Статья отозвана (ретрагирована) в связи с вновь открывшимися обстоятельствами: отсутствует тот, кто достоин быть автором - А.В. Шишлов, О.А. Грушко, Е.Н. Егоров
Сибирский журнал науки и технологий. Том 18, № 2
UDC 621.396
Siberian Journal of Science and Technology. 2017, Vol. 18, No. 2 ISSUES OF RELIABILITY INSMART ANTENNAS I. N. Kartsan1*, Е. A. Kiseleva2, L. M. Skopintseva2, E. A. Shangina3, S. V. Efremova1
1Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 222 NIO 2 NIU NIC VA Peter the Great 8, Karbysheva Str., Balashikha, Moscow region, 143900, Russian Federati 3JSC "Academician M. F. Reshetnev Information Satellite Systems' 52, Lenin Street, Zheleznogorsk, Krasnoyarsk region, 662972, Russian F' E-mail: [email protected]
Adaptive digital antenna arrays, also known as smart antennas, are a perspect^e^irection in the development of ground-based command and measurement antenna stations. Smart antennas can significantly improve the efficiency of controlling data exchange between the satellite and ground-based earth statiornThm benefits the productivity of the technological operations and reduces the time intervals forperforming the techMoofkLar control cycle. Depending on the requirements, smart antennas containfrom a hundred to several thousand active modules. In this case, the probability offailure of the active module increases. This article discusses the issues of ensuring reliability ofsmart antennas: their ability to maintainin timethe values of their technical parameters within the established limits, which are determined by failures of the equipment included in the antenna, mainly by module failures.
Keywords: adaptive digital antenna array (smart antenna), command-measuring complex, radiation pattern.
Сибирский журнал науки и технологий. 2017. Т. 18, № 2. С. 338-342
проблемы надежности адаптивн
И. Н. Карцан1 , Е. А. Киселева2, Л. М. Сй
1 Сибирский государственный университет на;
Российская Федерация, 660037, г. Кра
фровои антенной решетки
Е. А. Шангина3, С. В. Ефремова1
[ технологий имени академика М. Ф. Решетнева зосп. им. газ. «Красноярский рабочий», 31 222 НИО 2 НИУ НИЦ ВА РВСН им. Петра Великого Российская Федерация, 143900, Московская область, г. Балашиха, ул. Карбышева, 8 3АО «Информационные спугаНкрвь1р системы» имени академика М. Ф. Решетнева» Российская Федерация, 66% 72, г. ж елезногорск Красноярского края, ул. Ленина, 52
*E-mail: [email protected]
Разработка антенных комплекс• в кома ндно-измерительных систем (КИС) наземного комплекса управления, непрерывно следящих за космическими ап> аратами (КА), является одним из наиболее актуальных направлений в области спутниковой связи. Н аиболее перспективным путем развития КИС является применение адаптивных цифровых антенных решеток (АЦАР). Это позволяет улучшить оперативность управления обменом информацией с КА, а также положительно сказывается на производительности технологических операций, сокращая временной интер вал пр^ ведения технологического цикла управления. В зависимости от предъявляемых требований, такие ант^^ны^ системы содержат от сотен до нескольких тысяч активных модулей (АМ). В связи с этим вероятность выхода из строя (отказов) АМ повышается. Рассмотрены вопросы обеспечения надежности функционирования адаптивных цифровых антенных решеток, т. е. их способность сохранять
х технических параметров в установленных пределах, которые определяются отка-й в АЦАР, главным образом, отказами модулей.
во времени значения зами аппаратуры,
Ключевые направлены
аптивная цифровая антенная решетка, командно-измерительная система, диаграмма
Adaptive digital antenna arrays, also antennas, are a perspective direction [lent of ground-based command and measurement antenna stations.
The L asic principles of building of antennas, which
center of radiation with a radiation patterns, formed in a digital way, and without phase shift modules, were given a grounding in 1960s [1].
