УДК 534.11 (075.8), 621.952.8, 681.513.1
Исследование возможности управления уводом
при глубоком сверлении отверстий
малых диаметров повышенной относительной длины
К. М. Иванов, П. Д. Яковлев, С. П. Яковлев
На базе анализа динамической модели процесса образования увода оси глубокого отверстия малого диаметра (менее 30 мм) повышенной (более 100) относительной длины, в разработку и совершенствование которой немалый вклад внесли авторы настоящей работы, предложено использовать выявленную закономерность процесса образования увода — наличие на кривой увода по длине сверления участка убывания — как основу системы управления уводом. Фундаментальный характер модели системы управления является необходимым условием устойчивости ее работы, а ограниченность возможностей конструктивной реализации современным уровнем развития науки и техники преодолевается эмпирической коррекцией параметров процесса сверления звеном обратной связи, отслеживающим динамику реального процесса образования увода.
Полученные результаты имитационного моделирования с использованием известных экспериментальных данных показывают достаточные для исследуемого класса изделий надежность и эффективность разработанного авторами алгоритма управления уводом.
Ключевые слова: глубокое сверление, отверстия малых диаметров повышенной относительной длины, управление уводом, алгоритм управления уводом, система управления уводом, имитационное моделирование.
Введение
Развитие отдельных отраслей машиностроения вызывает необходимость повышения точности изготовления глубоких отверстий малых диаметров (менее 23,0 мм) с отношением длины к диаметру (относительной длины) более 100 в валах, используемых в сложных технических системах различного назначения.
Основной операцией обработки отверстий в указанных валах является глубокое сверление с использованием специального инструмента и технологической оснастки с наружным подводом смазочно-охлаждающей жидкости (СОЖ) по схеме «заготовка вращается — инструмент имеет поступательное движение подачи». Инструмент в виде сверлильной головки, установленной на борштанге (стебле) кольцевого поперечного сечения, обладает низкой продольно-поперечной жесткостью, работает при частотах вращения заготовок до 3000 об/мин
и давлениях СОЖ до 15 МПа, испытывает вследствие влияния на процесс сверления большого количества факторов кинематическое возмущение с частотой вращения заготовки, что является основной причиной образования увода и непрямолинейности оси отверстий. Указанные погрешности, как показывает практика, могут достигать значений, существенно превышающих установленные техническими требованиями, что приводит к браку дорогостоящих заготовок. Этими обстоятельствами обусловлена актуальность проводимых исследований.
Основная часть
Динамическая модель процесса образования увода при сверлении отверстий с постоянным вылетом стебля. В результате ранее выполненных исследований [1] разра-
0,6 0,4 0,2 /
/
о
200
400
600
800
1000
1200
1400
1600
1800
2000 X, мм
Рис. 1. Расчетная кривая изменения увода У по длине обработки X: диаметр сверления 12,0 мм; материал заготовки — сталь 40Х; 290-310 НВ; п = 1500 об/мин; в0 = 0,015 мм/об
ботана математическая модель процесса образования увода при глубоком сверлении отверстий с переменным вылетом стебля [1], учитывающая особенности глубокого сверления отверстий малых диаметров повышенной относительной длины. При построении модели исследовались продольно-поперечные колебания упругой системы «сверлильная головка — стебель» с распределенными параметрами. Колебания рассматривались при кинематическом возмущении сверлильной головки с частотой вращения заготовки вследствие ее базирования на просверленное отверстие, имеющее увод оси. Учитывалось влияние осевой составляющей главного вектора сил резания и трения Рх, действующих на сверлильную головку, внешнего трения, обусловленного воздействием на инструмент потока вязкой СОЖ, и внутреннего трения в материале стебля.
Анализ модели показал, что изменение увода по длине сверления может быть описано сложной пространственной кривой, имеющей участки возрастания, стабилизации и уменьшения увода, а также зоны резонанса, соответствующие длинам сверления, при которых собственные частоты продольно-поперечных колебаний стебля совпадают с частотой вращения заготовки. В качестве примера на рис. 1 приводится расчетная зависимость, иллюстрирующая изменение увода по длине обработки при глубоком сверлении отверстий диаметром 12,0 мм.
В наибольшей степени указанные особенности проявляются при длинах сверления, при которых вклад возбуждаемых по первой собственной форме продольно-поперечных колебаний инструмента в форму его вынужденных колебаний наибольший, т. е. до окрестности первого резонанса включительно. На рис. 2 приведены расчетная и экспериментальная кривые для диаметра сверления 12,0 мм, соответствующие возбуждению первой собственной формы, а на рис. 3 — характерный вид кривой увода, где указаны зоны изменения увода, ограниченные вылетом стебля Ьпр, соответствующим первому по длине обработки максимуму кривой увода, и резонансным вылетом Ьпр, при котором первая собственная частота продольно-поперечных колебаний инструмента совпадает с частотой его кинематического возмущения.
