А. Саблуковым (1783-1857) в 30-х годах XIX века.

Название центробежный насос означает, что жидкость в этой машине перемещается от центра к периферии. Основными силами являются не центробежные силы инерции, равнодействующая которых проходит через центр вращения и поэтому, имея нулевой мо-

Рис. 7. Центробежный насос Папена

мент, не может участвовать в силовом взаимодействии лопастей и жидкости, а Кориоли-совы силы инерции и силы, подобные подъемной силе крыла самолета. По всей вероятности, изобретатели первых центробежных машин не могли правильно понимать все особенности рабочего процесса своих созданий. Профессор Ф.А.Брикс первым выступил за замену термина «центробежный насос» на «лопастной».

В 1818 году на основе разработок Папена американская насосная фабрика в штате Массачусетс начала производство центробежных насосов с открытым рабочим колесом, имеющим прямолинейные лопасти. Через 13 лет, в 1831 году, фирма «Blake Co» в штате Коннектикут приступила к выпуску вертикальных насосов с полуоткрытым рабочим колесом. В 1838 году появляется статья Джона Комбса (Combs) о значении кривизны лопастей, которая явилась важным фактором в разработке лопастных насосов. Уже через год Уильям Эндрюс (Andrews) начинает выпуск насосов со спиральной камерой, а в 1846 году создает модель с закрытым рабочим колесом. Приблизительно в это же время Джон Эп-польд (Jhon Appold) (рис. 8, а) проводит серию специально поставленных экспериментов для определения наилучшей формы рабочего колеса.

В 1851 году, когда появились высокооборотные паровые машины и были разработаны основы гидромеханики, на Всемирной промышленной выставке в Лондоне было представлено несколько образцов центробежных насосов, которые могли заметно сузить область использования хорошо известных с древности поршневых насосов. Лучшая конструкция принадлежала Джону Эппольду (1800-1865). Его насос с двухсторонним колесом и лопатками, загнутыми назад по отношению к направлению вращения при подаче 94 литра в секунду и напоре 6 метров имел коэффициент полезного действия 68 процентов. Еще лучших результатов добился несколько лет спустя Джеймс Томсон (James Thomson, 18221892), брат знаменитого физика лорда Кельвина, за счет рационального профилирования спирального отвода с коническим выходным патрубком.

Центробежный насос проигрывает поршневому в области больших напоров. Поэтому один из участников Всемирной выставки в Лондоне Гвинн (Gwinn, 1800-1855) создал многоступенчатый насос (рис. 8, б). Выигрывая по габаритам, он все-таки уступал поршневому насосу по эффективности. Проблема была столь важной, что к ее решению привлекли одного из крупнейших гидромехаников Осборна Рейнольдса (Osborn Reynolds, 1842-1912), который получил патент на многоступенчатый насос с лопастными направляющими аппаратами между рабочими колесами. Такая конструкция применяется и в настоящее время (рис. 9).

Напор одноступенчатых центробежных насосов, серийно выпускаемых промышлен-

3 «-»

ностью, достигает 120 м, подача 30 м /с. Серийно выпускаемые многоступенчатые насосы развивают напор до 2000 м при подаче до 0,1 м /с. КПД в зависимости от конструктивного исполнения меняется в широких пределах: от 0,85 до 0,9 у крупных одноступенчатых насосов и 0,4 - 0,45 у высоконапорных многоступенчатых. Параметры центробежных насосов специального изготовления, как одноступенчатых, так и многоступенчатых, могут быть значительно выше.

Рис. 9. Многоступенчатый питательный насос Рейнольдса

Самый мощный насос в мире функционирует в американском штате Виргиния. Наружный диаметр его рабочего колеса составляет 6,5 метров, частота вращения - 257 оборотов в минуту, напор - 393 метра, мощность- 457 000 000 ватт. Самый маленький центробежный насос, известный автору, имел наружный диаметр 8 миллиметров.

Один из исследователей истории создания насосов, Авраам Энжеда (Abraham Engeda), отметил, что «насосы имеют длинную хронологию, но теория далека от практи-

ки». В наибольшей степени это относится к лопастным насосам»: центробежным и осевым. Создание эффективных энергетических машин этого типа невозможно только путем инженерной интуиции и накопления опытных данных. Потребовалось создание продуктивной теории, основанной на математических моделях различной степени сложности.

