2015 Электротехника, информационные технологии, системы управления № 15 УДК 621.39
В.Б. Успаленко, А.Н. Павлов, А.Л. Погудин
Пермский военный институт внутренних войск МВД России, Пермь, Россия
ИССЛЕДОВАНИЕ ЦИФРОВОЙ ФАЗОВОЙ АВТОПОДСТРОЙКИ ЧАСТОТЫ
Рассматриваются вопросы, связанные с системами автоматического регулирования, подстраивающими частоту управляемого генератора так, чтобы она была равна частоте опорного сигнала. Регулировка осуществляется благодаря наличию отрицательной обратной связи. Выходной сигнал управляемого генератора сравнивается на фазовом детекторе с опорным сигналом, результат сравнения используется для подстройки управляемого генератора. Система ФАПЧ используется для частотной модуляции и демодуляции, умножения и преобразования частоты, частотной фильтрации, выделения опорного колебания для когерентного детектирования и в других целях сравнивает фазы входного и опорного сигналов и выводит сигнал ошибки, соответствующий разности между этими фазами. Сигнал ошибки проходит далее через фильтр низких частот и используется в качестве управляющего для генератора, управляемого напряжением (ГУН), обеспечивающего отрицательную обратную связь. Если выходная частота отклоняется от опорной, то сигнал ошибки увеличивается, воздействуя на ГУН в сторону уменьшения ошибки. В состоянии равновесия выходной сигнал фиксируется на частоте опорного. Исследование цифровой ФАПЧ проводилось с использованием имитационного моделирования. Подробно рассмотрена структурная схема цифровой ФАПЧ и её составные части. Для определения всех параметров s(n), v(n), e(n), q(n), y(n) и r(n) ФАПЧ была написана программа на языке программирования С+. Получены наглядные графики изменения входного сигнала s-i(n) и s2(n), сигнала на выходе из петлевого фильтра e-i(n) и e2(n), сигнала на выходе из фазового детектора v-i(n) и v2(n), изменения передаточной функции p-i(n) и p2(n), выходного разностного сигнала n(n) и r2(n), изменения сигнала с выхода ГУН y-i(n) и y2(n), построенные с использованием электронных таблиц Excel. Описана подробная методика решения этой же задачи с помощью имитационного моделирования в пакете MatLab. Разработана функциональная схема ФАПЧ в пакете MicroCAP-8, которая позволила снять график изменения ЛАЧХ цифровой ФАПЧ.
Ключевые слова: цифровая, фазовая, автоподстройка, частота, детектор, сигнал, опорный, генератор, обратная, связь, система, автоматического регулирования.
V.B. Uspalenko, A.N. Pavlov, A.L. Pogudin
Perm Military Institute of Internal Troops of the Ministry of Internal Affairs of Russia,
Perm, Russian Federation
DIGITAL PHASE-LOCKED LOOP RESEARCH
In article the questions connected with the systems of automatic control arranging the frequency of the operated generator are considered so that it was equal to the frequency of a basic signal. Adjustment is carried out thanks to existence of negative feedback. The output signal of the operated generator is compared on the phase detector to a basic signal, the result of comparison is used for fine tuning of the operated generator. The system of FAPCh is used for frequency modulation and demodulation, multiplication and transformation of frequency, a frequency filtration, allocation of basic
fluctuation for coherent detecting and in other purposes. Compares phases of entrance and basic signals and removes the mistake signal corresponding to a difference between these phases. The signal of a mistake passes further through the filter of low frequencies and is used as the managing director for the generator operated by tension (GUN), providing negative feedback. If output frequency deviates from basic, the signal of a mistake increases, influencing GUN towards reduction of a mistake. In an equilibrium state the output signal is fixed at a frequency of the basic. Research of digital FAPCh was conducted with use of imitating modeling. The block diagram of digital FAPCh and its components is in detail considered. For determination of all parameters s(n), v(n), e(n), q(n), y(n) and r(n) of FAPCh the program in the C+ programming language was written. Evident schedules of change of an entrance signal of s1(n) and s2(n), signal at the exit from the loopback e1(n) and e2(n) filter, a signal at the exit from the phase detector v1(n) and v2(n), change of transfer function r1(n) and r2(n), an output differential signal of r1(n) and r2(n), change of a signal from an exit of GUN y1(n) and y2(n), constructed with use of spreadsheets of Excel are received. The detailed technique of the solution of the same task by means of imitating modeling in a MatLab package is described. The function chart of FAPCh in a MicroCAP-8 package which allowed to remove the schedule of change of LAChH of digital FAPCh is developed.