При этом под вылетом стебля Ь понимается расстояние от места крепления стебля в маслоприемнике до середины пятна контакта направляющих сверлильной головки с поверхностью просверленного отверстия [2]. Величина Ь = Ь0 + X, где Ь0 — расстояние от места крепления стебля до переднего торца заготовки (начальный вылет); X — текущая глубина сверления.
Вылеты Ьпр и Ьпр существенно зависят от частоты вращения заготовки п и диаметра сверления (о, а также от осевой составляющей силы резания Рх, конструктивных параметров инструмента и других факторов.
0
100
200
300
400
500
600
700
800
900
1000
1100
X, мм
Ln
"пр -"пр
Рис. 2. Изменение увода У по длине обработки X до и в окрестности первого резонанса:
1 — расчетная кривая; 2 — эксперимент: диаметр сверления 12,0 мм; материал заготовки — сталь 40Х; 290-310 НВ; п = 1500 об/мин; = 0,015 мм/об; указаны длины обработки, соответствующие предельным вылетам стебля
X + L0
Рис. 3. Характер изменения увода Y по длине сверления X:
I — зона медленного нарастания увода; II — окрестность точки максимума (участок стабилизации увода); III — рабочий диапазон оптимальных вылетов стебля L* (область убывания увода); IV — зона первого резонанса; L0 — начальный вылет стебля
Для конкретного диаметра сверления с достаточной для практики точностью указанные вылеты могут быть определены по зависимостям, которые для удобства анализа представлены в безразмерной форме,
-^пр -
П
-^пр -
3,927
Vrö(n)
Здесь Ь = Ь/шх, ш(п) = пп/ (30тю) — безразмерные текущий вылет стебля (для пре-
дельных его величин Ьпр и Ьпр справедливы аналогичные соотношения) и циклическая частота вращения заготовки, где тх = ^Е^Рх , рх/ — масштабы переменных;
EJ — изгибная жесткость стебля (Е — модуль продольной упругости материала стебля, Па; J — момент инерции его поперечного сечения, м4); р^ — погонная масса стебля (р — плотность материала стебля, кг/м3; ^ — площадь поперечного сечения стебля, м2); Ь — вылет стебля; п — частота вращения заготовки, об/мин; 3,927 — первый (наименьший) корень трансцендентного уравнения для определения резонансных вылетов стебля [2].
Таким образом, если создать условия, при которых произведение
X - Lj w(n),
(2)
(1)
в соответствии с зависимостью (1) характеризующее положение точки на кривой увода (рис. 3), будет постоянным, а вылет стебля Ь равным определенному значению Ь*, соответствующему участку убывания увода (Ьпр < Ь* < Ьпр), то увод будет уменьшаться по длине обработки. Одним из способов достижения указанной цели является фиксация вылета стебля путем установки на нем жесткой дополнительной опоры, моделирующей условия закрепления стебля в задней части мас-лоприемника. Опора может быть выполнена в
Y
■10
№ 3 (93)/2016
виде необходимого количества шпонок, изготовленных, например, из текстолита, установленных вдоль оси стебля. В начале сверления опора находится в направляющей втулке мас-лоприемника, а затем входит в обработанное отверстие, повторяя траекторию сверлильной головки во вращающейся заготовке с постоянным запаздыванием, равным оптимальному вылету стебля Ь = Ь*. Способ может использоваться при относительных длинах обработки как менее, так и более 100.
Для реализации этого способа необходимы разработка динамической модели процесса образования увода с учетом кинематического возмущения как сверлильной головки, так и дополнительной опоры с частотой вращения заготовки, анализ полученной модели и разработка алгоритма управления уводом.
В качестве основы принимается динамическая модель процесса образования увода [1, 2]. При разработке расчетной схемы было учтено, что дополнительная опора, как и сверлильная головка, испытывает кинематическое возмущение с частотой вращения заготовки. Поскольку опора находится в отверстии на расстоянии Ь от сверлильной головки, амплитуда ее кинематического возмущения численно равна амплитуде кинематического возмущения сверлильной головки, т. е. уводу оси отверстия, в сечении обработки (X - Ь*). Поэтому при разработке модели было учтено кинематическое возмущение как сверлильной головки Г2, так и места заделки стебля в маслоприемнике Г1.