Пальму первенства традиционно отдают Леонардо да Винчи, однако его достижения в этой области стали широко известны уже после создания более полных теоретических исследований и достаточно эффективных машин. Некоторые приписывают приоритет Иоганну Иордану (Johan Iordan), человеку менее известному, который в 1680 году рассматривал принцип действия радиальных лопастных машин.

В 1754 году проблемами, связанными с лопастными насосами и турбинами, называемыми также турбомашинами, заинтересовался великий математик Леонард Эйлер (Leonahrd Euler). На основе общих законов механики он получил основное уравнение теории турбомашин, которое дало возможность создания математических моделей этих машин.

M = QM(V2ur2 - Vlurl)

В этом уравнении M момент взаимодействия потока жидкости и рабочего колеса, V2u и V1u окружные составляющие жидкости на выходном r2u и входном r1u радиусах рабочего колеса.

Публикация статьи Эйлера способствовала разработкам в первую очередь гидравлических турбин, но ее содержание было недостаточным для детального проектирования проточной части машин. Потребовалось множество экспериментальных исследований и математических моделей, например схеме бесконечного числа тонких лопаток, чтобы можно было провести расчет реальных конструкций.

Отметим, что в 1752 году (за два года до публикации статьи Эйлера) выдающийся английский инженер Джон Смитон (John Smeaton) разработал несколько моделей для изучения турбомашин. Именно он ввел мощность потока жидкости как эквивалент скорости подъема тяжести.

Важнейшим этапом в истории насосостроения явился выход в свет в 1924 году первого издания монографии Карла Пфлейдерера (Carl Pfleiderer, 1881-1953) по расчету и проектированию насосов. В дальнейшем эта книга многократно переиздавалась на нескольких языках, в том числе и на русском.

Безусловно, следует отметить плеяду насосников нашей страны, внесший неоценимый вклад в теорию и практику насосостроения и вентиляторостроения: И.И Куколевско-го, И.Н. Вознесенского, Г.Ф. Проскуры, А.Е. Караваева, А.А. Ломакина, В.И. Поликовско-го, С.С. Руднева, Б.В. Овсянникова. Одна из значительных монографий по насосотрое-нию, изданная в США, написана уроженцем России А.И. Степановым.

Осевые насосы

Если проектировать центробежный насос на большую величину напора или на малое число оборотов, то он получится с рабочим колесом в виде блина, насажанного на ось вращения. Если, наоборот, рассчитывать на очень большую подачу при малом напоре или

на высокую частоту вращения, то он будет вытягиваться вдоль оси и превратится постепенно в осевой с движением рабочего тела вдоль оси вращения. Такие машины сначала делали для подачи воздуха: вентиляторы, воздуходувки, компрессоры. Эффективность таких машин определяется не гениальными догадками конструкторов, а теорией, точным расчетом. Впервые эта теория, или по современной терминологии математическая модель, была создана профессором Харьковского политехнического института Г.Ф. Проскурой в двадцатых годах нашего века. Затем она бурно развивалась у нас, в европейских странах и в Америке.

Осевой насос состоит из ротора с валом относительно большого диаметра, на котором установлены лопасти (обычно от двух до восьми), похожие на короткие самолетным крылья. В роторе (рабочем колесе) механическая энергия двигателя при обтекании лопаток преобразуется в потенциальную и кинетическую энергию жидкости (газа). За рабочим колесом находится направляющий аппарат, который состоит из неподвижной системы лопастей. В направляющем аппарате кинетическая энергия жидкости преобразуется в потенциальную (рис. 10). Существуют две основные разновидности осевых насосов: с лопастями, закрепленными на втулке неподвижно, и поворотно-лопастные, имеющие механизм для изменения угла поворота лопастей в зависимости от режима работы. Сложность конструкции часто окупается выигрышем за счет более высокой экономичности. Осевые насосы часто выполняются многоступенчатыми, а осевые компрессоры почти всегда.

Осевые насосы применяются чаще всего на мощных тепловых электростанциях, насосных шлюзовых установках, магистральных каналах, ирригационных системах, в ракетных и авиационных двигателях.