With the progress of electronics, antennas have made a great way from quite simple facilities to complex con-
sembly of analog digital channels with the same trolled systems with active devices. Interference environment
is constantly changing, so that the need in adaptive antennas has arisen. Nowadays radio systems are to be able to function under the influence of several heavy broadband interferences in conditions of independent moving of interference sources. In such cases, an adaptive antenna fulfils spatial processing of signal, i. e. it becomes a dynamic spatial filter. The parallel spatiotemporal signal processing in antenna allows increasing the volume of information received from several satellites simultaneously.
The progress of space technology emphasizes development of methods of forming stacked beam patterns able to monitor several spacecrafts and to form nulls in direction of interference sources for a ground-based command-measuring complex. The analysis of modern research, methodical and regulatory literature reveals the concernment of both state institutions and major space engineering corporation in a substantial upgrade of existing command-measuring complexes characteristics [2]. One of the most prospective ways of development of ground control is using of command-measuring complex equipped with adaptive digital antenna arrays.
Such command-measuring complexes would be able, unlike existing stations, to monitor several spacecrafts simultaneously, that will allow increasing the efficiency of data exchange control and performance of technological operations, reducing control time slot.
The development and introduction of smart antennas to ground control systems allow receiving command and telemetric information from all visible satellites. It improves the operational characteristics by elimination of mechanical engineering assemblies of antenna control and interference immunity of command-measuring c plex due to spatial-temporal processing of signals. The advantages of digital antenna arrays are [3— - presenting digital synthesis of a radiation patte a receiving mode and forming of specified distt electromagnetic field in an antenna array face in transmitting mode;
to perform mul-
- the ability of digital antenna arrays to
contained netic fields ito data almost
towards components miniaturization and reducing of their aggregated cost. The nearest future of antenna arrays especially smart antennas seems to be prospective, while their further development of hardware components help to solve those problems that suppress mass us such systems.
Reliability of smart antennas is its aVity tc keep values of technical parameters in set limits in tim It is defined by failures of facilities of sm by failures of modules.
The requirements to reliability of strict. MTBF is to be at least fifty^iossiad assured life should be not less than 10 - ears.
Faultiness of electronic components in the modules determine the appearance of b gradual failures. The first l .ad to the fact that the emitters of smart antennas connected to the failed modules have itation, the
tennas are hours, while
second causes a change es of the excitation emitters. tatistical system, which includes llel channels, it potentially has high pes of failures of the modules Le whole system, but only to a dete-and the directivity characteristics
tisignal transmit and receive signals in
- the ability to perceive all the i in the structure of spatial-temporal el in an antenna array face and tran without any losses;
- the digital formation of aie r quested radiation pat tern in receivers input provides deep spatial cancellation. When combined with the vou me expansion it provides interference immunity unreachable before.
Smart antennas llJ|pw^mplementing of special types of gain-phase distribution in an antenna array face and applying for different methods of processing of signals received by every singe antenna radiating element. Therefore, it is possible to gain low side lobes of the radiation pattern, to extract more data out of the received from different satellites radio waves, to use adaptive algorithms of optimal spatial-temporal filtration of signals against a background of interference, that all in all improves characteristics of navigational facilities of a consumer [o].
hardware components allow producing smart ith unique specifications along with the trend
a zero amplitude of exc in the complex a Since smart antenna a large number o reliability. Ind lead not to failure rioration of energy of the antenna: reducing the effective area, increasing the error of the beam, increasing the level of side lobes, reducing the transmission power of the transmitting smart antenna [7-9].
The failure rate of the modules X(t) is a function of ime. With good accuracy we can assume that after tests the failure rate of the modules is constant, X(t) = X = const. The percentage of modules failed for ime t, is given by the following ratio:
n(t)/ N = 1 - exp(-X t), (1)
where n(t) is the quantity of failed modules; N is the total quantity of modules, T0 = X-1 is MTBF. n(t)/N «X t = t/To is true for t << T0.
The value T0 of the electronic components of the electronic equipment specified in the specifications.