С учетом того что жесткая дополнительная опора моделирует узел закрепления стебля в хвостовой части маслоприемника и медленно перемещается вдоль оси просверленного отверстия, в каждый момент времени можно считать, что сверлильная головка испытывает кинематическое возмущение с амплитудой г2 = У (X) , а дополнительная опора —
= У (X - Ь), динамическая модель процесса образования увода принимает вид дифференциального уравнения с запаздывающим аргументом. В безразмерной форме оно записывается как начальная функция [3]
описывающая траекторию дополнительной опоры в направляющей втулке маслоприем-ника, для которого
при X е [-L;0]. (4)
Y (°)(X) = L (X + L)
В формулах (3) и (4) Y (X) — безразмерная величина увода в текущем сечении X = X/ тх обработки (амплитуды кинематического возмущения стебля в месте расположения сверлильной головки); Y = Y/mY ; mY = pgFEj/Px? — масштаб амплитуды кинематического возмущения инструмента; Yo — безразмерная величина начального увода; C (L ) = F' (L )/A(L) — функция, определяющая влияние на увод Y (X) амплитуды r\ (X) = Y (X - L) кинематического возмущения дополнительной опоры, частоты вращения заготовки, диаметра сверления, а также конструктивных параметров дополнительной опоры (длины и ширины шпонок, общей длины опоры и т. д.) и сверлильной головки (ширины и длины направляющих шпонок, длины и ширины калибрующей ленточки режущей части сверлильной головки и т. д.), определяемых коэффициентом жесткости c^ = mxcф (сф — коэффициент жесткости, определяющий упругое сопротивление наклону сверлильной головки в обработанном отверстии); D(L) = Fy (L)/A(L) — функция, определяющая влияние на увод Y (X) амплитуды Г2 (X) = Y (X) кинематического возмущения сверлильной головки, частоты вращения заготовки, диаметра сверления, конструктивных параметров дополнительной опоры (длины и ширины шпонок, общей длины опоры и т. д.) и сверлильной головки (ширины и длины направляющих шпонок, длины и ширины калибрующей ленточки режущей части сверлильной головки и т. д.);
f (L) = n {m (n2 + m2) [cos (mL) - ch(vL)]}
и
Fy (L) =
dY (X) dX
= C (L) Y (X-L) + D (L) Y (X), (3)
= mv {m [2mvF22 (L) + (v2 - m2) (fu (l) - i)]} -M1
числители выражений для C (L) и D (L); А (L) = А ш (L) + сфАз (L) — общий знаменатель
функций С (Ь) и Б (Ь) — определитель системы уравнений для нахождения постоянных интегрирования в зависимости от характера взаимодействия сверлильной головки с поверхностью просверленного отверстия:
кш
(b) = m{(v2 + m2)
F12 (L)-j F21 (L)
и
Аз (L) = m k [1 - F11 (L)] + 2 F22 (L)} -
определители системы уравнении в предельных случаях моделирования характера взаимодействия сверлильной головки поверхностью отверстия: шарнирная опора и жесткая заделка соответственно; функции F^(x) = = ch (vx) cos (jmx), F12(x) = ch (vx) sin (jmx), F21(x) = = sh (vx) cos (jmx), F22M = sh (vx) sin (jmx); коэффициенты j = v = к = л/й ; относительная глубина сверления £ = £/mx ; £ — текущая глубина обработки отверстия.
Численный анализ уравнения (3) показывает, что кинематическое возмущение дополнительной опоры в фазе с кинематическим возмущением сверлильной головки приводит к уменьшению увода, а в противофазе — к его увеличению. При этом центр масс как сверлильной головки, так и дополнительной опоры может пересекать ось вращения заго-
Y(£) 2Yo
Yn
-2Y0
3Y0
2 4
~7\
U
0
L
2L
£
Рис. 4. Характерная кривая увода при ю = 10, Ь = = Ь* = 0,5 (п + 3,927)/ >/Ю = 1,118 по уравнению (2), £к = 3Ь:
1 — теоретическая кривая; 2 — точки пересечений сверлильной головкой оси вращения заготовки 3 — координаты сверлильной головки в каждый из моментов перехода дополнительной опоры через ось вращения заготовки + Ь; 4 — точки экстремума функции Y(£)
товки. Результаты моделирования методом последовательного интегрирования [3] (рис. 4) показывают, что указанные переходы опоры и сверлильной головки могут приводить к увеличению амплитуды колебаний сверлильной головки относительно точки х = £ + Ьо на оси вращения заготовки по мере увеличения глубины обработки. Следовательно, в алгоритм управления уводом требуется включить корректирующие воздействия в целях недопущения перехода увода Y (£) через нуль. Система управления должна контролировать текущий увод и после каждого его измерения возвращать аргумент (2) модели (3) и (4) к оптимальному значению, в качестве которого может быть принято:
1) величина х* = п, что соответствует Ь ^р; при этом сверлильная головка не пересекает ось вращения заготовки по всей длине обработки, однако такое значение х* (или Ь*) находится в зоне неопределенности, что может приводить как к уменьшению, так и к увеличению увода;
2) для достижения требуемой скорости убывания увода при обеспечении необходимой надежности процесса глубину обработки £ *1), соответствующую первому пересечению сверлильной головкой оси вращения заготовки, можно определять как
£1 = *£к,
(5)
где £к — конечное сечение обработки; 8 > 1 — коэффициент надежности.