Keywords: digital, phase, auto-adjust, frequency, detector, signal, basic, generator, the return, communication, system, automatic, regulation.
Введение. Системы и устройства электроавтоматики выполняют такие задачи, как контроль, сигнализация, блокировка, защита и автоматическое управление.
Устройства автоматического контроля определяют исправность оборудования и правильность протекания пооперационного контроля, обеспечивают надежную и безаварийную работу.
Устройства сигнализации преобразуют сигналы, применяемые в системах автоматики, в сигналы, воспринимаемые человеком. Такими сигналами-раздражителями обычно являются показания сигнальных ламп, стрелок приборов, цифровых панелей, электронно-лучевых индикаторов, звуковые сигналы (гудок, звонок, сирена) и т.д.
Устройства блокировки и защиты предотвращают неправильный порядок работы средств электроавтоматики или технологического процесса и обеспечивают отключение соответствующего оборудования при ненормальных режимах.
В электрических устройствах широко используют предохранители и автоматические выключатели, отключающие сеть при перегрузке; машины защищают от перегрева подшипников; котлы, баки и различные технологические аппараты от повышения давления или понижения уровня жидкости.
Системы автоматики функционируют по команде человека по заданной программе или автоматически в зависимости от значения каких-либо параметров, определяющих желаемый ход процесса в объекте управления.
Фазовая автоподстройка частоты - это система автоматического регулирования, подстраивающая частоту управляемого генератора так, чтобы она была равна частоте опорного сигнала. Регулировка осуще-
ствляется благодаря наличию отрицательной обратной связи. Выходной сигнал управляемого генератора сравнивается на фазовом детекторе с опорным сигналом, результат сравнения используется для подстройки управляемого генератора [1, 10].
Система ФАПЧ используется для частотной модуляции и демодуляции, умножения и преобразования частоты, частотной фильтрации, выделения опорного колебания для когерентного детектирования и в других целях [2, 3].
ФАПЧ сравнивает фазы входного и опорного сигналов и выводит сигнал ошибки, соответствующий разности между этими фазами. Сигнал ошибки проходит далее через фильтр низких частот и используется в качестве управляющего для генератора, управляемого напряжением (ГУН), обеспечивающего отрицательную обратную связь. Если выходная частота отклоняется от опорной, то сигнал ошибки увеличивается, воздействуя на ГУН в сторону уменьшения ошибки. В состоянии равновесия выходной сигнал фиксируется на частоте опорного [4, 5].
Для изучения процессов, происходящих в системах автоматизированного управления, в настоящее время широко используются методы имитационного моделирования.
Целью данной работы является исследование цифровой ФАПЧ с использованием имитационного моделирования.
Устройства ФАПЧ могут быть реализованы как аналоговой, так и цифровой схемой. Обе реализации используют одинаковую структурную схему. Как аналоговая, так и цифровая схема ФАПЧ включает в себя 3 основных элемента:
- фазовый детектор;
- регулируемый генератор;
- обратную связь (часто включающую в себя делитель частоты).
Цифровая фазовая автоподстройка частоты (ЦФАПЧ) работает
схожим образом с аналоговой, но полностью реализуется с помощью цифровых схем. Вместо ГУН используются системные часы и счётчик-делитель под цифровым управлением.