The failure rate of the modules essentially depends on the operating temperature of the crystals of semiconductor devices included in the modules. Description of temperature dependence of MTBF is based on the Arrhenius equation:
X(T) = A exp(-e / kT), (2)
where T is the absolute temperature; k is the Boltzmann's constant; e is activation energy; A is the constant of proportionality. Test results show that at temperatures of the crystal of 100-200 °C, the failure rate increases about 2 times by increasing the working temperature to 10 °C. That is, when the temperature increases, for example, from 100 to 150 °C operating time to failure is reduced by more than 30 times. In this regard, when considering reliability issues, the first thing to pay attention are transmitting adaptive digital antenna arrays having elevated operating temperature due to large heat generation and therefore lower reliability [10].
From the above it follows that a major problem in the design of transmitting adaptive digital antenna arrays is to ensure the normal thermal regimes of high-power transistors with the purpose of increasing their reliability.
If dissipation is large, a liquid cooling system is used, at relatively low heat an air cooling system is applied. Cooling systems working on different physical principles may be used as well. Here is the example of reliability calculations for smart antennas.
Adaptive digital antenna arrays with large heat generation use liquid cooling systems. Some smart antennas are made of tile-typed modules with metal thermal busses, in which heat from the power transistors is transmitted to the piping with the coolant fluid, located on the rear side of smart antenna. In order to remove high heat generation module structures with embedded channels for flushing of cooling liquid are used.
For smart antenna of K-range communication system (18.8-19.3 GHz) RaytheonSystemsCompany designed a cooling system, based on using phase transitions of the refrigerant. The heat exchanger in the form of a metal cylinder filled with porous aluminum "foam", impregnated with paraffin wax. The volume of the heat exchanger and modules are connected by heat pipes. When you enable the modules the heat supplied to the heat exchanger volume goes into melting the paraffin. The process occurs at almost constant temperature. After turning off the modules, the process is reversed - the paraffin sets solid. The heat exchange device provides the junction temperature of the transistors about 100 °C when temperature gradients on the surface of the array is less than 10 °C.
Changes in the characteristics of smart antennas due to failures of modules can be described by statistical methods. An average radiation pattern of power of a system consisting of N emitters has the form:
where I tion point;
ds the
rage r diation pat-
ocation of emit-amplitude exci-dom amplitude and
system phasing point; |/(k )|
tern of power; rn is the vector as ter nth; In is the deterministic i tation of the nth radiator; An phase errors of the excitation of the nth emitter. The rela-ging the ensemble of realizations rpaterns of smart antennas to find eters from the parameters ) errors [11; 12]. and phase errors in the channels i. e. they have a zero average
and average values
of the ampl3u5es',re the same (In = 1), then degradation
of sma'. anten ias parameters is described by the following approximate relations.
he gain is determined by the ratio:
G = G0 -AG « G0 e-a « G0(1 -a ). (4)
tion (3) allows by ave of the random radiatio the dependence of i of a random amplitude
If the amplit-de are independe
and small v
= ( a2 +ФП ) <<
The average error of the maximum of a radiation pattern 88 related to the width of the half power radia pattern A805 (for the case of square pattern) is giver
88 / A805 « 0.3^/a/N.
The distribution of the side lobes of the tern obeys the generalized Rayleigh law. Average level of side lobes is described by the ratio:
ion pat-
adtr
X>Y
he radiaii^n patA .e.age le* "1
f6 = /б0
+ ал / N,
where /620 is the relative signifie;
(6)
iy side lobe of
is
power in the absence of ampl;„de-p Aase errors; / the average value of the same side lobe if there are errors. In a separate implementation level of the side lobe can be more. With a probability almost equal to one, the maximum level of lateral radiation do es not exceed values:
/1
In 80 % of i does not exceed
ал / 2N. (6a)
ons, the level of the side lobe
,/ал /2 N.
(6b)
To assess the level of first side lobe of a smart antenna with a square aperture under equiamplitude excitation of the emitters in the formulas (6) should be considered
/60 = 0.217.
The degradation of the gain depends only on a, and radiation caused by random errors, decreases with reasing N. Thus, the maximum level of the first side (6a) of the array with a rectangular aperture that is 5.2 dB with no errors (a = 0) is increased in the presence of the error a = 0.3 to -8.8 dB in the array with N = 200, and only up to 12.7 dB in the array with N = 20000. For the same parameters relative error of the maximum radiation pattern (5) is approximately 1 % of the beam width at N = 200 and only 0.1 % when N = 20000.
