Научная статья на тему 'Исследования проницаемости древесины газами'

Исследования проницаемости древесины газами Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
212
33
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДРЕВЕСИНА / ВАКУУМИРОВАНИЕ / VACUUM / ПРОНИЦАЕМОСТЬ / МАТЕРИАЛ / MATERIAL / СОПРОТИВЛЕНИЕ WOOD / RESISTANCE / CONSTANT

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Леонович Олег Константинович

В статье исследована проницаемость древесины которая является характеристикой эффективного сечения ее проводящей системы, лимитирующей прохождение газов. Потери давления в материале могут быть описаны с помощью уравнения Дарси. С учетом этих положений исследован процесс фильтрации воздуха через образцы древесины сосны в различных направлениях. Установлено предельное давление при котором фильтрация воздуха происходит по линейной зависимости.Предложено ввести квадратичную зависимость при описании процесса проницаемости древесины сосны. Установлено, что при исследовании процесса вакуумирования длинномерных образцов основную роль играет проницаемость поперек волокон.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Researches of permeability of wood by gases. Permeability of wood is the characteristic of effective section of its spending system wich is limiting passage of gases. Pressure losses in a material can be described by means of Darcy equation. Taking into account these positions process of a filtration of air through samples of wood of a pine in various directions is investigated. Limiting pressure is established at which air filtration occurs on linear dependence. The entering of the square-law dependence at the description of permeability process of wood of a pine is considered to be the best. It is established, that at research of pumping process out of lengthy samples the basic role is played by permeability across fibres.

Текст научной работы на тему «Исследования проницаемости древесины газами»

УДК 674.048.5

О. К. Леонович, канд. техн. наук, зав. НИЛ ОСКиМ (БГТУ) ИССЛЕДОВАНИЯ ПРОНИЦАЕМОСТИ ДРЕВЕСИНЫ ГАЗАМИ

В статье исследована проницаемость древесины, которая является характеристикой эффективного сечения ее проводящей системы, лимитирующей прохождение газов. Потери давления в материале могут быть описаны с помощью уравнения Дарси. С учетом этих положений исследован процесс фильтрации воздуха через образцы древесины сосны в различных направлениях. Установлено предельное давление, при котором фильтрация воздуха происходит по линейной зависимости. Предложено ввести квадратичную зависимость при описании процесса проницаемости древесины сосны. Установлено, что при исследовании процесса вакуумирования длинномерных образцов основную роль играет проницаемость поперек волокон.

Researches of permeability of wood by gases. Permeability of wood is the characteristic of effective section of its spending system wich is limiting passage of gases. Pressure losses in a material can be described by means of Darcy equation. Taking into account these positions process of a filtration of air through samples of wood of a pine in various directions is investigated. Limiting pressure is established at which air filtration occurs on linear dependence. The entering of the square-law dependence at the description of permeability process of wood of a pine is considered to be the best. It is established, that at research of pumping process out of lengthy samples the basic role is played by permeability across fibres.

Введение. Проницаемость древесины является характеристикой эффективного сечения ее проводящей системы, лимитирующей прохождение газа. Перепад давления на образце определяется потерями давления не только в материале, но и на входной и выходной поверхностях, аналогично коэффициентам местных сопротивлений, которые рассматриваются при гидромеханических расчетах теплообменных аппаратов [1]. Потери давления в материале могут быть описаны с помощью уравнения Дарси. С учетом этих положений исследован процесс фильтрации воздуха через образцы древесины сосны в различных направлениях.

Проводимость характеризуется количеством данной жидкости или газа, проходящими через образец за определенный промежуток времени при определенных условиях опытов, т. е. это способность древесины проводить жидкости или газы.

Проницаемость зависит от состояния анатомических элементов, выполняющих водо-проводящие функции, а также от степени проводимости перфораций и пор, соединяющих отдельные элементы в единую проводящую систему. Эта характеристика для данной породы постоянна. Проводимость - переменная величина, зависящая от внутренних и внешних условий среды - давления, влажности, вязкости раствора, его температуры, т. е. проводимость зависит от проницаемости.