ЦФАПЧ более проста в разработке и реализации, меньше чувствительна к шумам напряжения (по сравнению с аналоговой), однако обычно она допускает фазовый шум по причине наличия шума квантования при использовании цифрового генератора. Вследствие этого ЦФАПЧ не пригодны для работы на высокой частоте или управления высокочастотными опорными сигналами. ЦФАПЧ иногда используются для восстановления данных [6, 7, 8].
Анализ структурной схемы цифровой ФАПЧ. В обобщенном виде любая система автоматического регулирования, независимо от ее назначения, содержит измерительное устройство с вычитателем на входе и объект регулирования, выход которого подключен к вычитате-лю. В вычитателе сравниваются управляющая величина и управляемая (с выхода объекта регулирования), являющаяся величиной обратной связи. Наряду с понятиями управляющей и управляемой величин будем пользоваться понятиями входной и выходной, определяющих функциональное назначение системы [9, 11]. В общем случае входная и выходная величины не всегда являются управляющей и управляемой (в указанном понимании этих терминов).
Передаточная функция системы:
где хвых и хвх - выходная и входная величины, а Кпр(р) и Кобр(р) - передаточные функции цепей прямой передачи (от входа к выходу) и отрицательной обратной связи (от выхода к входу), р - оператор Лапласа (знак плюс в знаменателе означает, что обратная связь отрицательная). Входная величина может подаваться на вход любого элемента, а выходная может сниматься также с выхода любого элемента системы.
Структурная схема цифрового контура ФАПЧ показана на рис. 1 [12].
Структурная схема цифрового контура ФАПЧ аналогична структурной схеме аналогового контура, за исключением того, что он работает не в непрерывном времени, а в дискретном с интервалом дискретизации
К(р) хвых/хвх Кпр(р)/[1 + Кпр(р)Кобр(р)],
Фазовый детектор
р Петлевой фильтр
ГУН
Рис. 1. Структурная схема цифровой ФАПЧ [12]
где Fs - частота дискретизации. При этом петлевой фильтр является цифровым, а ГУН работает в дискретном времени согласно рис. 2.
Рис. 2. Принцип функционирования цифрового ГУН [12]
Аналоговый ГУН интегрировал сигнал ошибки е(^). Тогда при переходе от непрерывного времени к дискретному интегрирование заменяется суммированием е(п).
Введем обозначение:
п-1
У(п) = к0 • X e{m),
т = 0
где у(п) - текущее значение фазы ГУН. Тогда можно записать:
п-2
у(п) = к0 • е(п -1) + к0 • X е(т) = К0 • е(п -1) + у(п -1).
т=0
Полученное разностное уравнение фазы цифрового ГУН соответствует передаточной характеристике N(2) цифрового ГУН вида:
N (2) =
1 - г г -1
Текущее значение фазы ГУН у(п) зависит от предыдущего значения сигнала ошибки е(п - 1), что учитывается множителем г4 в числителе. Рассмотрим теперь работу цифрового контура ФАПЧ. На выходе фазового детектора получим сигнал у(п):
у(п) = 0,5Kd • 81п(2ю0 • Т • п + ф(п) + у(п)) + 0,5К • Б1п(ф(п) - у(п)).
Петлевой фильтр устраняет слагаемое на удвоенной частоте, тогда е(п) = 0,5К • эт(ф(п) -у(п) = 0,5К • Б1п(Аф(п)).
Модель цифрового контура ФАПЧ показана на рис. 3.
Так же, как и модель аналогового контура ФАПЧ, модель цифрового контура нелинейна, но может быть линеаризована при малом значении Дф(п) в установившемся режиме э1п(Аф(п)) » Аф(п) и множитель 0,5 может быть учтен в коэффициенте К¿.