Лопастные насосы, центробежные и осевые, имеют в своей конструкции конфузор-ные и, чаще, диффузорные каналы. В конфузорных каналах скорость течения жидкости увеличивается, а давление уменьшается. В диффузорных каналах, наоборот, скорость жидкости уменьшается, а давление увеличивается. Таким образом, жидкость в таких каналах перемещается против сил давления по инерции. На стенках каналов частицы жидкости вследствие вязкости имеют нулевую скорость, в середине канала максимальную. Образующийся вблизи стенки канала пограничный слой обусловливает эффективность преобразования энергии в гидравлических и газовых машинах. Так как вблизи стенки частицы жидкости обладают относительно низким значением кинетической энергии, они могут образовать обратный поток в направлении, противоположном направлению основного течения в средней части канала. Описанное явление носит название отрыва потока и связано с большими потерями механической энергии, расееваемой в виде тепла. Поэтому точные расчеты необычайно важны в процессе создания лопастных машин, особенно осевых насосов и компрессоров. Для заданных параметров машины инженеры путем расчета подбирают наилучшую форму лопастей и внутренних обводов корпуса. Коэффициент полезного действия насосов доводят до 90 процентов. Подача серийно выпускаемых оте-

«-» 3

чественной промышленностью осевых насосов колеблется от 0,5 до 45 м /с при напорах от 2,5 до 27 м. Таким образом, по сравнению с центробежными осевые насосы имеют значительно большую подачу, но меньший напор.

Рис. 10. Осевой насос

Насосы трения

Трудоемкость изготовления центробежных насосов определяется сложностью формы лопастей рабочего колеса, являющегося иногда поверхностями двоякой кривизны. Поэтому в 1905 году появилась конструкция радиальной машины без лопастей - дисковый насос и другие конструкции.

Возникновение концепции дискового насоса относится к 1850 году. Насос был изобретен в Соединенных Штатах Сарджентом (Sargent), который, взяв набор из 29 параллельных дисков, располагающихся с интервалом в несколько тысячных дюйма, поместил их в оболочку из металлической полосы и проделал в этой полосе множество отверстий, позволяющих жидкости проникать в конструкцию и выходить из нее. Это был первый пример насоса, действующего, исключительно, на основе принципа пограничного слоя и вязкостного сопротивления. Однако эффективность машины оставляла желать лучшего. Отметим, что в дальнейшем идея перфорированной оболочки в выходном сечении рабочего колеса нашла свое применение в разработках А.В. Бобкова и Б.В. Овсянникова для расширения области применения малоразмерных центробежных насосов.

Дальнейшее развитие идее дисковых машин (насосов и турбин) дал изобретатель Никола Тесла - американец сербского происхождения (1911 г.). Он убрал металлическую полосу, располагавшуюся вокруг дисков, улучшив тем самым производительность насоса, хотя он также настаивал на сохранении очень небольшого интервала между дисками, полагая, что если бы диски располагались слишком далеко друг от друга, то в определенный момент насос перестал бы качать. Это упорство в сохранении очень узкого промежутка между дисками значительно ограничивало возможности насоса.

Его машины состояли из большого числа кольцевых дисков, установленных перпендикулярно оси вращения. Рабочее тело, жидкое или газообразное, перемещалось за счет сил трения. В выполненных конструкциях число дисков колеблется от 18 до 174, расстоя-

ние между дисками от 0,1 до 0,5 миллиметров, а толщина - от 0,1 до 1,6 миллиметра. (рис. 11).

Рис. 11. Дисковый насос Тесла

Большой вклад в теорию и практику дисковых насосов с высокими антикавитацион-ными качествами сделали в России и СССР (С. Шенберг - 1915, В.И. Поликовский - 1954, Б.В. Овсянников - 1971).

Затем, в 70-е годы нашего столетия, Макс Гурт (Max Gurth) - изобретатель из южной Калифорнии вновь обратился к этой концепции. Он обнаружил, что интервал между дисками может быть увеличен вплоть до 500 мм и, вопреки ожиданиям занимающихся насосами экспертов-теоретиков, при этих расстояниях принцип пограничного слоя и вязкостного сопротивления все еще был применим. Более того, поток оставался свободным от пульсаций и ламинарным. Одним из наиболее интересных открытий изобретателя стало то, что в отличие от других насосов, дисковый насос стал более эффективен при повышенной вязкости, превосходя эффективность аналогичных по размеру центробежных насосов при вязкостях жидкости выше, чем 250 cPs.