Исследования по изучению проницаемости и проводимости вели многие ученые: Оснач Н. А. [2], Баженов В. А., который предложил способ и прибор для определения проницаемости древесины [3, 4]. Харук Е. В. определяла проводимость древесины хвойных пород с учетом объе-

ма вошедшей жидкости, толщины образца, времени, давления и установила, что проводимость увеличивается с повышением температуры и при удалении экстрактивных веществ [5]. Гусев Н. Ф. изучал воздухопроницаемость вдоль волокон при помощи уравнения для пористой среды произвольного строения [6]. Кнудсен М. предложил изучать прохождение воздуха через древесину по полуэмперическому уравнению Пуа-зейля - Кнудсена [7]. Stamm A. J. изучал факторы, влияющие на проницаемость древесины [8]. Большой вклад в разработку физических основ проводимости материалов внес Лыков А. В. -фундаментальными работами по сушке и теории тепло- и массообмена в капилярнопори-стых средах [9], Серговский П. С. - значительными трудами по влагопроводности древесины и ее равновесной влажности при высоких температурах. Буглай Б. М., Иванов Ю. М., Чулиц-кий Н. Н., Фоломин А. И., Ханмамедов К., Варфоломеев Ю. А. - исследованиями по проводимости, проницаемости и пропитке древесины.

Указанные основопологающие работы позволили Шутову Г. М. предложить методику исследования проницаемости древесины березы по закону Дарси [10], Леоновичу О. К. исследовать проницаемость древесины сосны и выявить особенности проникновения воздуха и гидрофобных жидкостей в продольном о поперечном направлениях [11-13].

Проведенный анализ делает очевидным то, что механизм проникновения газов и жидкостей в древесину изучен недостаточно, особенно по исследованию проникновения их в поперечном направлении.

Целью данной работы является исследование области линейности и нелинейности зависимости

перепада давления в древесине сосны от удельного массового расхода воздуха с учетом дополнительных потерь давления на местных сопротивлениях; разработка уравнения для определения коэффициентов проницаемости и сопротивления воздуха в материале и на его поверхностях; проведение расчетов этих коэффициентов на ЭВМ.

Основная часть. Объектом исследования являются деревянные опоры линий связи и электропередачи из древесины хвойных пород с влажностью 25-120%. Диаметр опор 16-24 см, длина 6,5-11 м. Проведение исследований на образцах такой величины представляет значительные трудности, поэтому предлагается ряд методик по определению проницаемости газами и жидкостями с целью исследования продолжительности процессов вакуумирования и пропитки. Для проведения исследований была изготовлена установка для изучения проницаемости древесины газами, схема которой показана на рис. 1. Установка состоит из следующих узлов и работает таким образом: воздух компрессором нагнетается в ресивер. Давление воздуха автоматически регулируется электроконтактным манометром, который через автоматическое устройство управляет двигателем компрессора. Воздух поступает через редукционный клапан в фильтры масловлагоотделения и воздушный фильтр; затем воздух поступает в влагоосушительную систему, состоящую из трех колонн, наполненных селикогелем. В то время как одна из них нагревается спиралью до 180°С и прокаливает селикогель, другая осушает проходящий воздух. Влажность воздуха контролируется индикатором, затем воздух через фильтр тонкой очистки и нагревательную колону поступает в промежуточную емкость, где также контролируется его влажность. Подача воздуха в рабочий патрон, где находится исследуемый образец древесины, схема крепления которого дана на рис. 2, регулируется системой игольчатых вентилей. Перепад давления воздуха на образце измеряется образцовым манометром или ртутным дифманометром. Расход воздуха измеряется газовым счетчиком или расходомером. Для исследования проницаемости древесины при повышенных температурах подогрев воздуха осуществляется в подогревателе, а подогрев рабочего патрона и образца до необходимой температуры в глицериновой бане. Температура теплоносителя, проходящего через термостат, контролируется электроконтактным термометром. Перекачка раствора производится насосом. Определение коэффициента проницаемости и сопротивления в материале основывается на методе измерения как минимум трех расходов воздуха при разных перепадах давления на образцах одной толщины 5 или двух

толщин - 5 и 25. Далее по расчетным формулам находятся соответствующие коэффициенты.

При теоретическом расчете проницаемости древесины газами рассмотрен перепад давления в образце Р^Р2, как сумма потерь давления на входе АРвх, на выходе АРвых и в материале АРмат.

4

5

Рис. 1. Рабочий патрон для испытания образцов на проницаемость: 1 - уплотнительная прокладка;

2 - верхняя крышка; 3 - отверстия для болтов;

4 - прижимное кольцо; 5 - образец древесины;

6 - теплоноситель; 7 - корпус; 8 - рубашка

Коэффициенты проницаемости (К) и поверхностного сопротивления древесины при линейной зависимости удельного массового потока воздуха (дт) перепада давления в материале определялись по следующим формулам:

К =

Чту5

^п =

АР

мат

2цВ

(1)

(2)

где ц - молекулярная масса; у - кинематическая вязкость воздуха; В - расчетный коэффициент; Я - универсальная газовая постоянная; Т - абсолютная температура газа.