Ф(п) +
<±>
Лф(п)
-
|sin()
v(n)
F(z)
-1 К,
z 1-z"1
e(n)
Рис. 3. Модель цифрового контура ФАПЧ [12]
Линеаризованная модель цифрового контура ФАПЧ показана на рис. 4 [12].
Ф(п)
-м
Лф(п)
y(n) ■*-
Kd
О
F[z)
e(n)
-l Z
1-z-1
N[z
Рис. 4. Линеаризованная модель цифрового контура ФАПЧ [12]
Если Ф(г) и ¥(z) - z-образы ф(п) и у(п) соответственно, то передаточная характеристика цифрового контура ФАПЧ определяется как
H(z) = F(z) = Kd • F(z) • N(z) () Y( z ) 1 + Kd • F ( z) • N ( z У
где Kp и Kj, как и в случае с аналоговым контуром ФАПЧ, - пропорциональный и интегральный коэффициенты. Передаточная характеристика F(z) петлевого фильтра определяется как
F ( z) =
_ Kp ( z -1) + K
Z -1
Передаточную характеристику линеаризованной модели контура ФАПЧ можно записать в виде
2 - 1) + £2
H(z)
(z - 1)2 + g1(z - 1) + g2
Структурная схема петлевого фильтра F(z) показана на рис. 5.
Рис. 5. Структурная схема петлевого фильтра цифрового контура ФАПЧ [12]
Получена передаточная характеристика цифрового контура ФАПЧ, которая зависит от коэффициентов g1 = Kd • Kp • K0 и g2 = Kd • Ki • K0,
и нам необходимо научиться рассчитывать эти коэффициенты.
Приведем также разностное уравнение петлевого фильтра, которое пригодится нам при моделировании цифрового конура ФАПЧ:
e(n) = Kp • v(n) + (Ki - Kp ) • v(n -1) + e(n -1).
Математическая модель для исследования ЦФАПЧ будет соответствовать следующей структурной схеме (рис. 6) [12].
Рис. 6. Структурная схема модели контура ФАПЧ [12]
В структурной схеме исходный сигнал имеет вид s(n) = бш(2я • / • г (п) + ф0),
где /0 - частота исходного сигнала, ф0 - начальная фаза, умножается на сигнал с выхода ГУН q(n) вида
q(n) = со8(2р • / • г (и) + у (и -1)),
где fg - частота ГУН, которая отличается отf на величину df, n - 1) -отсчет фазы ГУН, удовлетворяющий разностному уравнению. Отметим, что сигнал y(n) - это повернутый на минус 90 град сигнал q(n), т.е.
y(n) = sin(2p • fg • t(n) + y(n -1)).
Сигнал r(n) - разностный сигнал, который в режиме сопровождения должен стремиться к нулю. Сигнал на выходе петлевого фильтра e(n) удовлетворяет разностному уравнению. Для определения всех параметров s(n), v(n), e(n), q(n), y(n) и r(n) ФАПЧ была написана программа на языке программирования С+. В качестве исходных данных принимались исходные данные, представленные в таблице.
Исходные данные для расчёта
Kd Ko юр, рад/с Z Fs, кГц f0, кГц df, Гц fg
1,0 1,0 2п-50 0,5 10,0 1,0 4,0 f0 - df
Полученные результаты представлены на рис. 7-12.