The ratio (4)-(6) can be used to assess the impact of the modules breakdown on the performance of smart antennas.
In the statistical theory of antenna arrays it is shown that the failure of n randomly located in the array of N elements can be considered equivalent to the impact of uniformly distributed over all elements of the array of random amplitude and phase errors with variance a = n/N. Expressing the fraction of the failed elements as a function of the failure rate (1), we get: a = a (t) = nit)/ N =
(7)
= 1 - e"
a t = t / T0
It should be borne in mind that the failure of modules of the transmitting adaptive digital antenna arrays not only leads to deterioration of the gain and radiation pattern, but will also reduce the radiated power, so the potential of smart antennas when n << N is described by the following ratio:
П = PG = П0(1 -а)е-а « » П o(1 -а)2 = По(1 -1 / TO)2.
Time to failure T0 of modern transistor transceiving modules of smart antennas of X-range is up to 100 000 hours (over 11 years). Receiver modules, made by hybrid technology have a life 2-3 times longer, and receiver modules based on integrated circuit can take T0 > 1 000 000 hours, that is orders of magnitude larger.
From ratios (7)-(8) it follows that the smart antenna with N = 20 000 modules and T0 = 100 000 hours, will undergo the following changes of parameters after one year operation without repair (about 8600 hours): decrease of the gain and effective area of the aperture (about 0.4 dB), the reduction of potential (about 0.8 dB), maximum growth of the first side lobe (not more than 0.3 dB), the maximum error of the beam (about 0.2 %, without taking into account the error, associated with the discreteness of the phase shifters and errors in the calibration of the channels of the array).
Given parameters are achievable, if the correct thermal operation mode of power transistors is chosen. This is achieved through the optimal mode of operation at a reduced power level, rational choice of materials for bodywork and its design maximizing heat dissipation from the crystals, a sufficient flow of cooling air or fluid in the cooling system [13-15].
Practically, the modules located at the edges of the aperture have a lower temperature than the modules located in the central part due to heat transfer to the environment. For example, in the literature there are the results of tests of a 17-element active array with air cooling. Power consumption of DC power in each channel is 9 watts. In conditions of the absence of forced cooling central element of the array have a temperature of about 100 X while the extreme ones - 60 °C. When enabled forced airfl those temperatures are 40 °C and 20 °C, respectively [16].
Increased temperature in the central part of the ture leads to a higher failure rate of the modules located here in accordance with the aforementioned r This, in turn, leads to higher growth of side radiation than it follows from (6). Simulation of smart a nE njas^para meters with variable temperature distribution can be per formed using the ratio (3), while the lailu e rate of the modules in the aperture is described b
Conclusion. Thus, for a more the smart antennas characteristi a model of its reliability. Suc account energy parameters
ments, the dependence of th ating temperature) from the
perature dependence o ing system, the abov on the temperature, a failure rate of failure rate of t
Acknowl a project of the Russi unique proje
Благодар вой подде Рс ссийс
у
cy (and hence operpower level, the tem-
tural parameters of the coolLed dependence of MTBF accurate description of the based on the analysis of the
its.
his work was supported by stry of Education and Science of tion (agreement No. 14.577.21.0220, dentifier RFMEFI57716X0220). сти. Работа выполнена при финансо-е Министерства образования и науки й Федерации (соглашение № 14.577.21.0220, идентификатор проекта RFMEFI57716X0220).
References
1. Sliusar V. I. [Smart antennas are becoming mass-produced], Elektronika: nauka, tekhnologiia i biz No. 2, P. 62-65.
2. Huang P., Xu, W. Analog beamfori niijg and^igjtal beamforming on receive for range ambigu'^ suppression in spaceborne SAR. International Journal oj Antennas and Propagation, 2015, Vol. 2015i^Artide number 182080.