Первые патенты были получены им в конце 70-х, а в 1982 году он создал Корпорацию Discflo, занявшуюся производством и сбытом насосов. В перекачивающем механизме, носящем название Discpac, первоначально использовались плоские диски. В 1988 году было разработано и запатентовано второе поколение механизма Discpac, получившее название "высоконапорная конструкция". Она оказалась лучше приспособлена, чем плоские диски, к работе с сильно абразивными жидкостями, увлекаемыми воздухом жидкостями и к работе в изменяющихся условиях перекачки - таких, как значительные или резкие изменения скорости потока. Дисковые насосы чрезвычайно эффективны также для

перекачки продуктов, требующих бережного обращения и чувствительных к воздействию сил среза.

Область применения по подачам и напорам между поршневыми и центробежными насосами вскоре после окончания первой мировой войны стала заполняться машинами, которые нельзя было отнести к уже известным. Интересно, что в качестве авторов в это время стали выступать фирмы, производящие эти насосы, очевидно выкупившие все права на их использование. Отличаясь немногими деталями, они появились почти одновременно в Германии и США.

Вихревой насос внешне напоминает центробежный. Он имеет ротор с ячейками на периферии, расположенный в корпусе с кольцевым зазором. Торцевой зазор и зазор по периферии между входным и выходным отверстиями, расположенными на цилиндрической поверхности корпуса, должны быть минимальными (рис. 12). Жидкость из ячеек рабочего колеса под влиянием центробежных сил переходит в корпус и, передав часть своей кинетической энергии, находящейся там среде, вернется в другие ячейки. Совершая винтообразное перемещение, каждая частица за время нахождения в насосе несколько раз побывает в роторе, получая от него энергию. В результате такого многоступенчатого механизма силового взаимодействия вихревые насосы могут при тех же габаритах, что и центробежные, иметь напор в несколько раз больший, но при меньшем значении коэффициента полезного действия. Отметим, что эти машины на английском и немецком языках обычно называют насосами с боковыми каналами.

Yi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

а_а

а а

/

К

г

/

Рис. 12. Вихревой насос

В черпаковом насосе, появившемся в нескольких модификациях вскоре после вихревого в США и ФРГ, отводящее устройство в виде обтекаемого тела с каналом - черпака, размещено внутри вращающегося корпуса с радиальными лопатками, укрепленными на его боковых стенках. Наружная поверхность корпуса вращается в воздушной полости неподвижного кожуха. Жидкость подводится в кольцевой канал, а отводится из трубки идущей вдоль оси вращения. Вращение от ротора передается в результате обмена количества движения между частицами жидкости, сходящими с лопаток и находящимися в пространстве между неподвижным черпаком и ротором. В области малых подач эти насосы имеют преимущество перед центробежными и объемными (рис. 13, а). Кроме того, они могут перекачивать загрязненные и легкокипящие жидкости. За рубежом черпаковые насосы обычно называют насосами с трубкой Пито. По существу, принцип действия этого насоса такой же, как у лопастного, только рабочее колесо расположено снаружи корпуса, выполненного в виде профилированного канала.

Лабиринтные насосы, разработанные у нас в стране в институте гидромашиностроения, предназначены главным образом для подачи кислот и других агрессивных жидкостей, но маловязких жидкостей. Они могут быть осевыми и радиальными, но чаще используются осевые. Ротор и корпус имеют многозаходные нарезки противоположного направления. При вращении ротора в процессе обтекания винтовых поверхностей происходит силовое взаимодействие за счет интенсивного образования вихрей. Для химической промышленности применяются лабиринтные насосы с подачей до 10 литров в секунду при напоре до 150 метров. Часто лабиринтные насосы используют в качестве динамических уплотнений, которые обеспечивают герметичность только при движении рабочих органов (рис. 13, б).

Список литературы

1. А.А. Шейпак, История науки и техники. Энергомашиностроение. М. Изд. МГИУ, 2007, 216 с.

2. Архив истории науки и техники, вып. 5, под ред. Н.И. Бухарина (гл. ред. ), АН СССР, М-Л, 1935, 625 с.

3. А.Е. Караваев, Очерк по истории развития лопастных насосов, ГОСЭНЕРГОИЗДАТ, М.-Л., 1958, 72 с.

4. Ф.А. Брикс , Лопастные насосы (центробежные помпы), С. Петербург, 1896, 112 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.