0,5 0
-0,5
-1
-1.5
06
08
0,12
s1(n) s2(n)
Рис. 7. Графики изменения входного сигнала s1(n) и s2(n)
ßi(n) Й2(я)
Рис. 8. Графики изменения сигнала на выходе из петлевого фильтра е1(п) и е2(и)
n
n
Рис. 9. Графики изменения сигнала на выходе из фазового детектора у1(и) и у2(п)
/
Р1(п) Р2(п)
Рис. 10. Графики изменения передаточной функции р1(и) и р2(п)
п(п) Г2(п)
Рис. 11. Графики изменения выходного разностного сигнала г1(п) и г2(п)
п
п
0,05
Д5
У\{п)
У2(П)
Рис. 12. Графики изменения сигнала с выхода ГУН у1(п) и у2(п)
Исследование цифровой ФАПЧ с использованием Ма1ЬаЬ и М1егоСЛР-8. Для решения этой же задачи можно воспользоваться методом имитационного моделирования с использованием пакета Ма1ЬаЬ (рис. 13), а с помощью пакета М1сгоСАР-8 (рис. 14) можно получить графики изменения ЛАЧХ (рис.15). Моделирование систем передачи дискретных сообщений (ПДС) и их функциональных узлов на ЭВМ является экономичным способом их исследования и проектирования. Оно позволяет значительно ускорить процесс разработки и найти наиболее оптимальные характеристики их функционирования.
/
J w "W
Fefl
In 10ut 1 InlOutt
FPH Tiinsport
OUK
ч
Signal Constraint
Рис. 13. Функциональная схема модели цифрового контура фазовой автоподстройки частоты, построенная в среде MatLab
n
Рис. 14. Функциональная схема ФАПЧ, построенная в пакете МюгоСАР-8
¡Ш^^ИГ _-1п1 х!
Д1 Ч ■ 111/-/1Р ЦДЗДД ИР IВ -К I
^ .. м/1.Ш Иэ- ® .Ж
Рис. 15. График изменения ЛАЧХ, полученный на модели ФАПЧ в программном пакете МюгоСАР-8
Моделирование на ЭВМ можно условно разбить на следующие этапы: - формулировка задачи моделирования, разработка модели системы или устройства и программы их исследования;
- составление модели;
- моделирование системы ПДС или устройства при заданных режимах работы и внешних воздействиях;
- интерпретация результатов моделирования, т.е. построение различных выводов о функционировании объекта по данным, полученным в результате моделирования на имитационной модели. Для решения поставленной задачи в среде MatLab необходимо:
1. Настроить параметры каждого функционального блока структурной схемы. Указать, если требуется, в настройках блока время дискретизации (Sample time). Установить частоты опорного и управляемого генераторов равными 10 Гц (если требуется указать значение в рад/с, ввести выражение 2nf где f - частота, Гц). Установить разность фаз между фазами опорного и управляемого генераторов (f = фг - фо) равной 90o (п/2), при которой полезная составляющая на выходе фазового детектора равна нулю. Проконтролировать установленные параметры генераторов, сравнивая осциллограммы их выходных сигналов.
2. Установить постоянную времени RC-фильтра, включенного в блок фазового детектора, обеспечивающую подавление удвоенной частоты входного сигнала на его выходе в 10 раз, снять импульсную и передаточную характеристики фильтра, используя спектр-анализатор.
3. Снять передаточную характеристику идеального пропорционально-интегрирующего фильтра (ПИФ) схемы ФАП, определяемой выражением
F(p) = (1 + a/p),
где а - коэффициент передачи интегрирующей ветви ПИФ, р - оператор Лапласа. Принять значение а в диапазоне [10,30] с шагом 5.
Блоки Fcn - моделируют работу датчика положения берда, где блок Fcn отражает изменение входного параметра датчика в зависимости от изменения положения берда, блок SCOPE отображает аппроксимирующую функцию и ошибку приближения. Установив бесконечное время моделирования и предел временного интервала в блоке Scope равным единице, можно непрерывно наблюдать графики аппроксимирующей функции и ошибки приближения в процессе коррекции узлов аппроксимации. К входу ГУН подключить источник постоянного напряжения и путем изменения его величины в диапазоне [-1,1] с шагом 0,5 измерить крутизну ГУН, построить характеристику управления А/у = fUy).
1. Подключив генератор пилообразного напряжения к входу генератора входного сигнала, управляемого напряжением, и установив начальную расстройку А/ собственных частот генератора входного сигнала и ГУН, обеспечивающую отсутствие захвата, определить полосу захвата ФАП 1 -го и 2-го порядка.