Для проверки характера зависимости потерь давлений в материале от удельного массового потока воздуха было получено выражение (3):

1 \2

АРмат = (Р - Р2)"

Чт - (Чт)

-(2Чт - Чт)

(3)

где Р\, Р2 - давление на входной и выходной поверхностях; чт , чт - удельная масса расхода воздуха при образце толщиной 5 и 25.

Установлено, что фильтрация, по закону Дар-си, происходит у образцов древесины сосны вдоль волокон при массовом расходе до 0,4 кг/м2-с и перепаде давления 0,1 МПа. В радиальном направлении воздух фильтруется по закону Дарси,

1

7

8

при расходе 0,002 кг/м -с и перепаде давления до 0,04 МПа, в тангенциальном - при расходе воздуха 0,5 • 10-3 кг/м2-с и АРт до 0,03 МПа, а у ядра сосны - при расходе 9 • 10-3 кг/м2-с и перепаде давления до 0,02 МПа.

Далее зависимость перепада давления от удельного массового потока воздуха имеет нелинейный квадратичный характер.

Это связано с тем, что в макрокапиллярах древесины перфорации и сужения в отдельных местах приводят к появлению дополнительных потерь давления на данных местных сопротивлениях.

При исследовании проницаемости древесины газами в опубликованных работах принимается линейная зависимость перепада давления в материале (древесине) от удельного расхода:

АР = К Чт Ах.

(4)

Перепад давления в материале с учетом местных сопротивлений в материале (£,м):

(5)

Полный перепад давления за счет трений и местных сопротивлений в материале:

ёР =!■ Чт^ -^т^Т-Е 2р

(6)

После преобразования и интегрирования получим уравнение для N различных давлений:

' = 1 N

Р2 Чп

ЯТ

ц

х 1п

ЯТ 72 1 ^т

ц 1т1 2цу

ЯТ ц ■ Чт 1 1 2цу

ЯТ ц ■ Чт 1 1 2цу

(7)

Уравнение (7) получено с учетом квадратичной зависимости распределения давления в материале от удельного массового расхода воздуха.

Неизвестные коэффициенты ^м, К должны быть такими, чтобы удовлетворить уравнению (7). Поскольку неизвестных параметров 3, то должно быть и 3 уравнения для нахождения ^м, К. Это могут быть 3 уравнения для трех образцов различной длины или 3 уравнения для одного образца, но трех различных расходов воздуха и давлений. Предложено для определения неизвестных параметров по уравнению (7) использовать метод наименьших квадратов. Для этого нужно заменить действительные значения давления Р1 и Р2, а также удельного массового расхода воздуха на приближенные значения, полученные из эксперимента (рис. 2).

Составляем функцию из уравнения (7) путем переноса правой части в левую и возведением ее в квадрат. Значения параметров £,м, К, при которых эта функция имеет минимальное значение, будет соответствовать действительным величинам этих параметров. Для N различных значений давлений и расходов указанная функция примет вид:

Р2 —^ ^ — ■ Ч 2

+ ЯТК^ Чт х

2цу

ц

х 1п

Р22

Ц

2цу

■ ЯТК-

р2—■ чт + -2Ц- ятк •

I ц 2цу

= У&Чт

К '

(8)

Минимизируя функции по 2,п, К, находим с помощью ЭВМ, по разработанной программе, значения данных коэффициентов.

Р1-Р2

(Л-

(Л-ЛЬ (Р1-Р2) 1

|?м1

Рис. 2. Зависимость разности давлений до и после образца от удельного массового расхода воздуха: Р1 - давление на входе; Р2 - давление на выходе; Чт - массовые расходы воздуха

2

2

Изменение коэффициентов проницаемости ( К) , поверхностного сопротивления © образцов древесины сосны в зависимости от направления фильтрации

Исследуемые параметры Направление фильтрации

Заболонь вдоль волокон при W = 10-12% Заболонь вдоль волокон при W = 70% Заболонь в радиальном направлении с неповрежденным лубом Заболонь в радиальном направлении, обработанная циркулярной пилой Ядро вдоль волокон при W = 10-12%

g т, кг/м 2-с 0,0756 0,0679 0,00181 0,00204 0,01015

В, Па ■ 133 0,03 -10 5 0,314-10 5 1,354 10 5 1,14 -10 5 1,152 -10 5

Р 1, Па ■ 133 933 946 1114 1181 1059

Р1т, Па ■ 133 932 913 993 1049 951

Р2т, Па ■ 133 728 770 883 861 863

Р2, Па ■ 133 724 730 730 730 730

Рмат Па ' I33 201,8 1632 109 223 87

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Рвх, Па ■ 133 3,2 435 122 122 109