3. Lin C., Li G. Y. Adaptive beam^rming with resource allocation for distance-a .am multi-user indoor terahertz communications. IEEE Transactionson Communications, 2015, Vol. j3, Issue 8, Articlenumber 7116524, P. 2985-2995.
artsan I. N. [Adaptive antenna beamforming]. Reshetnevskiye XV
International. Scientific. rasnoyarsk, 2016, Vol. 1,
bthe ratjb (2).
escription of ecessary to create should take into dules and their ele-
4. Dmitriev D. D., arrays with digital tchteniya [Proceeding Conf. "Reshetnev re No. 20, P. 263-2
5. Tyapkin V^Nl^artÇan I. N., Dmitriev D. D., Gon-charov A. E. spatial Filtering Algorithms in Adaptive Multi-Beam Hybrid Reflector Antennas. International Siberian Conference on Control and Communications (SIBCON), 2015. DOI: 10.1109/SIBC0N.2015.7147244.
6. Dodychina E. M., Kol'tsov, Yu. V. Tsifrovye an-tennye reshetki v bortovykh radiolokatsionnykh sistemakh [Digital Antenna Array in Onboard Radar Systems]. Moscow, MAI Publ., 2013, 160 p.
Dmitriev D. D., Tyapkin V. N., Kremez N. S. hods of adaptation of the phased antenna array oise in satellite radio navigational systems], Radio-hnika. 2013, № 9. P. 39-43 (In Russ.).
8. Tyapkin V. N., Kartsan I. N., Dmitriev D. D., oncharov A. E. Interference Cancelling Responses for
Various Configurations of Antenna Arrays for Angular Measuring Navigation Equipment. 2015 International Siberian Conference on Control and Communications (SIBCON), DOI: 10.1109/SIBC0N.2015.7147245.
9. Kartsan I. N., Zelenkov P. V., Tyapkin V. N., Dmitriev D. D., Goncharov A. E. Spatial suppression of interference in hybrid reflector antennas. IOP Conf. Series: Materials Science and Engineering, 2016, Vol. 122, P. 012010. DOI: 10.1088/1757-899X/122/1/012010.
10. Sliusar V. [Digital antenna arrays in mobile satellite communications], Pervaya milya. 2008, No. 5, P. 16-21 (In Russ.).
11. Tyapkin V. N., Fateev Y. L., Dmitriev D. D., Kartsan I. N., Zelenkov P. V., Goncharov A. E., Nasyrov I. R. Using GLONASS for precise determination of navigation parameters under interference from various sources. IOP Conference Series: Materials Science and Engineering, 2016, Vol. 22 (1). DOI: 10.1088/1757-899X/ 122/1/012035.
12. Tyapkin V. N., Kartsan I. N., Dmitriev D. D., Goncharov A. E. Correcting non-indentity in receiving channels in interference-immune systems for Glonass and GPS. International Siberian Conference on Control and Communications, SIBCON 2015. 2015. DOI: 10.1109/ SIBCON.2015.7147246.
13. FateevYu. L., Dmitriev D. D., Tyapkin V. N., Kartsan I. N., Goncharov A. E. Phase methods for measuring
the spatial orientation of objects using satellite navigation equipment. IOP Conference Series: Materials Science and Engineering, 2015, Vol. 94 (1). DOI: 10.1088/1757-899X/94/1/012022.
14. Kartsan I. N., Zelenkov P. V., Tyapkin V. N., Dmitriev D. D., Goncharov A. E. Adaptation algorithms for satellite communication systems equipped with hybrid reflector antennas. IOP Conference Series: Materials Science and Engineering, 2015, Vol. 94 (1). DOI: 10.1088/ 1757-899X/94/1/012010.
15. Serenkov V. I., Kartsan I. N., Dmitriev D. D. [Method for the synthesis of amplitude-phase distribution of hybrid-mirror download]. Vestnik SibGAU. 2015, Vol. 16, № 3, P. 664-669 (In Russ.).
16. Tyapkin V. N., Garin E. N., Ratushniak V. N., Gladyshev A. D. [The spatial noise suppression in various configurations goniometric of navigation equipment]. Naukoenkie tekhnologii. 2016, Vol. 17, № 8, P. 52-56 (In Russ.).