2. Подключив генератор пилообразного напряжения к входу генератора входного сигнала, управляемого напряжением, и установив нулевую начальную расстройку А/ собственных частот генератора входного сигнала и ГУН, определить полосу удержания ФАП 1-го и 2-го порядка.
3. Анализируя сигнал управления на входе ГУН, определить время ввода в синхронизм ФАП 1-го и 2-го порядка при начальных расстройках в диапазоне значений [-1,1] с шагом 1.
4. Построить зависимость полосы захвата ФАП 1-го и 2-го порядка от коэффициента усиления петли обратной связи ФАП. Коэффициент усиления менять от 10 до 4 с шагом 2.
Подключить к входу ФАП гармонический сигнал с начальной расстройкой в пределах полосы захвата и сигнал с выхода генератора нормального шума. С помощью измерителя среднеквадратичных значений определить дисперсию сигнала управления и величину фазового джиттера сигнала ГУН, а также определить отношение сигнал-шум внутри кольца ФАП и на ее входе.
Основная проблема цифровых систем ФАПЧ с двоичным выходом фазового детектора отмечена в [4], где исследовались простая петля с двоичным выходом фазового компаратора и фильтр случайных блужданий (ФСБ). Проблема состоит в невозможности совместить достаточную ширину полосы захвата с возможностью подавления дрожания фазы. Улучшение в характеристиках подавления дрожания фазы приводит к сужению полосы захвата. Предлагаемая в данной работе цифровая система ФАПЧ отчасти свободна от этой проблемы за счёт использования петлевого фильтра нового типа. Характеристики системы ФАПЧ с таким фильтром проверены в ходе теоретических исследований, экспериментально и при компьютерном моделировании.
Заключение. Разработанная цифровая система ФАПЧ обладает следующими свойствами:
- широкая полоса захвата при одновременно сильном подавлении дрожания фазы;
- хорошее подавление дрожания фазы при наличии сдвига по частоте у опорного генератора или отклонения по частоте у входного сигнала;
- малое время захвата.
Библиографический список
1. Системы фазовой синхронизации с элементами дискретизации / под ред. В.В. Шахгильдяна. - М.: Радио и связь, 1989.
2. Аналоговые и цифровые синхронно-фазовые измерители и демодуляторы / А. А. Фомин [и др.]. - М.: Радио и связь. 1987.
3. Синтезаторы частот с системой импульсно-фазовой автоподстройки / В.А. Левин [и др.]. - М.: Радио и связь. 1989.
4. Curtin M., O'Brien P. Phase Locked Loops for High-Frequency Receivers and Transmitters // Analog Dialogue, Analog Devices. - 1999. -Vol. 33, №. 3, 5, 7.
5. Fague D. OthelloTM: A New Direct-Conversion Radio Chip Set Eliminates IF Stages // Analog Dialogue, Analog Devices. - 1999. -Vol. 33, №. 10.
6. Голуб В. Приемопередатчик GJRF10 фирмы Gran Jansen AS // Chip News. - 1998. - № 4. - С. 30-32.
7. Мошиц Г., Хорн П. Проектирование активных фильтров. - М.: Мир, 1984.
8. Голуб В.С. Мгновенная и средняя частота колебаний и интегрирующие ЧМ и ЧИМ модуляторы // Радиотехника. - 1982. - Т. 37, № 9. - С. 48-50.
9. Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов: пер. с англ. - М.: Мир, 1989. - 448 с.
10. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов. - 2-е изд. перераб. и доп. - М.: Радио и связь, 1990. - 256 с.
11. Лем Г. Аналоговые и цифровые фильтры: пер. с англ. - М.: Мир, 1982. - 592 с.
12. Контур фазовой автоподстройки частоты [Электронный ресурс]. - URL: http://www.dsplib.ru (дата обращения: 11.09.2015).