Рвых, Па ■ 133 4,1 9,7 153 132 133

К ■ 10-12, м 2 0,84 0,93 0,0168 0,0254 0,15

^п ■ 10 6 0,22 1,51 0,9813 4,28 4.7

Определены изменения коэффициента проницаемости и поверхностного сопротивления в древесине сосны в различных направлениях согласно /методике, изложенной в данной работе (таблица). /Коэффициент проницаемости заболони сосны /вдоль волокон равен 0,84 • 10-12 в радиальном направлении с неповрежденным лубом, он в 50 раз меньше и составляет 1,68 • 10-14, с обработанной поверхностью циркульной пилой в радиальном направлении равен 2,54 • 10-14 и меньше, чем вдоль волокон, в 33 раза. Поверхностное сопротивление в различных направлениях менялось незначительно.

Заключение. 1. Определена область линейного и нелинейного характера потерь давления в заболони и ядре древесины сосны в различных направлениях от удельного массового потока воздуха.

2 Разработана усовершенствованная теоретическая модель для расчета коэффициентов проницаемости древесины, основанная на линейной и квадратичной зависимости удельного массового расхода воздуха в материале от перепада давления, в которой учитываются потери внутри древесины на местных сопротивлениях.

3. Рассчитаны коэффициенты проницаемости и поверхностного сопротивления древесины сосны в различных направлениях.

4. Установлено, что проницаемость поперек волокон играет основную роль при дальнейших расчетах процессов вакуумирования длинномерной древесины.

Литература

1. Романенко, П. Н., Теплопередача / П. Н. Ро-маненко, А. Н. Обливин, Ю. П. Семенов. - М.: Лесная пром-сть. 1969. - 132 с.

2. Оснач, Н. А. Проницаемость и проводимость древесины. - М.: Лесная пром-сть, 1964. - 182 с.

3. Способ определения проницаемости деревянных образцов газами и жидкостями: а. с.

161143 СССР, МКИ G01N 42L, 13/03 / В. А. Баженов, Е. В. Харук, Т. И. Клещев (СССР).

4. Прибор для определения проницаемости древесных образцов газами или жидкостями: а. с. 191220 СССР, МКИ G01N 42L, 13/03 / В. А. Баженов, Е. В. Харук, Т. И. Клещев (СССР).

5. Харук, Е. В. Проницаемость древесины газами и жидкостями / Е. В. Харук. - Новосибирск: Наука, 1976. - 188 с.

6. Гусев, Н. Ф. Движение жидкости в древесине / Н. Ф. Гусев // Сб науч. тр. / ЛТИ. -М., 1950. - С. 10-13.

7. Knydsen, M. Die Gesetze der Molekular-strommung und der inneren Reibungsstrommung der Gase durch Rohren // Ann. Der Physik. 4 Folge. -1969. - Bd. 28, hf. 1. - S. 75-130.

8. Stamm, A. J. Permeability of wood to fluids / A. J. Stamm // Forest produkte journal. - 1963. -V.13,N 11. - P. 503-507.

9. Лыков, А. В. Теория теплопроводности / А. В. Лыков. - M., 1977. - 348 с.

10. Шутов, Г. М. Модифицирование древесины термохимическим способом: обзор. ин-форм. - Минск, 1982. - 70 с.

11. О теоретических основах проницаемости древесины газами и жидкостями / Г. М. Шутов, [и др.] // Теоретические аспекты модифицирования древесины: тез. докл. Всесоюз. науч.-техн. конф. - Рига: Зинатне, 1983. - С. 188-189.

12. Леонович, О. К., Проницаемость древесины газами и жидкостями в технологическом процессе модификации древесины столбов линий связи и электропередачи // Комплексное и рациональное использование лесных ресурсов: тез. докл. Всесоюз. науч.-техн. конф. - Минск, 1985. -C. 181-183.

13. Леонович, О. К. Технология производства модифицированной древесины для опор линий связи и электропередачи: дис. ... канд. техн. наук: 05. 21. 05 / О. К. Леонович. - Минск, 1988. - 345 л.

Поступила 01.04.2010

i Надоели баннеры? Вы всегда можете отключить рекламу.