Определив с использованием равенства (5) требуемое значение по модели (3) и (4) находят частоту п вращения заготовки, при которой значение ££ по этой модели равно требуемому. Описанный прием в первую очередь следует использовать на начальном этапе сверления до первого измерения текущего значения увода.
Управление уводом при глубоком сверлении отверстий с постоянным вылетом стебля. Основной задачей системы управления уводом при глубоком сверлении отверстий с установленной на стебле жесткой дополнительной опорой является поддержание в течение всего времени обработки оптимального вылета стебля Ь*. Эта величина может быть обеспечена за счет изменения в установленных пределах частоты вращения заготовки п.
0
0
3 2 1 14 13 4
7 10
5 6 8
15
Рис. 5. Схема возможного конструктивного исполнения технологической системы глубокого сверления отверстий с функцией управления уводом при оптимальном вылете стебля Ь
Однако из-за возможных отклонений реальных параметров процесса глубокого сверления от параметров модели (3) и (4) фактические значения увода могут отличаться от теоретических. Следовательно, в системе управления должны быть предусмотрены устройства, которые позволяли бы определять фактические значения увода в требуемом сечении заготовки в процессе сверления, сравнивать полученные значения и характер изменения увода по длине обработки с рассчитанными по модели (3) и (4), оценивать адекватность реальных и теоретических результатов и автоматически генерировать управляющее воздействие в виде закономерного изменения частоты вращения заготовки таким образом, чтобы реальный вылет стебля соответствовал Ь*.
Конструктивная схема возможной реализации системы управления представлена на рис. 5. Заготовку 1 устанавливают в патроне 2 шпиндельной бабки 3, люнетах 4 и масло-приемнике 5. На стебле 6 на расстоянии Ь* от сверлильной головки 7 установлена жесткая дополнительная опора 8. В задней части мас-лоприемника прикреплено устройство 9, обеспечивающее движение дополнительной опоры в начальный период сверления. Когда глубина обработки приблизится к величине Ь*, опора пройдет через кондукторную втулку 10 в обработанное отверстие. Для измерения и контроля увода в процессе сверления могут использоваться специальные датчики 11 (например, ультразвуковые), которые устанавливаются в каретках 12, перемещающихся вдоль оси заготовки. Каретки крепятся в направля-
ющих 13, которые устанавливаются в стойках 14, расположенных на станине станка.
В процессе сверления заготовка вращается с частотой п, инструмент с помощью подающей каретки 15 перемещается вдоль оси центров станка и поддерживается стеблевыми стойками 16. Структурная схема системы управления, соответствующая схеме рис. 5, показана на рис. 6.
Таким образом, для обеспечения функционирования системы управления уводом необходимо обеспечить:
1) контроль текущей длины обработки отверстия, частоты вращения заготовки и подачи инструмента в процессе сверления (в современных станках для обработки глубоких отверстий эта функция реализуется автономной системой управления станком с выводом контролируемых параметров на ЭВМ);
2) измерение фактических значений увода в тех сечениях заготовки, в которых в текущий момент времени находится сверлильная головка (функция реализуется датчиками, способными перемещаться вдоль оси заготовки в соответствии со схемой рис. 5);
3) передачу полученных данных о фактическом значении увода в контролируемом сечении заготовки и параметрах процесса сверления в ЭВМ, а затем в УЧПУ, определяющих степень соответствия реальных и теоретических характеристик процесса и создающих управляющее воздействие, которое подается на привод станка, обеспечивающий изменение частоты вращения заготовки в соответствии с разработанным алгоритмом.
№ 3(93)/2016
¡3
33
Рис. 6. Структурная схема системы управления:
1—3 — шаги алгоритма; Г1 и г 2 — текущие значения кинематического возмущения сверлильной головки и дополнительной опоры соответственно; X — текущая глубина обработки отверстия; ДХ — расстояние между сечениями, в которых контролируется увод, по теоретической оси отверстия; Уфакт — фактические (измеренные) значения увода; у — номер измерения
В целях получения основного расчетного соотношения для частот вращения заготовки п + 1, назначаемых после каждого у-го измерения увода, можно предложить два критерия.