Библиографические ссылки
1. Слюсар В. И. Smart-антенны пошли в серию // Электроника: наука, технология, бизнес. 2004. № 2. С. 62-65.
2. Huang P., Xu W. Analog beamforming and digital beamforming on receive for range ambiguity suppression in spaceborne SAR // International Journal of Antennas and Propagation. 2015. Vol. 2015. Article number 182080.
3. Lin C., Li G. Y. Adaptive beamforming with resource allocation for distance-aware multi-user indoor terahertz communications // IEEE Transactions on Co munications. 2015. Vol. 63, iss. 8. Articlenumbe 7116524, P. 2985-2995.
4. Дмитриев Д. Д., Карцан И. Н. Адаптивные тенные решетки с цифровым формирован® Решетневские чтения : материалы XX междунар. науч.-практ. конф., посвящ. рального конструктора ракетно-косми
академика М. Ф. Решетнева. В 2 аэрокосмич. ун-т. Красноярск, 201
5. Spatial filtering algorithms i hybrid reflector antennas / V. N. International Siberian Conference o munications, SIBCON 2015 (21-2 2015. DOI: 10.1109/SIBCOI .2015.
6. Добычина Е. М., Ко.'цо антенные решетки в бортовых системах. М. : МАИ, Ж'-. ^60 с.
истем ч 1 / Сиб. гос. 265.
multi-beam al.] // 2015 ntrol and Com-May 2015, Omsk). 47244.
Ю. В. Цифровые радиолокационных
7. Дмитриев Д. Д., Тяпкин В. Н., Кремез Н. С. Методы адаптации фазированных антенных реш к помехам в спутниковых радионавигационны темах // Радиотехника. 2013. № 9. С. 39-43.
8. Interference cancelling responses for va figurations of antenna arrays for angular measuring gation equipment / V. N. Tyapkin [et al.] // 2015 Im tional Siberian Conference on Control and Com munications, SIBCON 2015 (21-23 May 2015, Omsk). 2015. DOI: 10.1109/SIBTON.2015.7147245.
9. Spatial suppression of interference in hybrid reflector antennas / I. N. KartsanBS!*ii^// IOP Conf. Series: MaterialsScienceandEnpineeAig. 2016. № 122. DOI: 10.1088/1757-899X/12^^20J
10. Слюсар В. И. Цифровые антенные решетки в мобильной спутниково й связи // Первая миля. 2008. № 5. С. 16-21.
S for precise determination of der interference from various // IOP Conference Series: Lgineering. 2016. № 22 (1). 122/1/012035. -identity in receiving channels in
11. Using GLON navigation paramet sources / V. N. Tyapk Materials Scie DOI: 10.1088/
12. Correcting
interference-immune systems for GLONASS and GPS / V. N. Tyapkin [et al.] // 2015 International Siberian Conference on Control and Communications, SIBCON 2015 (21-23 May 2015, Omsk). 2015. DOI: 10.1109/ SIBCON.2015.7147246.
13. Phase methods for measuring the spatial orientation of objects using satellite navigation equipment / Yj^L.Tateev [et al.] // IOP Conference Series: Materials Sconce and Engineering. 2015. № 94 (1). DOI: 10.1088/1757-899X/94/1/012022.
14. Adaptation algorithms for satellite communication systems equipped with hybrid reflector antennas / I. N. Kartsan [et al.] // IOP Conference Series: Materials Science and Engineering. 2015. № 94 (1). DOI: 10.1088/ 1757-899X/94/1/012010.
15. Серенков В. И., Карцан И. Н., Дмитриев Д. Д. Метод синтеза амплитудно-фазового распределения гибридно-зеркальной антенны // Вестник СибГАУ. 2015. Т. 16, № 3. С. 664-669.
16. Пространственное подавление помех при различных конфигурациях антенной решетки угломерной навигационной аппаратуры / В. Н. Тяпкин [и др.] // Наукоемкие технологии. 2016. Т. 17, № 8. С. 52-56.
© Kartsan I. N., Kiseleva Е. A., Skopintseva L. M., Shangina E. A., Efremova S. V., 2017