References
1. Shakhgil'diana V.V. Sistemy fazovoi sinkhronizatsii s elementami diskretizatsii [Systems of phase synchronization with the discretization elements]. Moskow: Radio i svjaz', 1989.
2. Fomin A.A. [et al.]. Analogovye i tsifrovye sinkhronno-fazovye izmeriteli i de-moduliatory [Analog and digital synchronous phase indicators and demodulators]. Moskow: Radio i svjaz', 1987.
3. Levin V.A. [et al.]. Sintezatory chastot s sistemoi impul'sno-fazovoi avtopod-stroiki [Frequency synthesizers with phase-locked pulsed system]. Moskow: Radio i svjaz'. 1989.
4. Curtin M., O'Brien P. Phase Locked Loops for High-Frequency Receivers and Transmitters. Analog Dialogue, Analog Devices, 1999, vol. 33, no. 3, 5, 7.
5. Fague D. OthelloTM: A New Direct-Conversion Radio Chip Set Eliminates IF Stages. Analog Dialogue, Analog Devices, 1999, vol. 33, no. 10.
6. Golub V. Priemoperedatchik GJRF10 firmy Gran Jansen AS [Transceiver GJRF10 Gran Jansen AS Company]. Chip News, 1998, no. 4, pp. 30-32.
7. Moshits G., Khorn P. Proektirovanie aktivnykh fil'trov [Active filters design]. Moskow: Mir, 1984.
8. Golub V.S. Mgnovennaia i sredniaia chastota kolebanii i integ-riruiushchie ChM i ChIM moduliatory [The instantaneous and average oscillations frequency and integrating FM and PFM modulators]. Radiotehnika, 1982, vol. 37, no. 9, pp. 48-50.
9. Bleikhut R. Bystrye algoritmy tsifrovoi obrabotki signalov [Fast algorithms for digital signal processing]. Moskow: Mir, 1989. 448 p.
10. Gol'denberg L.M., Matiushkin B.D., Poliak M.N. Tsifrovaia obrabotka signalov [Digital Signal Processing]. Moskow: Radio i svjaz', 1990. 256 p.
11. Lem G. Analogovye i tsifrovye fil'try [Analog and digital filters]. Moskow: Mir, 1982. 592 p.
12. Kontur fazovoi avtopodstroiki chastoty [A phase locked loop], available at: http://www.dsplib.ru (accessed 11 September 2015).
Сведения об авторах
Успаленко Вадим Борисович (Пермь, Россия) - старший преподаватель кафедры вычислительных машин, комплексов, систем и сетей Пермского военного института внутренних войск МВД России (614112, Пермь, ул. Сухой Лог, 1).
Павлов Александр Николаевич (Пермь, Россия) - кандидат технических наук, доцент кафедры вычислительных машин, комплексов, систем и сетей Пермского военного института внутренних войск МВД России (614112, Пермь, ул. Гремячий Лог, 1).
Погудин Андрей Леонидович (Пермь, Россия) - кандидат технических наук, доцент кафедры вычислительных машин, комплексов, систем и сетей Пермского военного института внутренних войск МВД России (614112, Пермь, ул. Гремячий Лог, 1).
About authors
Uspalenko Vadim Borisovich (Perm, Russian Federation) is a Senior Lecturer at the Department of computing machines, complexes, systems and networks Perm Military Institute of Internal Troops of Russia (614112, Perm, street Sukhoy Log, 1).
Pavlov Alexander Nikolaevich (Perm, Russian Federation) is Ph.D. in Technical Sciences, Associate Professor Department of computers, complexes, systems and networks Perm Military Institute of Internal Troops of Russia (614112, Perm, ul. Gremyachy Log, 1).
Pogudin Andrey Leonidovich (Perm, Russian Federation) is Ph.D. in Technical Sciences, Associate Professor Department of computers, complexes, systems and networks Perm Military Institute of Internal Troops of Russia (614112, Perm, ul. Gremyachy Log, 1).
Получено 06.07.2015