1. При условии обеспечения оптимального
*
по критерию х = X на у-м участке соотношения требуемая частота вращения заготовки на последующем, (у + 1)-м, участке обработки по+т определяется на основе сравнительного анализа рассчитанных по модели (3) и (4) и фактических, измеренных после прохожде-
ния предыдущего, у-го, участка Уфакт , значений увода в соответствии с пропорцией
п
У+1 _
п
опт ] 1'
(6)
п
факт
у *
где попт — оптимальное по критерию х = X на у-м участке обработки рассчитанное по модели (3) и (4) значение частоты вращения
заготовки; пфу акт — такая частота вращения
заготовки, при которой расчетная кривая уво-
а)
б)
У, мм 0,5 0,4 0,3 0,2 0,1
0
4
3
л 1
%
2
50
100 150 200 250 300 X, мм
У, мм 0,5 0,4 0,3 0,2 0,1
4
3
ч \ 1
2
0 50 100 150 200 250 300 X, мм
У +1
Рис. 7. Изменение увода У по длине сверления X: а — первый способ расчета частот п^п^ [8 = 1,2; коэффициент надежности по частоте эп = п (¿Лф )/птах = 1,15 (птах = 2724 об/мин)]; б — второй способ (э = 1,2; эп = 1,15); диаметр сверления 12 мм, сталь 50РА 270-300 НВ, Ь = Ь* = 820 мм;
1 — расчетная кривая при п = п'^пт на у-м участке; 2 — кривая при п = п^ [по модели (3)-(5)] по всей глубине обработки; 3 — экспериментальная кривая [2]; 4 — моменты переключений частоты п
да на j-м участке соответствует фактическому значению ^факт увода.
2. Обеспечение на каждом j-м участке обработки X е [Xj-1; Xj = Xj-1 + AX] такой частоты вращения заготовки nj, при которой приращение вектора увода направлено к оси вращения заготовки, а изменение фазы увода на 180 ° должно быть исключено в пределах всей длины обработки X е [0; XR ]. При этом в целях учета отклонений параметров технологической системы от ее модели вводится коэффициент надежности s. Конкретные его значения могут быть определены статистической обработкой результатов функционирования (или имитационного моделирования) системы управления уводом с использованием проведенных и планируемых экспериментальных исследований.
Результаты имитационного моделирования работы системы управления уводом, полученные при реализации в алгоритме управления той или иной гипотезы (рис. 7, а и б соответственно) иллюстрируют достаточную надежность управляющих воздействий.
Выводы
Результаты проведенных исследований показывают, что наиболее надежным методом обеспечения заданной точности глубоких отверстий малых диаметров повышенной относительной длины является управление уводом, включающее как фиксацию вылета стебля на уровне, соответствующем участку убывания увода, так и коррекцию частоты вращения заготовки в целях учета возможных отклонений реального технологического процесса от его теоретической модели.
Литература
1. Яковлев П. Д., Яковлев С. П. Разработка алгоритма управления уводом оси при глубоком сверлении отверстий малых диаметров повышенной относительной длины // Проблемы механики современных машин: материалы VI Международной конференции. Улан-Удэ: Изд-во ВСГУТУ, 2015. Т. 2. 324 с. С. 267-272.
2. Обработка глубоких отверстий // Н. Ф. Уткин, Ю. И. Кижняев, С. К. Плужников [и др.]; под общ. ред. Н. Ф. Уткина. Л.: Машиностроение, 1988. 269 с.
3. Гноенский Л. С., Каменский Г. А., Эльсгольц Л. Э. Математические основы теории управляемых систем. М.: Наука, 1969. 512 с.
Уважаемые коллеги!
Открыта постоянная редакционная подписка на научно-производственный журнал «МЕТАЛЛООБРАБОТКА». Журнал учрежден и издается АО «Издательство «Политехника» с 2001 г.
Тематика: обработка материалов резанием, давлением, электрофизические и электрохимические методы обработки, новые технологии и материалы.
Тираж 2500 экз., объем 56 е., периодичность — 6 номеров в год, стоимость одного номера — 700 руб. Постоянным подписчикам 10 % скидка. С 2003 г. журнал включен в Перечень ВАК.
Приглашаем к сотрудничеству авторов: научные статьи, одобренные редколлегией, редактируются и печатаются бесплатно.
Для рекламодателей по запросу высылаем расценки. Подписной индекс: по каталогу «Роспечать» — № 14250.